

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

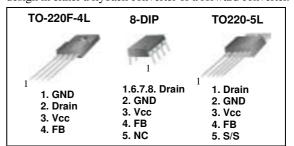




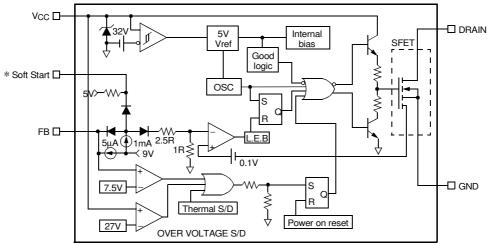




# KA5x02xx-SERIES


# KA5H0265RC, KA5M0265R, KA5L0265R, KA5H02659RN/KA5M02659RN, KA5H0280R, KA5M0280R Fairchild Power Switch(FPS)

#### **Features**


- Precision Fixed Operating Frequency (100/67/50kHz)
- Low Start-up Current (Typ. 100uA)
- Pulse by Pulse Current Limiting
- Over Load Protection
- Over Voltage Protection (Min. 25V)
- Internal Thermal Shutdown Function
- Under Voltage Lockout
- Internal High Voltage Sense FET
- · Auto-Restart Mode

#### **Description**

The Fairchild Power Switch(FPS) product family is specially designed for an off-line SMPS with minimal external components. The Fairchild Power Switch(FPS) consist of high voltage power SenseFET and current mode PWM IC. Included PWM controller features integrated fixed oscillator, under voltage lock out, leading edge blanking, optimized gate turn-on/turn-off driver, thermal shut down protection, over voltage protection, and temperature compensated precision current sources for loop compensation and fault protection circuitry-compared to discrete MOSFET and controller or RCC switching converter solution. The Fairchild Power Switch(FPS) can reduce total component count, design size, weight and at the same time increase efficiency, productivity, and system reliability. It has a basic platform well suited for cost-effective design in either a flyback converter or a forward converter.



#### **Internal Block Diagram**



\* KA5H0265RC

## **Absolute Maximum Ratings**

(Ta=25°C, unless otherwise specified)

| Characteristic                                   | Symbol           | Value                   | Unit |  |
|--------------------------------------------------|------------------|-------------------------|------|--|
| KA5x0265xRx                                      |                  |                         |      |  |
| Drain-Gate Voltage (R <sub>GS</sub> =1MΩ)        | VDGR             | 650                     | V    |  |
| Gate-Source (GND) Voltage                        | VGS              | ±30                     | V    |  |
| Drain Current Pulsed (1)                         | IDM              | 8.0                     | ADC  |  |
| Continuous Drain Current (T <sub>C</sub> =25°C)  | ID               | 2.0                     | ADC  |  |
| Continuous Drain Current (T <sub>C</sub> =100°C) | ID               | 1.3                     | ADC  |  |
| Single Pulsed Avalanche Energy (2)               | EAS              | 68                      | mJ   |  |
| Maximum Supply Voltage                           | VCC,MAX          | 30                      | V    |  |
| Analog Input Voltage Range                       | V <sub>FB</sub>  | -0.3 to V <sub>SD</sub> | V    |  |
| Total Power Dissipation —                        | PD               | 42                      | W    |  |
| Total Fower Dissipation —                        | Darting          | 0.33                    | W/°C |  |
| Operating Junction Temperature.                  | TJ               | +160                    | °C   |  |
| Operating Ambient Temperature.                   | TA               | -25 to +85              | °C   |  |
| Storage Temperature Range.                       | T <sub>STG</sub> | -55 to +150             | °C   |  |
| KA5x0280R                                        |                  |                         |      |  |
| Drain-Gate Voltage (R <sub>GS</sub> =1MΩ)        | VDGR             | 800                     | V    |  |
| Gate-Source (GND) Voltage                        | Vgs              | ±30                     | V    |  |
| Drain Current Pulsed (1)                         | I <sub>DM</sub>  | 8.0                     | ADC  |  |
| Continuous Drain Current (T <sub>C</sub> =25°C)  | ID               | 2.0                     | ADC  |  |
| Continuous Drain Current (T <sub>C</sub> =100°C) | ID               | 1.3                     | ADC  |  |
| Single Pulsed Avalanche Energy (2)               | EAS              | 90                      | mJ   |  |
| Maximum Supply Voltage                           | VCC,MAX          | 30                      | V    |  |
| Analog Input Voltage Range                       | VFB              | -0.3 to V <sub>SD</sub> | V    |  |
| Total Power Dissipation                          | PD               | PD 35                   |      |  |
| Total Fower Dissipation                          | Darting          | 0.28                    | W/°C |  |
| Operating Junction Temperature.                  | TJ               | +160                    | °C   |  |
| Operating Ambient Temperature.                   | TA               | -25 to +85              | °C   |  |
| Storage Temperature Range.                       | T <sub>STG</sub> | -55 to +150             | °C   |  |

#### Note:

<sup>1.</sup> Repetitive rating: Pulse width limited by maximum junction temperature

<sup>2.</sup> L = 51mH, starting  $T_j$  = 25°C

## **Electrical Characteristics (SFET Part)**

(Ta=25°C unless otherwise specified)

| Parameter                                     | Symbol  | Condition                                                                                      | Min. | Тур. | Max. | Unit |
|-----------------------------------------------|---------|------------------------------------------------------------------------------------------------|------|------|------|------|
| KA5x0265xRx                                   |         | •                                                                                              |      |      | •    |      |
| Drain-Source Breakdown Voltage                | BVDSS   | V <sub>G</sub> S=0V, I <sub>D</sub> =50μA                                                      | 650  | -    | -    | V    |
|                                               | IDSS    | V <sub>DS</sub> =Max. Rating, V <sub>GS</sub> =0V                                              | -    | -    | 50   | μΑ   |
| Zero Gate Voltage Drain Current               |         | V <sub>DS</sub> =0.8Max. Rating,<br>V <sub>GS</sub> =0V, T <sub>C</sub> =125°C                 | -    | -    | 200  | μΑ   |
| Static Drain-Source on Resistance (Note)      | RDS(ON) | VGS=10V, ID=0.5A                                                                               | -    | 5.0  | 6.0  | Ω    |
| Forward Transconductance (Note)               | gfs     | V <sub>DS</sub> =50V, I <sub>D</sub> =0.5A                                                     | 1.5  | 2.5  | -    | S    |
| Input Capacitance                             | Ciss    | V 0V V 05V                                                                                     | -    | 550  | -    | pF   |
| Output Capacitance                            | Coss    | VGS=0V, VDS=25V,<br>f=1MHz                                                                     | -    | 38   | -    |      |
| Reverse Transfer Capacitance                  | Crss    | - 1-11/11/2                                                                                    | -    | 17   | -    |      |
| Turn on Delay Time                            | td(on)  | VDD=0.5B VDSS, ID=1.0A                                                                         | -    | 20   | -    | - nS |
| Rise Time                                     | tr      | (MOSFET switching time is                                                                      | -    | 15   | -    |      |
| Turn Off Delay Time                           | td(off) | essentially independent of                                                                     | -    | 55   | -    |      |
| Fall Time                                     | tf      | operating temperature)                                                                         | -    | 25   | -    |      |
| Total Gate Charge<br>(Gate-Source+Gate-Drain) | Qg      | V <sub>GS</sub> =10V, I <sub>D</sub> =1.0A,<br>V <sub>DS</sub> =0.5B V <sub>DS</sub> (MOSFET   | -    | -    | 35   | nC   |
| Gate-Source Charge                            | Qgs     | switching time is essentially                                                                  | -    | 3    | -    |      |
| Gate-Drain (Miller) Charge                    | Qgd     | <ul> <li>independent of operating temperature)</li> </ul>                                      | -    | 12   | -    |      |
| KA5x0280R                                     |         |                                                                                                |      |      |      |      |
| Drain-Source Breakdown Voltage                | BVDSS   | VGS=0V, ID=50μA                                                                                | 800  | -    | -    | V    |
|                                               |         | VDS=Max. Rating, VGS=0V                                                                        | -    | -    | 50   | μΑ   |
| Zero Gate Voltage Drain Current               | IDSS    | V <sub>DS</sub> =0.8Max. Rating,<br>V <sub>GS</sub> =0V, T <sub>C</sub> =125°C                 | -    | -    | 200  | μΑ   |
| Static Drain-Source on Resistance (Note)      | RDS(ON) | VGS=10V, ID=0.5A                                                                               | -    | 5.6  | 7.0  | Ω    |
| Forward Transconductance (Note)               | gfs     | VDS=50V, ID=0.5A                                                                               | 1.5  | 2.5  | -    | S    |
| Input Capacitance                             | Ciss    |                                                                                                | -    | 250  | -    | pF   |
| Output Capacitance                            | Coss    | VGS=0V, VDS=25V,<br>f=1MHz                                                                     | -    | 52   | -    |      |
| Reverse Transfer Capacitance                  | Crss    | 1-11/11/2                                                                                      | -    | 25   | -    |      |
| Turn on Delay Time                            | td(on)  | VDD=0.5B VDSS, ID=1.0A                                                                         | -    | 21   | -    | - nS |
| Rise Time                                     | tr      | (MOSFET switching time is                                                                      | -    | 28   | -    |      |
| Turn Off Delay Time                           | td(off) | essentially independent of                                                                     | -    | 77   | -    |      |
| Fall Time                                     | tf      | operating temperature)                                                                         | -    | 24   | -    |      |
| Total Gate Charge<br>(Gate-Source+Gate-Drain) | Qg      | V <sub>GS</sub> =10V, I <sub>D</sub> =1.0A,<br>V <sub>DS</sub> =0.5B V <sub>DS</sub> S (MOSFET | -    | -    | 60   | nC   |
| Gate-Source Charge                            | Qgs     | switching time is essentially                                                                  | -    | 15   | -    |      |
| Gate-Drain (Miller) Charge                    | Qgd     | independent of operating temperature)                                                          | _    | 20   |      |      |

#### Note:

2. 
$$S = \frac{1}{R}$$

<sup>1.</sup> Pulse test: Pulse width  $\leq 300 \mu S$ , duty cycle  $\leq 2\%$ 

## **Electrical Characteristics (Control Part)** (Continued)

(Ta=25°C unless otherwise specified)

| Parameter                                       | Symbol          | Condition                                      | Min. | Тур. | Max. | Unit  |  |
|-------------------------------------------------|-----------------|------------------------------------------------|------|------|------|-------|--|
| UVLO SECTION                                    |                 |                                                |      |      |      |       |  |
| Start Threshold Voltage                         | VSTART          | V <sub>FB</sub> =GND                           | 14   | 15   | 16   | V     |  |
| Stop Threshold Voltage                          | VSTOP           | V <sub>FB</sub> =GND                           | 8.2  | 8.8  | 9.4  | V     |  |
| OSCILLATOR SECTION                              |                 |                                                |      | u    |      |       |  |
| Initial Accuracy                                | Fosc            | KA5H0265xRx<br>KA5H0280R                       | 90   | 100  | 110  | kHz   |  |
| Initial Accuracy                                | Fosc            | KA5M0265xRx<br>KA5M0280R                       | 61   | 67   | 73   | kHz   |  |
| Initial Accuracy                                | Fosc            | KA5L0265R                                      | 45   | 50   | 55   | kHz   |  |
| Frequency Change With Temperature (2)           | ΔF/ΔΤ           | -25°C ≤ Ta ≤ +85°C                             | -    | ±5   | ±10  | %     |  |
| Maximum Duty Cycle                              | Dmax            | KA5H0265xRx<br>KA5H0280R                       | 62   | 67   | 72   | %     |  |
| Maximum Duty Cycle                              | Dmax            | KA5M0265xRx<br>KA5M0280R<br>KA5L0265R          | 72   | 77   | 82   | %     |  |
| FEEDBACK SECTION                                |                 |                                                |      | III  |      |       |  |
| Feedback Source Current                         | IFB             | Ta= $25^{\circ}$ C, $0$ V $\leq$ Vfb $\leq$ 3V | 0.7  | 0.9  | 1.1  | mA    |  |
| Shutdown Feedback Voltage                       | VsD             | Vfb ≤ 6.5V                                     | 6.9  | 7.5  | 8.1  | V     |  |
| Shutdown Delay Current                          | Idelay          | $Ta=25^{\circ}C$ , $5V \le Vfb \le V_{SD}$     | 4    | 5    | 6    | μΑ    |  |
| SOFT START SECTION                              |                 |                                                |      |      | •    |       |  |
| Soft Start Voltage                              | Vss             | KAEHOOGEDO                                     | 4.7  | 5.0  | 5.3  | V     |  |
| Soft Start Current                              | Iss             | KA5H0265RC                                     | 8.0  | 1.0  | 1.2  | mA    |  |
| REFERENCE SECTION                               |                 |                                                |      |      | •    |       |  |
| Output Voltage (1)                              | Vref            | Ta=25°C                                        | 4.80 | 5.00 | 5.20 | V     |  |
| Temperature Stability (1)(2)                    | Vref/∆T         | -25°C ≤ Ta ≤ +85°C                             | -    | 0.3  | 0.6  | mV/°C |  |
| CURRENT LIMIT(SELF-PROTECTION)S                 | SECTION         |                                                |      | •    |      | •     |  |
| Peak Current Limit                              | Iover           | KA5x02659RN                                    | 0.79 | 0.9  | 1.01 | Α     |  |
| Peak Current Limit                              | Iover           | KA5x0265Rx<br>KA5x0280R                        | 1.05 | 1.2  | 1.34 | Α     |  |
| PROTECTION SECTION                              |                 |                                                |      | III  |      |       |  |
| Over Voltage Protection                         | VOVP            | VCC ≥ 24V                                      | 25   | 27   | 29   | V     |  |
| Thermal Shutdown Temperature (1)                | T <sub>SD</sub> | -                                              | 140  | 160  | -    | °C    |  |
| TOTAL DEVICE SECTION                            |                 |                                                |      |      | •    |       |  |
| Start-up Current                                | ISTART          | V <sub>CC</sub> =14V                           | -    | 100  | 170  | μΑ    |  |
| Operating Supply Current<br>(Control Part Only) | IOPR            | V <sub>CC</sub> ≤ 28                           | -    | 7    | 12   | mA    |  |

#### Note

- 2. These parameters, although guaranteed, are tested in EDS (wafer test) process

#### **Typical Performance Characteristics**

(These characteristic graphs are normalized at Ta=25°C)

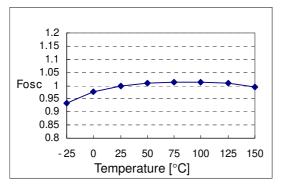



Figure 1. Operating Frequency

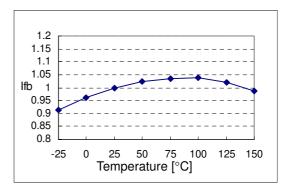



Figure 2. Feedback Source Current

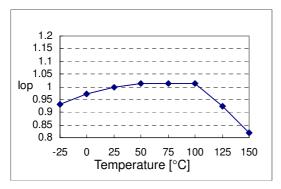



Figure 3. Operating Supply Current

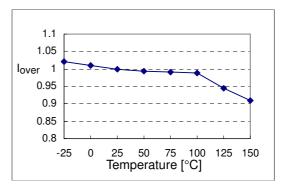



Figure 4. Peak Current Limit

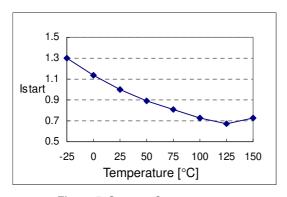



Figure 5. Start up Current

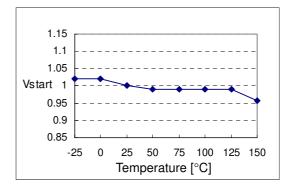



Figure 6. Start Threshold Voltage

#### **Typical Performance Characteristics** (Continued)

(These characteristic graphs are normalized at Ta=25°C)

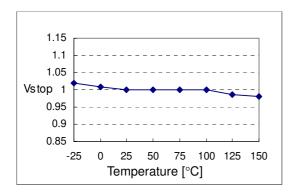



Figure 7. Stop Threshold Voltage

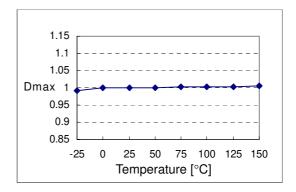



Figure 8. Maximum Duty Cycle

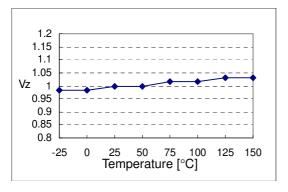



Figure 9. VCC Zener Voltage

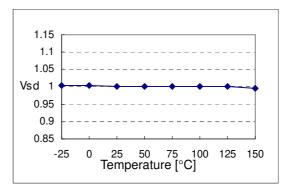



Figure 10. Shutdown Feedback Voltage

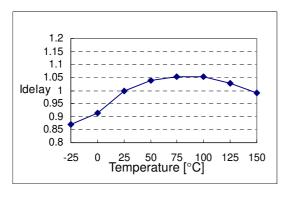



Figure 11. Shutdown Delay Current

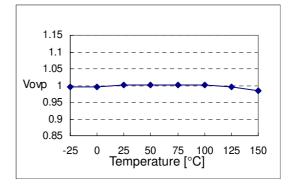



Figure 12. Over Voltage Protection

## **Typical Performance Characteristics** (Continued)

(These characteristic graphs are normalized at Ta=25°C)

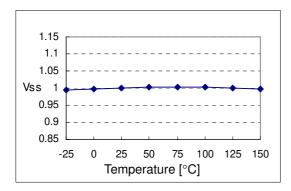
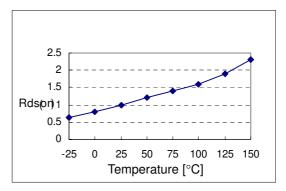
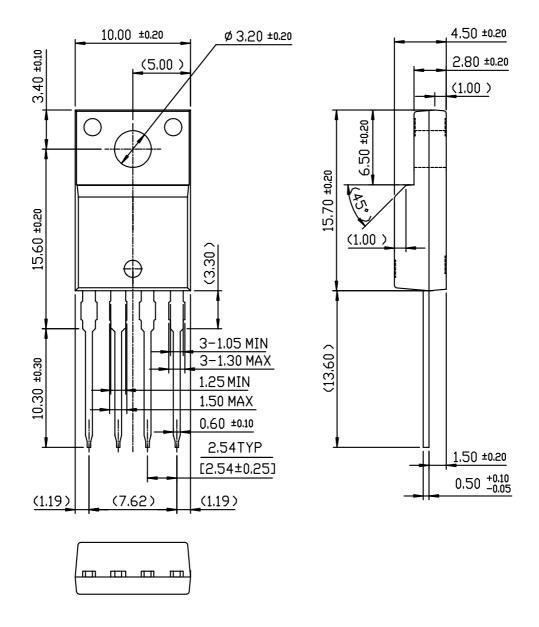
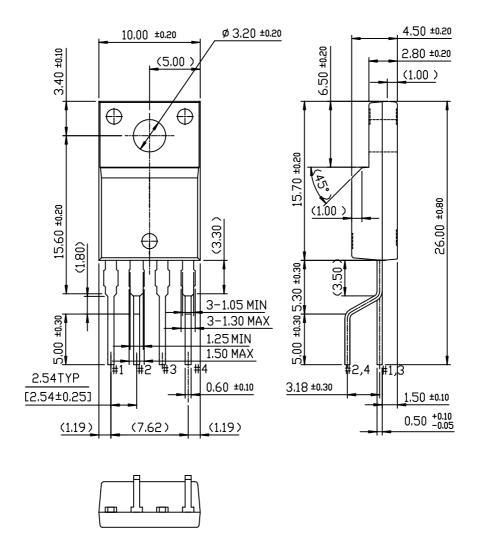
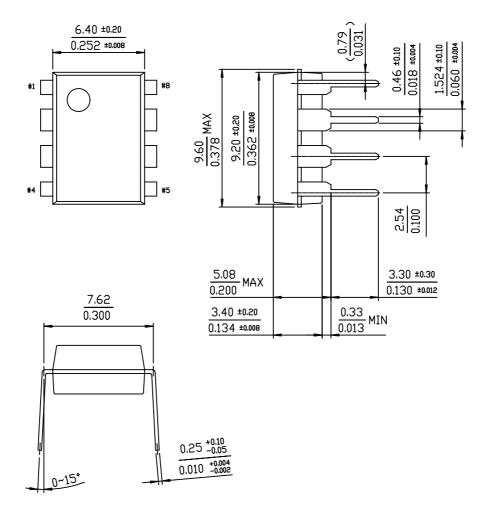



Figure 13. Soft Start Voltage

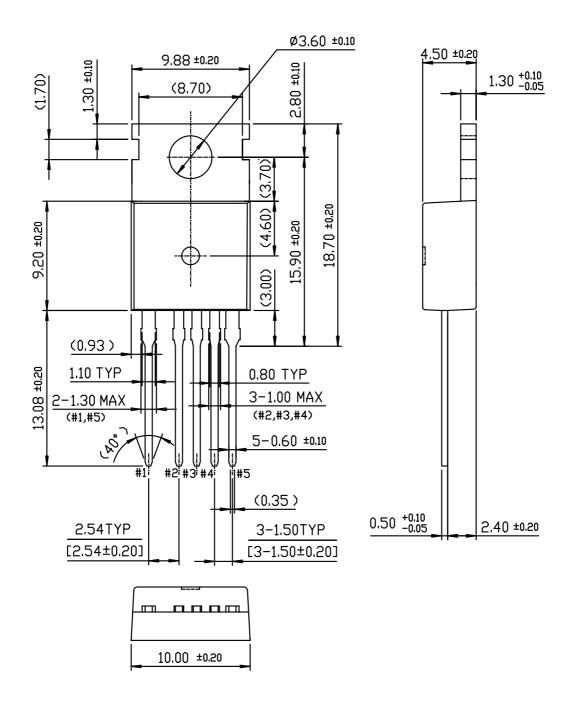





Figure 14. Static Drain-Source on Resistance

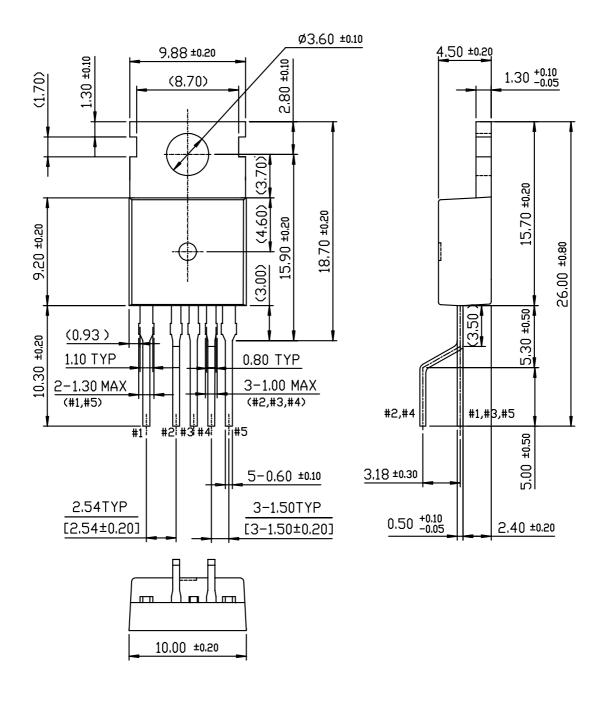
### **Package Dimensions**


TO-220F-4L




# TO-220F-4L(Forming)




## 8-DIP



## TO-220-5L



# TO-220-5L(Forming)



# **Ordering Information**

| Product Number | Package             | Marking Code | BVDSS | Fosc   | RDS(on)   |  |
|----------------|---------------------|--------------|-------|--------|-----------|--|
| KA5H0265RCTU   | TO-220-5L           | 5H0265RC     | 650V  | 100kHz | 5Ω        |  |
| KA5H0265RCYDTU | TO-220-5L(Forming)  | 3H0203HC     | 650 V | TOURHZ | 322       |  |
| KA5M0265RTU    | TO-220F-4L          | EMOSED       | 650V  | 67kHz  | FO        |  |
| KA5M0265RYDTU  | TO-220F-4L(Forming) | 5M0265R      | 650 V | 0/KHZ  | $5\Omega$ |  |
| KA5L0265RTU    | TO-220F-4L          | 5L0265R      | 650V  | 50kHz  | FO        |  |
| KA5L0265RYDTU  | TO-220F-4L(Forming) | 5L0265H      | 650 V | SUKHZ  | $5\Omega$ |  |
| Product Number | Package             | Marking Code | BVDSS | Fosc   | RDS(on)   |  |
| KA5H0280RTU    | TO-220F-4L          | 5H0280R      | 800V  | 100kHz | 5.6Ω      |  |
| KA5H0280RYDTU  | TO-220F-4L(Forming) | 3H0200H      | 800 V | TOURHZ | 5.022     |  |
| KA5M0280RTU    | TO-220F-4L          | 5M0280R      | 800V  | 67kHz  | 5.6Ω      |  |
| KA5M0280RYDTU  | TO-220F-4L(Forming) | SIVIUZOUN    | 800 V | 07KHZ  | 5.622     |  |
| Product Number | Package             | Marking Code | BVDSS | Fosc   | RDS(on)   |  |
| KA5H02659RN    | 8-DIP               | 5H02659R     | 650V  | 100kHz | 5Ω        |  |
| KA5M02659RN    | 8-DIP               | 5M02659R     | 650V  | 67kHz  | 5Ω        |  |

TU : Non Forming Type YDTU : Forming Type

#### **DISCLAIMER**

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com