Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ### Is Now Part of # ON Semiconductor® To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer July 2015 # KA78LXXA / KA78L05AA 3-Terminal 0.1 A Positive Voltage Regulator ### **Features** - · Maximum Output Current of 100 mA - Output Voltage of 5 V, 6 V, 8 V, 9 V, 10 V, 12 V, 15 V and 18 V - · Thermal Overload Protection - · Short-Circuit Current Limiting - Output Voltage Offered in ± 5% Tolerance ## **Description** The KA78LXXA / KA78L05AA series of fixed-voltage, monolithic, integrated circuit, voltage regulators are suitable for applications that require supply current up to 100 mA. ### **Ordering Information** | Product Number | Package | Packing Method | Output Voltage Tolerance | Operating Temperature | |-----------------------|---------|----------------|--------------------------|-----------------------| | KA78L05AZTA | | Ammo | | | | KA78L05AZBU | | Bulk | | | | KA78L06AZTA | | Ammo | | | | KA78L08AZTA | | Ammo | | | | KA78L09AZTA | TO-92 | Ammo | | | | KA78L10AZTA | | Ammo | | | | KA78L12AZTA | | Ammo | ± 5% | -40 to +125 °C | | KA78L15AZTA | | Ammo | | | | KA78L18AZTA | | Ammo | | | | KA78L05AMTF | | Tape & Reel | | | | KA78L08AMTF | SOT-89 | Tape & Reel | | | | KA78L12AMTF | | Tape & Reel | | | | KA78L05ADTF | 8-SOIC | Tape & Reel | | | | KA78L05AAZTA | TO-92 | Ammo | ± 3% | 0 to +125 °C | ## **Block Diagram** Figure 1. Block Diagram # **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted. | Symbol | Parar | neter | Value | Unit | |------------------|-----------------------------------|-------------------------------|-------------|------| | V | Input Voltage | V _O = 5 V to 8 V | 30 | V | | V _I | input voltage | V _O = 12 V to 18 V | 35 | V | | T | Operating Temperature Pange | KA78LXXA | -40 to +125 | - °C | | T _{OPR} | Operating Temperature Range | KA78L05AA | 0 to +125 | | | $T_{J(MAX)}$ | Maximum Junction Temperature | | 150 | °C | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | $R_{\theta JC}$ | Thermal Resistance, Junction-Case | TO-92 | 50 | °C/W | | | | TO-92 | 150 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction-Air | SOT-89 | 225 | °C/W | | | | 8-SOIC | 160 | °C/W | # **Electrical Characteristics (KA78L05A)** $V_I = 10~V,~I_O = 40~mA,~-40^{\circ}C \leq T_J \leq 125^{\circ}C,~C_I = 0.33~\mu\text{F},~C_O = 0.1~\mu\text{F},~unless~otherwise~specified.}$ | Symbol | Paramete | er | Cond | ditions | Min. | Тур. | Max. | Unit | |-----------------------|---|------------------|---|--|------|-------|------|-------| | V _O | Output Voltage | | $T_J = 25^{\circ}C$ | | 4.8 | 5.0 | 5.2 | V | | 41/ | Line Regulation (1) | | T _{,J} = 25°C | 7 V ≤ V _I ≤ 20 V | | 8 | 150 | mV | | ΔV _O | Line negulation V | | 1j = 25 C | $8 \text{ V} \leq \text{V}_1 \leq 20 \text{ V}$ | | 6 | 100 | mV | | ΔV _O | Load Regulation (1) | | T _{,I} = 25°C | 1 mA ≤ I _O ≤ 100 mA | | 11 | 60 | mV | | ΔνΟ | Load Regulation V | | 1j = 25 C | 1 mA \leq I _O \leq 40 mA | | 5.0 | 30 | mV | | V | Output Voltage | | $7 \text{ V} \leq \text{V}_{\text{I}} \leq 20 \text{ V}$ | 1 mA \leq I _O \leq 40 mA | | | 5.25 | V | | Vo | Output voltage | | $7 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{MAX}}^{(2)}$ | 1 mA \leq I _O \leq 70 mA | 4.75 | | 5.25 | V | | IQ | Quiescent Current | | $T_J = 25^{\circ}C$ | | | 2.0 | 5.5 | mA | | ΔI_Q | Quiescent Current | With Line | 8 V ≤V _I ≤ 20 V | | | | 1.5 | mA | | ΔI_{Q} | Change | With Load | 1 mA ≤ I _O ≤ 40 m/ | 4 | | | 0.1 | mA | | V _N | Output Noise Voltag | е | $T_A = 25^{\circ}C, 10 \text{ Hz}$ | ≤ f ≤ 100 kHz | | 40 | | μV/Vo | | $\Delta V_O/\Delta T$ | Temperature Coefficient of V _O | | $I_O = 5 \text{ mA}$ | | | -0.65 | | mV/°C | | RR | Ripple Rejection | Ripple Rejection | | $V_{I} \le 18 \text{ V}, T_{J} = 25^{\circ}\text{C}$ | 41 | 80 | | dB | | V_D | Dropout Voltage | | $T_J = 25^{\circ}C$ | | | 1.7 | | V | - 1. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. - 2. Power dissipation: $P_D \le 0.75 \text{ W}$. # **Electrical Characteristics (KA78L06A)** $V_I = 12~V,~I_O = 40~mA,~-40^{\circ}C \leq T_J \leq 125^{\circ}C,~C_I = 0.33~\mu F,~C_O = 0.1~\mu F,~unless~otherwise~specified.$ | Symbol | Paramete | er | Co | onditions | Min. | Тур. | Max. | Unit | |-----------------------|---------------------|-------------------------|---|--|------|------|------|-------| | Vo | Output Voltage | | T _J = 25°C | | 5.75 | 6.00 | 6.25 | V | | 41/ | Line Regulation (3) | | T _{,1} = 25°C | 8.5 V ≤ V _I ≤ 20 V | | 64 | 175 | mV | | ΔV_{O} | Line negulation V | | 1j = 25 C | 9 V ≤ V _I ≤ 20 V | | 54 | 125 | mV | | 41/ | Load Regulation (3) | | T 25°C | 1 mA ≤ I _O ≤ 100 mA | | 12.8 | 80.0 | mV | | ΔV_{O} | Load negulation V | | $T_J = 25^{\circ}C$ | 1 mA ≤ I _O ≤ 70 mA | | 5.8 | 40.0 | mV | | V | Output Voltage | | $8.5 \text{ V} \le \text{V}_{\text{I}} \le 20 \text{ V}, 1 \text{ mA} \le \text{I}_{\text{O}} \le 40 \text{ mA}$ | | | | 6.3 | V | | V _O | Output voltage | | $8.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(4)}, 1 \text{ mA} \le \text{I}_{\text{O}} \le 70 \text{ mA}$ | | 5.7 | | 6.3 | V | | | Quiescent Current | | $T_J = 25^{\circ}C$ | | | | 5.5 | mA | | IQ | Quiescent Current | | $T_J = 125^{\circ}C$ | | | 3.9 | 6.0 | mA | | ΔI_{Q} | Quiescent Current | With Line | 9 V ≤ V _I ≤ 20 V | | | | 1.5 | mA | | ΔI_Q | Change | With Load | 1 mA \leq I _O \leq 40 | mA | | | 0.1 | mA | | V _N | Output Noise Voltag | е | $T_A = 25^{\circ}C$, 10 Hz \leq f \leq 100 kHz | | | 40 | | μV/Vo | | $\Delta V_O/\Delta T$ | Temperature Coeffic | cient of V _O | I _O = 5 mA | | | 0.75 | | mV/°C | | RR | Ripple Rejection | | f = 120 Hz, 10 V | $V \le V_I \le 20 \text{ V}, T_J = 25^{\circ}\text{C}$ | 40 | 46 | | dB | | V_D | Dropout Voltage | | $T_J = 25^{\circ}C$ | | | 1.7 | | V | - 3. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 4. Power dissipation: P_D ≤ 0.75 W. # **Electrical Characteristics (KA78L08A)** $V_I=14~V,~I_O=40~mA,~-40^{\circ}C \leq T_J \leq 125^{\circ}C,~C_I=0.33~\mu F,~C_O=0.1~\mu F,~unless~otherwise~specified.$ | Symbol | Parameter | Parameter | | tions | Min. | Тур. | Max. | Unit | |-------------------------|--|-----------|--|---|------|------|------|-------| | Vo | Output Voltage | | $T_J = 25^{\circ}C$ | | 7.7 | 8.0 | 8.3 | V | | $\Delta V_{\rm O}$ | Line Regulation (5 | 5) | T _{.1} = 25°C | $10.5 \text{ V} \le \text{V}_{\text{I}} \le 23 \text{ V}$ | | 10 | 175 | mV | | ΔνΟ | Line negulation . | , | 1j = 25 C | 11 V ≤ V _I ≤ 23 V | | 8 | 125 | mV | | 4)/ | Load Regulation (| (5) | T _{.l} = 25°C | $1 \text{ mA} \le I_{O} \le 100 \text{ mA}$ | | 15 | 80 | mV | | ΔV_{O} | Load Negulation | , , | 1 _J = 25 C | $1 \text{ mA} \le I_{O} \le 40 \text{ mA}$ | | 8 | 40 | mV | | V | Output Valtage | | $10.5 \text{ V} \le \text{V}_{\text{I}} \le 23 \text{ V}$ | 1 mA \leq I _O \leq 40 mA | 7.6 | | 8.4 | V | | V _O | Output Voltage | | $10.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(6)}$ | 1 mA \leq I _O \leq 70 mA | 7.6 | | 8.4 | V | | ΙQ | Quiescent Curren | t | $T_J = 25^{\circ}C$ | | | 2.0 | 5.5 | mA | | ΔI_Q | Quiescent | With Line | 11 V ≤ V _I ≤ 23 V | | | | 1.5 | mA | | ΔI_{Q} | Current Change | With Load | 1 mA ≤ I _O ≤ 40 mA | | | | 0.1 | mA | | V _N | Output Noise Volt | age | $T_A = 25^{\circ}C, 10 \text{ Hz} \le f$ | ≤100 kHz | | 60 | | μV/Vo | | $\Delta V_{O}/\Delta T$ | Temperature Coefficient of $V_{\rm O}$ | | I _O = 5 mA | | | -0.8 | | mV/°C | | RR | Ripple Rejection | | f = 120 Hz, 11 V ≤ V _I | ≤ 21 V, T _J = 25°C | 39 | 70 | | dB | | V_D | Dropout Voltage | | $T_J = 25^{\circ}C$ | | | 1.7 | | V | - 5. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 6. Power dissipation: $P_D \le 0.75 \text{ W}$. # **Electrical Characteristics (KA78L09A)** $V_I=15~V,~I_O=40~mA,~-40^{\circ}C \leq T_J \leq 125^{\circ}C,~C_I=0.33~\mu F,~C_O=0.1~\mu F,~unless~otherwise~specified.$ | Symbol | Paramet | Parameter | | Conditions | | | Max. | Unit | |-----------------------|--|-----------|---|---|------|------|------|-------| | Vo | Output Voltage | | $T_J = 25^{\circ}C$ | | 8.64 | 9.00 | 9.36 | V | | $\Delta V_{\rm O}$ | Line Regulation (7) | | T _{.l} = 25°C | $11.5 \text{ V} \le \text{V}_{\text{I}} \le 24 \text{ V}$ | | 90 | 200 | mV | | 7,0 | Line Regulation V | | 1 J = 23 O | 13 V ≤ V _I ≤ 24 V | | 100 | 150 | mV | | $\Delta V_{\rm O}$ | Load Regulation (7) |) | T _{.L} = 25°C | $1 \text{ mA} \le I_{O} \le 100 \text{ mA}$ | | 20 | 90 | mV | | 70 | Load Hegulation | · | 1 J = 23 O | 1 mA \leq I _O \leq 40 mA | | 10 | 45 | mV | | V _O | Output Voltage | | $11.5 \text{ V} \le \text{V}_{\text{I}} \le 24 \text{ V}$ | $1 \text{ mA} \le I_{O} \le 40 \text{ mA}$ | 8.55 | | 9.45 | V | | v O | Output Voltage | | 11.5 $V \le V_I \le V_{MAX}^{(8)}$ | $1 \text{ mA} \le I_{O} \le 70 \text{ mA}$ | 8.55 | | 9.45 | ٧ | | IQ | Quiescent Current | | $T_J = 25^{\circ}C$ | | | 2.1 | 6.0 | mA | | ΔI_{Q} | Quiescent Current | With Line | $13~V \leq V_{\parallel} \leq 24~V$ | | | | 1.5 | mA | | ΔI_{Q} | Change | With Load | 1 mA \leq I _O \leq 40 mA | | | | 0.1 | mA | | V _N | Output Noise Voltage | | $T_A = 25^{\circ}C, 10 \text{ Hz} \le f \le$ | ≤ 100 kHz | | 70 | | μV/Vo | | $\Delta V_O/\Delta T$ | Temperature Coefficient of $V_{\rm O}$ | | $I_O = 5 \text{ mA}$ | | | -0.9 | | mV/°C | | RR | Ripple Rejection | | f = 120 Hz, 12 V ≤ V _I ≤ | ≤ 22 V, T _J = 25°C | 38 | 44 | | dB | | V_D | Dropout Voltage | | $T_J = 25^{\circ}C$ | | _ | 1.7 | 73. | V | - 7. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 8. Power dissipation: $P_D \le 0.75 \text{ W}$. # **Electrical Characteristics (KA78L10A)** $V_I = 16~V,~I_O = 40~mA,~-40~^{\circ}C \leq T_J \leq 125~^{\circ}C,~C_I = 0.33~\mu F,~C_O = 0.1~\mu F,~unless~otherwise~specified.$ | Symbol | Paramete | er | (| Conditions | Min. | Тур. | Max. | Unit | |-----------------------|--------------------------------|------------------------|---|---|----------|------|------|-------| | Vo | Output Voltage | | $T_J = 25^{\circ}C$ | | 9.6 | 10.0 | 10.4 | V | | 4)/ | Line Regulation ⁽⁹⁾ | | T _{.1} = 25°C | 12.5 V ≤ V _I ≤ 25 V | | 100 | 220 | mV | | ΔV_{O} | Line negulation | | 1 J = 25 C | 14 V ≤ V _I ≤ 25 V | | 100 | 170 | mV | | 4)/ | Load Regulation ⁽⁹⁾ | | T _{.1} = 25°C | 1 mA ≤ I _O ≤ 100 mA | | 20 | 94 | mV | | ΔV_{O} | Load negulation | | 1 J = 25 G | 1 mA ≤ I _O ≤ 70 mA | | 10 | 47 | mV | | | | | $12.5 \text{ V} \leq \text{V}_{\text{I}} \leq 2$ | 25 V, 1 mA ≤ I _O ≤ 40 mA | 9.5 | | 10.5 | | | V _O | Output Voltage | Output Voltage | | 12.5 $V \le V_1 \le V_{MAX}^{(10)}$,
1 mA $\le I_0 \le 70$ mA | | | 10.5 | V | | | Quiescent Current | | $T_J = 25^{\circ}C$ | | | | 6.0 | mA | | IQ | Quiescent Current | | T _J =125°C | | | 4.2 | 6.5 | IIIA | | ΔI_Q | Quiescent Current | With Line | 12.5 V ≤ V _I ≤ | 25 V | | | 1.5 | mA | | ΔI_Q | Change | With Load | 1 mA \leq I _O \leq 4 | 40 mA | | | 0.1 | mA | | V _N | Output Noise Voltage | е | $T_A = 25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz | | | 74 | | μV/Vo | | $\Delta V_O/\Delta T$ | Temperature Coeffic | ient of V _O | $I_O = 5 \text{ mA}$ | | <u> </u> | 0.95 | | mV/°C | | RR | Ripple Rejection | | $f = 120 \text{ Hz}, 15 \text{ V} \le \text{V}_{\text{I}} \le 25 \text{ V}, \text{T}_{\text{J}} = 25^{\circ}\text{C}$ | | 38 | 43 | | dB | | V _D | Dropout Voltage | | $T_J = 25^{\circ}C$ | | | 1.7 | | ٧ | - 9. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 10. Power dissipation: $P_D \le 0.75 \text{ W}$. # **Electrical Characteristics (KA78L12A)** $V_I = 19 \text{ V, } I_O = 40 \text{ mA, } -40^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C, } C_I = 0.33 \,\mu\text{F, } C_O = 0.1 \,\mu\text{F, unless otherwise specified.}$ | Symbol | Parame | Parameter | | tions | Min. | Тур. | Max. | Unit | |-----------------------|-------------------------------------------|-----------|---------------------------------------------------------------------------|-----------------------------------------------------------|------|------|------|------------| | Vo | Output Voltage | | T _J = 25°C | | 11.5 | 12.0 | 12.5 | V | | $\Delta V_{\rm O}$ | Line Regulation ⁽¹ | 1) | T _{.I} = 25°C | $14.5 \text{ V} \le \text{V}_{\text{I}} \le 27 \text{ V}$ | | 20 | 250 | mV | | ΔνΟ | Line Regulation | , | 1 J = 25 O | 16 $V \le V_1 \le 27 V$ | | 15 | 200 | mV | | $\Delta V_{\rm O}$ | Load Regulation (| 11) | $T_J = 25^{\circ}C$ | $1 \text{ mA} \le I_{O} \le 100 \text{ mA}$ | | 20 | 100 | mV | | Δνο | Load Negulation | , | | $1 \text{ mA} \le I_{O} \le 40 \text{ mA}$ | | 10 | 50 | mV | | V | Output Voltage | | $14.5 \text{ V} \le \text{V}_1 \le 27 \text{ V}$ | $1~\text{mA} \leq I_O \leq 40~\text{mA}$ | 11.4 | | 12.6 | ٧ | | V _O | Output Voltage | | $14.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(12)}$ | $1~\text{mA} \leq I_O \leq 70~\text{mA}$ | 11.4 | | 12.6 | ٧ | | IQ | Quiescent Current | t | T _J = 25°C | | | 2.1 | 6.0 | mA | | ΔI_{Q} | Quiescent | With Line | $16 \text{ V} \leq \text{V}_{\text{I}} \leq 27 \text{ V}$ | | | | 1.5 | mA | | ΔI_{Q} | Current Change | With Load | 1 mA \leq I _O \leq 40 mA | | | | 0.1 | mA | | V _N | Output Noise Voltage | | $T_A = 25^{\circ}C, 10 \text{ Hz} \le f \le$ | 100 kHz | | 80 | | $\mu V/Vo$ | | $\Delta V_O/\Delta T$ | Temperature Coefficient of V _O | | $I_O = 5 \text{ mA}$ | | | -1.0 | | mV/°C | | RR | Ripple Rejection | | f = 120 Hz, 15 V ≤ V _I ≤ | 25 V, T _J = 25°C | 37 | 65 | | dB | | V_D | Dropout Voltage | | $T_J = 25^{\circ}C$ | | | 1.7 | 73 | V | - 11. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 12. Power dissipation: $P_D \le 0.75 \text{ W}$. # **Electrical Characteristics (KA78L15A)** $V_I = 23~V,~I_O = 40~mA,~-40^{\circ}C \leq T_J \leq 125^{\circ}C,~C_I = 0.33~\mu F,~C_O = 0.1~\mu F,~unless~otherwise~specified.$ | Symbol | Parame | ter | Condit | ions | Min. | Тур. | Max. | Unit | |-------------------------|------------------------------------|-----------|---------------------------------------------------------------------------|-----------------------------------------------------------|-------|------|-------|-------| | Vo | Output Voltage | | T _J = 25°C | | 14.4 | 15.0 | 15.6 | V | | $\Delta V_{\rm O}$ | Line Regulation ⁽¹ | 13) | T _{.I} = 25°C | $17.5 \text{ V} \le \text{V}_{\text{I}} \le 30 \text{ V}$ | | 25 | 300 | mV | | ΔνΟ | Line Regulation | , | 1) = 25 0 | $20~V \leq V_I \leq 30~V$ | | 20 | 250 | mV | | 41/ | Load Regulation ⁽ | (13) | T _{.1} = 25°C | $1 \text{ mA} \le I_{O} \le 100 \text{ mA}$ | | 25 | 150 | mV | | ΔV_{O} | Load Regulation | ` , | 1j = 25 C | 1 mA \leq I _O \leq 40 mA | | 12 | 75 | mV | | V | Output Voltage | | $17.5 \text{ V} \le \text{V}_{\text{I}} \le 30 \text{ V}$ | 1 mA \leq I _O \leq 40 mA | 14.25 | | 15.75 | V | | V _O | Output voitage | | $17.5 \text{ V} \le \text{V}_{\text{I}} \le \text{V}_{\text{MAX}}^{(14)}$ | 1 mA \leq I _O \leq 70 mA | 14.25 | | 15.75 | V | | IQ | Quiescent Currer | nt | T _J = 25°C | | | 2.1 | 6.0 | mA | | ΔI_Q | Quiescent | With Line | 20 V ≤ V _I ≤ 30 V | | | | 1.5 | mA | | ΔI_Q | Current Change | With Load | 1 mA ≤ I _O ≤ 40 mA | | | | 0.1 | mA | | V _N | Output Noise Vol | ltage | $T_A = 25^{\circ}C, 10 \text{ Hz} \le f \le$ | 100 kHz | | 90 | | μV/Vo | | $\Delta V_{O}/\Delta T$ | Temperature Coefficient of V_{O} | | I _O = 5 mA | | | -1.3 | | mV/°C | | RR | Ripple Rejection | | f = 120 Hz, 18.5 V ≤ V | ı ≤ 28.5 V, T _J =25°C | 34 | 60 | | dB | | V_D | Dropout Voltage | | $T_J = 25^{\circ}C$ | | | 1.7 | | V | - 13. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 14. Power dissipation: $P_D \le 0.75 \text{ W}$. # **Electrical Characteristics (KA78L18A)** $V_I = 27V,\ I_O = 40mA,\ -40^{\circ}C \leq T_J \leq 125^{\circ}C,\ C_I = 0.33\ \mu\text{F},\ C_O = 0.1\ \mu\text{F},\ unless \ otherwise \ specified.$ | Symbol | Parameter | | Condi | Conditions | | Тур. | Max. | Unit | |-----------------------|-------------------------------------------|-----------|--------------------------------------------|-----------------------------------------|------|------|------|-------| | V _O | Output Voltage | | T _J = 25°C | | 17.3 | 18.0 | 18.7 | V | | ΔV_{O} | Line Regulation (1 | 5) | T _{.1} = 25°C | $21~V \leq V_I \leq 33~V$ | | 145 | 300 | mV | | 70 | Line Hegulation | , | 1) = 25 0 | $22~V \leq V_I \leq 33~V$ | | 135 | 250 | mV | | ΔV_{O} | Load Regulation (| 15) | T _{.1} = 25°C | 1 mA ≤ I _O ≤100 mA | | 30 | 170 | mV | | Δν _Ο | Load negulation | , | 1j = 25 C | 1 mA \leq I _O \leq 40 mA | | 15 | 85 | mV | | V | Output Voltage | | $21~V \leq V_I \leq 33~V$ | 1 mA \leq I _O \leq 40 mA | 17.1 | | 18.9 | V | | V _O | Output Voltage | | $21V \le V_I \le V_{MAX}^{(16)}$ | 1 mA \leq I _O \leq 70 mA | 17.1 | | 18.9 | V | | ΙQ | Quiescent Curren | t | T _J = 25°C | | | 2.2 | 6.0 | mA | | ΔI_{Q} | Quiescent | With Line | 21 V ≤ V _I ≤ 33 V | | | | 1.5 | mA | | ΔI_{Q} | Current Change | With Load | $1 \text{ mA} \le I_{O} \le 40 \text{ mA}$ | | | | 0.1 | mA | | V _N | Output Noise Voltage | | $T_A = 25^{\circ}C$, 10 Hz \leq f | ≤ 100 kHz | | 150 | | μV/Vo | | $\Delta V_O/\Delta T$ | Temperature Coefficient of V _O | | $I_O = 5 \text{ mA}$ | | | -1.8 | | mV/°C | | RR | Ripple Rejection | | f = 120 Hz, 23 V ≤ V | l ≤ 33V, T _J = 25°C | 34 | 48 | | dB | | V_D | Dropout Voltage | | T _J = 25°C | | | 1.7 | | V | - 15. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 16. Power dissipation: $P_D \le 0.75 \text{ W}$. # **Electrical Characteristics (KA78L05AA)** $V_I = 10 \text{ V, } I_O = 40 \text{ mA, } 0^{\circ}\text{C} \leq T_J \leq 125^{\circ}\text{C, } C_I = 0.33 \text{ } \mu\text{F, } C_O = 0.1 \text{ } \mu\text{F, unless otherwise specified.}$ | Symbol | Paramet | er | Cond | litions | Min. | Тур. | Max. | Unit | |-----------------------|-------------------------------------------|----------------------|----------------------------------------------|--------------------------------------------------------------|------|-------|------|-------| | Vo | Output Voltage | | T _J = 25°C | | 4.9 | 5.0 | 5.1 | ٧ | | ΔV_{O} | Line Regulation ⁽¹⁷⁾ | | T _{.1} = 25°C | $7~V \leq V_I \leq 20~V$ | | 8 | 150 | mV | | 70 | Line Regulation . 7 | | 1] = 25 0 | $8~V \leq V_I \leq 20~V$ | | 6 | 100 | mV | | ΔV_{O} | Load Regulation (17 | ·) | T _{.1} = 25°C | 1 mA ≤ I _O ≤ 100 m | A | 11 | 50 | mV | | ΔνΟ | Load Negulation | , | 1 j = 25 C | 1 mA \leq I _O \leq 40 mA | | 5.0 | 25 | mV | | Vo | Output Voltage | Outrot Valtage | | 1 mA \leq I _O \leq 40 mA | | | 5.15 | V | | v O | Output Voltage | | $7 \text{ V} \leq V_{I} \leq V_{MAX}^{(18)}$ | 1 mA \leq I _O \leq 70 mA | 4.85 | | 5.15 | V | | ΙQ | Quiescent Current | | $T_J = 25^{\circ}C$ | | | 2.0 | 5.5 | mA | | ΔI_{Q} | Quiescent Current | With Line | 8 V ≤V _I ≤ 20 V | | 4 | | 1.5 | mA | | ΔI_{Q} | Change | With Load | 1 mA \leq I _O \leq 40 mA | | | | 0.1 | mA | | V_N | Output Noise Voltag | Output Noise Voltage | | ≤ f ≤ 100 kHz | | 40 | | μV/Vo | | $\Delta V_O/\Delta T$ | Temperature Coefficient of V _O | | $I_O = 5 \text{ mA}$ | | | -0.65 | | mV/°C | | RR | Ripple Rejection | | f = 120 Hz, 8 V ≤ V | $T_{\rm I} \le 18 \text{ V}, T_{\rm J} = 25^{\circ}\text{C}$ | 41 | 80 | | dB | | V_D | Dropout Voltage | | $T_J = 25^{\circ}C$ | | | 1.7 | | V | - 17. The maximum steady-state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represents pulse test conditions with junction temperature as indicated at the initiation of tests. 18. Power dissipation: $P_D \le 0.75 \text{ W}$. # **Typical Application** Figure 2. Typical Application - 19. To specify an output voltage, substitute voltage value for "XX". - 20. Bypass capacitors are recommend for optimum stability and transient response and should be located as close as possible to the regulator. # **Physical Dimensions** 4.70 4.30 2.23 MIN 1.87 1.45 0.50 X 45° 0.30 X 45° В (1.40) € SYMM 2.70 5.30 MIN 4.50 3.90⁴ 2.30 1.30 0.89 0.52 0.30 (2X) C 0.10 M C A B (0.54) 1.50 3.00 0.90 MIN 2X 0.96 MIN 1.70 1.30 1.50 3.00 MIN LAND PATTERN RECOMMENDATION SEATING PLANE 0.60 <u>C</u> 0.40 0.50 0.35 (0.35) 2.29 (2.70) 2.13 NOTES: UNLESS OTHERWISE SPECIFIED. A. REFERENCE TO JEDEC TO-243 VARIATION AA. B. ALL DIMENSIONS ARE IN MILLIMETERS. DOES NOT COMPLY JEDEC STANDARD VALUE. D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSION. E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994. F. DRAWING FILE NAME: MA03CREV3 Figure 3. 3-LEAD, SOT-89, JEDEC TO-243, OPTION AA # Physical Dimensions (Continued) -4.19 -3.05 C) DRAWING CONFORD D DRAWING FILENAM Figure 4. 3-LEAD, TO-92, JEDEC TO-92 COMPLIANT STRAIGHT LEAD CONFIGURATION, BULK TYPE # Physical Dimensions (Continued) NOTES: UNLESS OTHERWISE SPECIFIED - DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC. ALL DIMENSIONS ARE IN MILLIMETERS. DRAWING CONFORMS TO ASME Y14.5M-2009. DRAWING FILENAME: MKT-ZAO3FREV3. FAIRCHILD SEMICONDUCTOR. Figure 5. 3-LEAD, TO-92, MOLDED 0.200 IN LINE SPACING LEAD FORM, AMMO TYPE # Physical Dimensions (Continued) → A 4.90±0.10-0.65 (0.635)В 1.75— 6.00±0.20 5.60 3.90±0.10 PIN ONE INDICATOR 1.27 1.27 0.25 \bigcirc C B A LAND PATTERN RECOMMENDATION SEE DETAIL A 0.175±0.075 0.22±0.03 1.75 MAX \bigcirc 0.10 0.42±0.09 OPTION A - BEVEL EDGE $-(0.86) \times 45^{\circ}$ R0.10 GAGE PLANE OPTION B - NO BEVEL EDGE R0.10 0.36 NOTES: A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AA. SEATING PLANE B) ALL DIMENSIONS ARE IN MILLIMETERS. 0.65±0.25 C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS. (1.04)D) LANDPATTERN STANDARD: SOIC127P600X175-8M **DETAIL A** E) DRAWING FILENAME: M08Arev16 Figure 6. 8-LEAD, SOIC, JEDEC MS-012, 0.150" NARROW BODY ### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. $\begin{array}{lll} \mathsf{AX\text{-}CAP}^{\circledcirc_{*}} & \mathsf{GreenBridge^{\intercal M}} \\ \mathsf{BitSiC^{\intercal M}} & \mathsf{Green} \ \mathsf{FPS^{\intercal M}} \\ \mathsf{Build} \ \mathsf{it} \ \mathsf{Now^{\intercal M}} & \mathsf{Green} \ \mathsf{FPS^{\intercal M}} \ \mathsf{e}\text{-Series}^{\intercal M} \end{array}$ CorePLUSTM $Gmax^{TM}$ CorePOWERTM GTO^{TM} $CROSSVOLT^{TM}$ IntelliMAXTM CTLTM ISOPI ANARTM Current Transfer Logic™ Making Small Speakers Sound Louder DEUXPEED® and Better™ Dual Cool™ EcoSPARK® MICROCOUPLER™ MicroFET™ ESBC™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MillerDrive™ Fairchild® MotionMax™ Fairchild Semiconductor® MotionGrid® FACT Quiet Series™ MTi[®] FACT® FAST® MTx® MVN® FastvCore™ mWSaver® FETBench™ OptoHiT™ **FPSTM** OPTOLOGIC® OPTOPLANAR® Power Supply WebDesigner™ PowerTrench[©] PowerXS™ Programmable Active Droop™ QFĔT[®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM GENERAL®* TinyBoost® TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TriFault Detect™ TRUECURRENT®* μSerDes™ SerDes* UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ XSens™ ### ISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN. WHICH COVERS THESE PRODUCTS. ### **AUTHORIZED USE** Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties. ### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. ### PRODUCT STATUS DEFINITIONS ### **Definition of Terms** | Definition of Terms | | | |---------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Datasheet Identification | Product Status | Definition | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev. 175 ^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor. ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative