imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

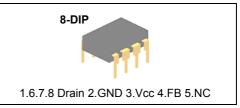
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

KA5x0365RN-SERIES KA5M0365RN, KA5L0365RN Fairchild Power Switch(FPS)

Features


- Precision Fixed Operating Frequency (67/50kHz)
- Low Start-up Current(Typ. 100uA)
- Pulse by Pulse Current Limiting
- Over Current Protection
- Over Voltage Protection (Min. 25V)
- Internal Thermal Shutdown Function
- Under Voltage Lockout
- Internal High Voltage Sense FET
- Auto-Restart Mode

Applications

- SMPS for VCR, SVR, STB, DVD & DVCD
- SMPS for Printer, Facsimile & Scanner
- Adaptor for Camcorder

Description

The Fairchild Power Switch(FPS) product family is specially designed for an off-line SMPS with minimal external components. The Fairchild Power Switch(FPS) consists of a high voltage power SenseFET and a current mode PWM IC. Included PWM controller integrates the fixed frequency oscillator, the under voltage lock-out, the leading edge blanking, the optimized gate turn-on/turn-off driver, the thermal shutdown protection, the over voltage protection, and the temperature compensated precision current sources for the loop compensation and the fault protection circuitry. Compared to a discrete MOSFET and a PWM controller or an RCCsolution, a Fairchild Power Switch(FPS) can reduce the total component count, design size and weight and at the same time increase efficiency, productivity, and system reliability. It has a basic platform well suited for the cost effective design in either a flyback converter or a forward converter

#3 Vcc 🗗 - #1,6,7,8 5V Internal SFET DRAIN Vref bias Good logic OSC S 5μΑ R #4 FB 🕞 L.E.B 0.1V -🗆 #2 GND S 7.5V C R Ş ≷ Thermal S/D Power on reset 27V OVER VOLTAGE S/D

Internal Block Diagram

Absolute Maximum Ratings

(Ta=25°C, unless otherwise specified)

Characteristic	Symbol	Value	Unit
KA5M0365RN, KA5L0365RN			
Drain-Gate Voltage (R _{GS} =1MΩ)	VDGR	650	V
Gate-Source (GND) Voltage	VGS	±30	V
Drain Current Pulsed ⁽¹⁾	IDM	3	ADC
Continuous Drain Current (Ta=25°C)	ID	0.42	ADC
Continuous Drain Current (Ta=100°C)	ID	0.28	ADC
Single Pulsed Avalanche Energy ⁽²⁾	Eas	127	mJ
Maximum Supply Voltage	VCC,MAX	30	V
Analog Input Voltage Range	VFB	-0.3 to V _{SD}	V
Total Dower Dissipation	PD	1.56	W
Total Power Dissipation	Derating	0.0125	W/°C
Operating Junction Temperature.	TJ	+160	°C
Operating Ambient Temperature.	TA	-25 to +85	°C
Storage Temperature Range.	TSTG	-55 to +150	°C

Note:

1. Repetitive rating: Pulse width limited by maximum junction temperature

2. L = 51mH, starting Tj = 25° C

3. L = 13μ H, starting Tj = 25° C

Electrical Characteristics (SenseFET Part)

(Ta = 25°C unless otherwise specified)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit		
KA5M0365RN, KA5L0365RN								
Drain-Source Breakdown Voltage	BVDSS	V _{GS} =0V, I _D =50μA	650	-	-	V		
Zero Gate Voltage Drain Current	IDSS	V _{DS} =Max. Rating, V _{GS} =0V	-	-	50	μA		
		V _{DS} =0.8Max. Rating, V _{GS} =0V, T _C =125°C	-	-	200	μA		
Static Drain-Source on Resistance (Note)	RDS(ON)	VGS=10V, ID=0.5A	-	3.6	4.5	Ω		
Forward Transconductance (Note)	gfs	V _{DS} =50V, I _D =0.5A	2.0	-	-	S		
Input Capacitance	Ciss		-	314.9	-	pF		
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1MHz	-	47	-			
Reverse Transfer Capacitance	Crss	1 111112	-	9	-			
Turn On Delay Time	td(on)	V _{DD} =0.5BV _{DSS} , I _D =1.0A	-	11.2	-	nS		
Rise Time	tr	(MOSFET switching	-	34	-			
Turn Off Delay Time	td(off)	time is essentially independent of	-	28.2	-			
Fall Time	tf	operating temperature)	-	32	-			
Total Gate Charge (Gate-Source+Gate-Drain)	Qg	V _{GS} =10V, I _D =1.0A, V _{DS} =0.5BV _{DSS} (MOSFET			11.93			
Gate-Source Charge	Qgs	switching time is	-	1.95	-	nC		
Gate-Drain (Miller) Charge	Qgd	essentially independent of operating temperature)		6.85				

Note:

1. Pulse test: Pulse width $\leq 300 \mu S, \, duty \leq 2\%$

^{2.} S = $\frac{1}{R}$

Electrical Characteristics (Control Part) (Continued)

(Ta = 25°C unless otherwise specified)

Characteristic	Symbol	Test condition	Min.	Тур.	Max.	Unit
UVLO SECTION						
Start Threshold Voltage	VSTART	VFB=GND	14	15	16	V
Stop Threshold Voltage	VSTOP	VFB=GND	8.4	9	9.6	V
OSCILLATOR SECTION						
Initial Accuracy	Fosc	KA5M0365RN	61	67	73	kHz
Initial Accuracy	Fosc	KA5L0365RN	45	50	55	kHz
Frequency Change With Temperature ⁽²⁾	-	-25°C≤Ta≤+85°C	-	±5	±10	%
Maximum Duty Cycle	Dmax		72	77	82	%
FEEDBACK SECTION		•		•	•	
Feedback Source Current	IFB	Ta=25°C, 0V <u><</u> Vfb <u><</u> 3V	0.7	0.9	1.1	mA
Shutdown Feedback Voltage	VSD	Vfb <u>≥</u> 6.5V	6.9	7.5	8.1	V
Shutdown Delay Current	Idelay	Ta=25°C, 5V≤Vfb≤V _{SD}	4	5	6	μA
REFERENCE SECTION		•		•	•	
Output Voltage ⁽¹⁾	Vref	Ta=25°C	4.80	5.00	5.20	V
Temperature Stability ⁽¹⁾⁽²⁾	Vref/∆T	-25°C≤Ta≤+85°C	-	0.3	0.6	mV/°C
CURRENT LIMIT(SELF-PROTECTION)S	ECTION	•		•	•	•
Peak Current Limit	IOVER	Max. inductor current	1.89	2.15	2.41	А
PROTECTION SECTION		•		•	•	
Over Voltage Protection	Vovp	VCC <u>></u> 24V	25	27	29	V
Thermal Shutdown Temperature (Tj) ⁽¹⁾	TSD	-	140	160	-	°C
TOTAL STANDBY CURRENT SECTION				•	•	
Start-up Current	ISTART	V _{CC} =14V	-	100	170	μA
Operating Supply Current (Control Part Only)	lop	V _{CC} <28	-	7	12	mA

Note:

1. These parameters, although guaranteed, are not 100% tested in production

2. These parameters, although guaranteed, are tested in EDS(water test) process

Typical Performance Characteristics(SenseFET part) (Continued)

(KA5M0365RN, KA5L0365RN)

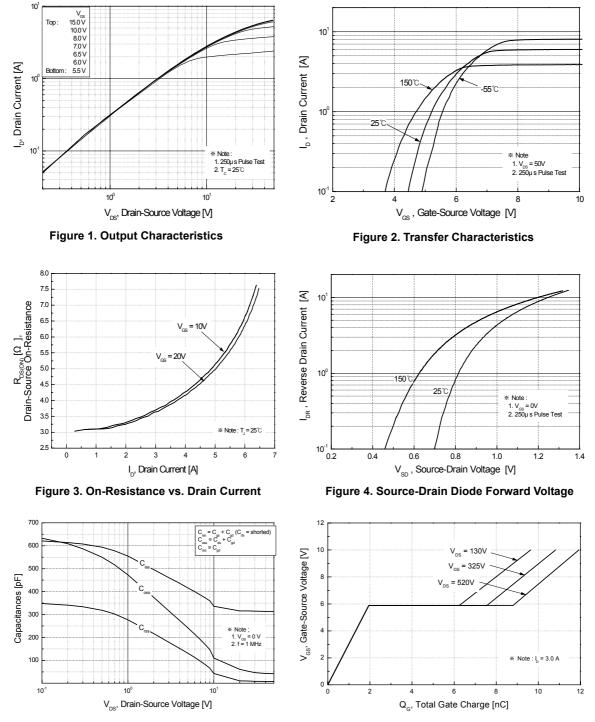
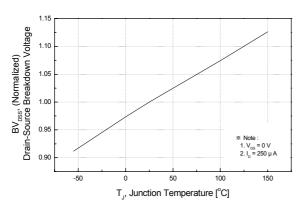



Figure 5. Capacitance vs. Drain-Source Voltage

Figure 6. Gate Charge vs. Gate-Source Voltage

Typical Performance Characteristics (Continued) (KA5M0365RN, KA5L0365RN)

Figure 7. Breakdown Voltage vs. Temperature

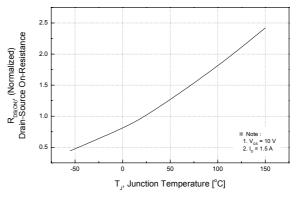


Figure 8. On-Resistance vs. Temperature

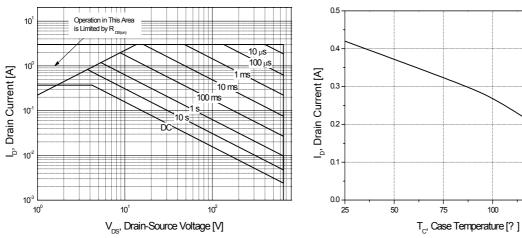


Figure 9. Max. Safe Operating Area

Figure 10. Max. Drain Current vs. Case Temperature

. 125 150

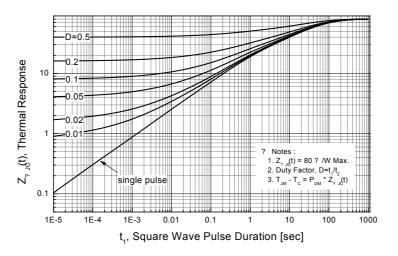
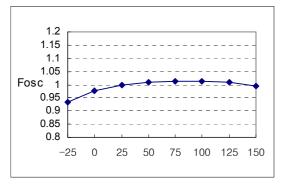



Figure 11. Thermal Response

Typical Performance Characteristics (Control Part) (Continued)

(These characteristic graphs are normalized at Ta = 25° C)

Figure 1. Operating Frequency

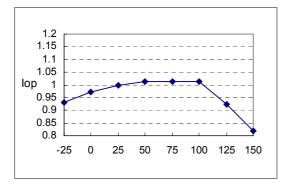


Figure 3. Operating Supply Current

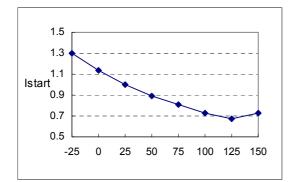


Figure 5. Start up Current

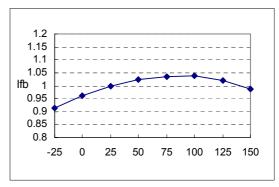


Figure 2. Feedback Source Current

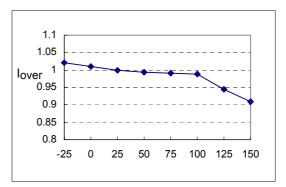


Figure 4. Peak Current Limit

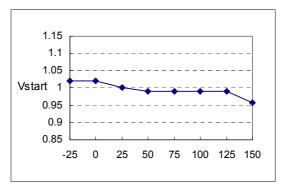


Figure 6. Start Threshold Voltage

Typical Performance Characteristics (Continued)

(These characteristic graphs are normalized at Ta = 25° C)

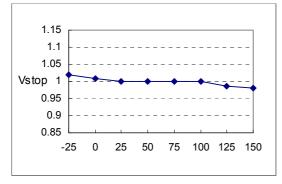


Figure 7. Stop Threshold Voltage

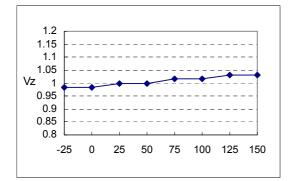


Figure 9. Vcc Zener Voltage

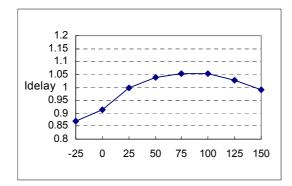


Figure 11. Shutdown Delay Current

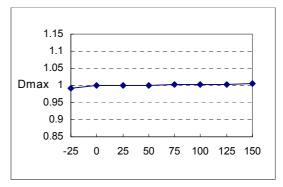


Figure 8. Maximum Duty Cycle

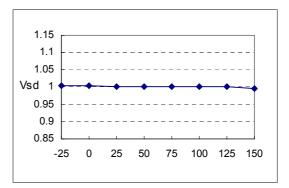


Figure 10. Shutdown Feedback Voltage

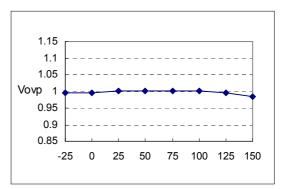


Figure 12. Over Voltage Protection

Typical Performance Characteristics (Continued)

(These characteristic graphs are normalized at $Ta = 25^{\circ}C$)

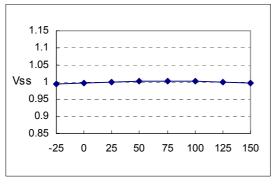


Figure13. Soft Start Voltage

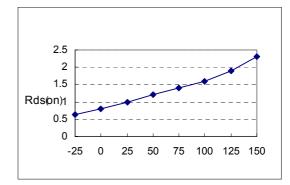
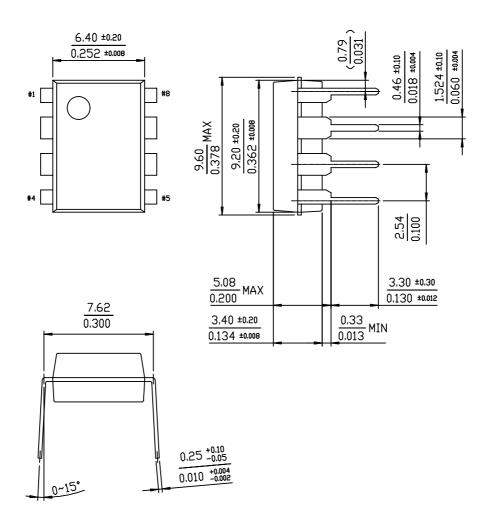



Figure 14. Static Drain-Source on Resistance

Package Dimensions

Ordering Information

Product Number	Package	Marking Code	BVDSS	Fosc	RDS(on)
KA5M0365RN	8-DIP	5M0365R	650V	67kHz	3.6Ω
KA5L0365RN	8-DIP	5L0365R	650V	50kHz	3.6Ω

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com