# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# 2856 (H) x 2856 (V) Interline Transfer EMCCD Image Sensor

The KAE–08151 Image Sensor is a 8.1 Mp, 4/3" format, Interline Transfer EMCCD image sensor that provides exceptional imaging performance in extreme low light applications. Each of the sensor's four outputs incorporates both a conventional horizontal CCD register and a high gain EMCCD register.

An intra-scene switchable gain feature samples each charge packet on a pixel-by-pixel basis. This enables the camera system to determine whether the charge will be routed through the normal gain output or the EMCCD output based on a user selectable threshold. This feature enables imaging in extreme low light, even when bright objects are within a dark scene, allowing a single camera to capture quality images from sunlight to starlight.

This image sensor is based on an advanced 5.5-micron Interline Transfer CCD Platform, and features extended dynamic range, excellent imaging performance, and a flexible readout architecture that enables use of 1, 2, or 4 outputs. A vertical overflow drain structure suppresses image blooming, provides excellent MTF, and enables electronic shuttering for precise exposure.

| Table T. GENERAL SPECIFICATIONS                                                |                                                                           |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Parameter                                                                      | Typical Value                                                             |  |
| Architecture                                                                   | Interline CDD; with EMCCD                                                 |  |
| Total Number of Pixels                                                         | 2928 (H) × 2904 (V)                                                       |  |
| Number of Effective Pixels                                                     | 2880 (H) × 2880 (V)                                                       |  |
| Number of Active Pixels                                                        | 2856 (H) × 2856 (V)                                                       |  |
| Pixel Size                                                                     | 5.5 μm (H) × 5.5 μm (V)                                                   |  |
| Active Image Size                                                              | 15.71 mm (H) × 15.71 mm (V)<br>22.22 mm (Diagonal)<br>4/3" Optical Format |  |
| Aspect Ratio                                                                   | 1:1                                                                       |  |
| Number of Outputs                                                              | 1, 2, or 4                                                                |  |
| Charge Capacity                                                                | 20,000 e <sup>-</sup>                                                     |  |
| Output Sensitivity                                                             | 44 μV/e⁻                                                                  |  |
| Quantum Sensitivity<br>Mono/Color (RGB)                                        | 50% / 33%, 41%, 43%                                                       |  |
| Readout Noise (20 MHz)<br>Normal Mode (1× Gain)<br>Intra-Scene Mode (20× Gain) | 9 e⁻ rms<br>< 1 e⁻ rms                                                    |  |
| Dark Current (0°C)<br>Photodiode, VCCD                                         | < 0.1, 6 e⁻/s                                                             |  |
| Dynamic Range<br>Normal Mode (1× Gain)<br>Intra-Scene Mode (20× Gain)          | 66 dB<br>86 dB                                                            |  |
| Charge Transfer Efficiency                                                     | 0.999999                                                                  |  |
| Blooming Suppression                                                           | > 1000 X                                                                  |  |
| Smear                                                                          | –100 dB                                                                   |  |
| Image Lag                                                                      | < 1 e <sup>-</sup>                                                        |  |
| Maximum Pixel Clock Speed                                                      | 40 MHz for horiz. binning                                                 |  |
| Maximum Frame Rate<br>Normal Gain Mode, Intra-Scene<br>Mode                    | 14 fps (40 MHz), 8 fps (20 MHz)                                           |  |
| Package Type                                                                   | 155 Pin PGA                                                               |  |
| Cover Glass                                                                    | Clear Glass, Taped<br>MAR Glass, Sealed                                   |  |

# Table 1. GENERAL SPECIFICATIONS





# **ON Semiconductor®**

www.onsemi.com



#### Figure 1. KAE–08151 Interline Transfer EMCCD Image Sensor

#### Features

- Intra-Scene Switchable Gain
- Wide Dynamic Range
- Low Noise Architecture
- Exceptional Low Light Imaging
- Global Shutter
- Excellent Image Uniformity and MTF
- Bayer Color Pattern and Monochrome

#### Applications

- Surveillance
- Scientific Imaging
- Medical Imaging
- Intelligent Transportation

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 2 of this data sheet.

### **ORDERING INFORMATION**

US export controls apply to all shipments of this product designated for destinations outside of the US and Canada, requiring ON Semiconductor to obtain an export license from the US Department of Commerce before image sensors or evaluation kits can be exported.

| Table 2. ORDERING INFORMATION – KAE–08151 IMAGE | SENSOR |
|-------------------------------------------------|--------|
|-------------------------------------------------|--------|

| Part Number         | Description                                                                                                                | Marking Code                   |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| KAE-08151-ABA-JP-FA | Monochrome, Microlens, PGA Package,<br>Taped Clear Cover Glass (No Coatings), Standard Grade                               | KAE-08151-ABA<br>Serial Number |
| KAE-08151-ABA-JP-EE | Monochrome, Microlens, PGA Package,<br>Taped Clear Cover Glass (No Coatings), Engineering Grade                            |                                |
| KAE-08151-FBA-JP-FA | Color (Bayer RGB), Microlens, PGA Package,<br>Taped Clear Cover Glass (No Coatings), Standard Grade                        | KAE-08151-FBA<br>Serial Number |
| KAE-08151-FBA-JP-EE | Color (Bayer RGB), Microlens, PGA Package,<br>Taped Clear Cover Glass (No Coatings), Engineering Grade                     |                                |
| KAE-08151-ABA-SP-FA | Monochrome, Microlens, PGA Package with Integrated TEC,<br>Taped Clear Cover Glass (No Coatings), Standard Grade           | KAE-08151-ABA<br>Serial Number |
| KAE-08151-ABA-SP-EE | Monochrome, Microlens, PGA Package with Integrated TEC,<br>Taped Clear Cover Glass (No Coatings), Engineering Grade        |                                |
| KAE-08151-FBA-SP-FA | Color (Bayer RGB), Microlens, PGA Package with Integrated TEC,<br>Taped Clear Cover Glass (No Coatings), Standard Grade    | KAE-08151-FBA<br>Serial Number |
| KAE-08151-FBA-SP-EE | Color (Bayer RGB), Microlens, PGA Package with Integrated TEC,<br>Taped Clear Cover Glass (No Coatings), Engineering Grade |                                |
| KAE-08151-ABA-SD-FA | Monochrome, Microlens, PGA Package with Integrated TEC,<br>Sealed MAR Cover Glass, Standard Grade                          | KAE-08151-ABA<br>Serial Number |
| KAE-08151-ABA-SD-EE | Monochrome, Microlens, PGA Package with Integrated TEC,<br>Sealed MAR Cover Glass, Engineering Grade                       |                                |
| KAE-08151-FBA-SD-FA | Color (Bayer RGB), Microlens, PGA Package with Integrated TEC,<br>Sealed MAR Cover Glass, Standard Grade                   | KAE-08151-FBA<br>Serial Number |
| KAE-08151-FBA-SD-EE | Color (Bayer RGB), Microlens, PGA Package with Integrated TEC,<br>Sealed MAR Cover Glass, Engineering Grade                |                                |

See the ON Semiconductor *Device Nomenclature* document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at <a href="http://www.onsemi.com">www.onsemi.com</a>.

#### Warning

The KAE-08151-ABA-SD and KAE-08151-FBA-SD packages have an integrated thermoelectric cooler (TEC) and have epoxy-sealed cover glass. The seal formed is non-hermetic, and may allow moisture ingress over time, depending on the storage environment.

As a result, care must be taken to avoid cooling the device below the dew point inside the package cavity, since this may result in moisture condensation.

For all KAE–08151 configurations, no warranty, expressed or implied, covers condensation.

#### **DEVICE DESCRIPTION**

#### Architecture



Figure 2. Block Diagram

#### **Dark Reference Pixels**

There are 12 dark reference rows at the top and bottom of the image sensor, as well as 24 dark reference columns on the left and right sides. However, the rows and columns at the perimeter edges should not be included in acquiring a dark reference signal, since they may be subject to some light leakage.

#### **Active Buffer Pixels**

12 unshielded pixels adjacent to any leading or trailing dark reference regions are classified as active buffer pixels. These pixels are light sensitive but are not tested for defects and non-uniformities.

#### **Image Acquisition**

An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-hole pairs within the individual silicon photodiodes. These photoelectrons are collected locally by the formation of potential wells at each photo-site. Below photodiode saturation, the number of photoelectrons collected at each pixel is linearly dependent upon light level and exposure time and non-linearly dependent on wavelength. When the photodiodes charge capacity is reached, excess electrons are discharged into the substrate to prevent blooming.

#### **Physical Description**

Pin Grid Array Configuration





#### **Table 3. PIN DESCRIPTION**

| Pin No. | Label   | Description                                   |
|---------|---------|-----------------------------------------------|
| A2      | +9 V    | Charge Injection diode, quadrants a and c     |
| A3      | VDD15ac | +15 Volts supply                              |
| A4      | VDD1a   | Amplifier 1 supply, quadrant a                |
| A5      | VOUT1a  | Video output 1, quadrant a                    |
| A6      | VDD2a   | Amplifier 2 supply, quadrant a                |
| A7      | VOUT2a  | Video output 2, quadrant a                    |
| A8      | H2La    | HCCD last gate, outputs 1,2 and 3, quadrant a |
| A9      | VDD3a   | Amplifier 3 supply, quadrant a                |
| A10     | VOUT3a  | video output 3, quadrant a                    |
| A11     | H1a     | HCCD phase 1, quadrant a                      |

| Table 3. PIN DESCR | <b>IPTION</b> (continued) |
|--------------------|---------------------------|
|--------------------|---------------------------|

| Pin No. | Label   | Description                                   |
|---------|---------|-----------------------------------------------|
| A12     | H2a     | HCCD phase 2, quadrant a                      |
| A13     | GND     | Ground                                        |
| A14     | H2b     | HCCD phase 2, quadrant b                      |
| A15     | H1b     | HCCD phase 1, quadrant b                      |
| A16     | VOUT3b  | Video output 3, quadrant b                    |
| A17     | VDD3b   | Amplifier 3 supply, quadrant b                |
| A18     | H2Lb    | HCCD last gate, outputs 1,2 and 3, quadrant b |
| A19     | VOUT2b  | Video output 2, quadrant b                    |
| A20     | VDD2b   | Amplifier 2 supply, quadrant b                |
| A21     | VOUT1b  | Amplifier 1 output, quadrant b                |
| A22     | VDD1b   | amplifier 1 supply, quadrant b                |
| A23     | VDD15bd | 15 V Supply, quadrants b and d                |
| A24     | +9 V    | Charge injection diode, quadrants b and d     |
| A25     | GND     | Ground                                        |
| A26     | N/C     | No connect                                    |
| B1      | GND     | Ground                                        |
| B2      | ESD     | Charge injection clock, quadrants a and c     |
| B3      | V4B     | VCCD bottom phase 4                           |
| B4      | GND     | Ground                                        |
| B5      | VSS1a   | Amplifier 1 return, quadrant a                |
| B6      | RG1a    | Amplifier 1 reset, quadrant a                 |
| B7      | RG23a   | Amplifier 2 and 3 reset, quadrant a           |
| B8      | GND     | Ground                                        |
| B9      | H2BEMa  | EMCCD barrier phase 2, quadrant a             |
| B10     | H1BEMa  | EMCCD barrier phase 1, quadrant a             |
| B11     | H1Sa    | HCCD storage phase 1, quadrant a              |
| B12     | H2Sa    | HCCD storage phase 2, quadrant a              |
| B13     | GND     | Ground                                        |
| B14     | H2Sb    | HCCD storage phase 2, quadrant b              |
| B15     | H1Sb    | HCCD storage phase 1, quadrant b              |
| B16     | H1BEMb  | EMCCD barrier phase 1, quadrant b             |
| B17     | H2BEMb  | EMCCD barrier phase 2, quadrant b             |
| B18     | GND     | Ground                                        |
| B19     | RG23b   | Amplifier 2 and 3 reset, quadrant b           |
| B20     | RG1b    | Amplifier 1 reset, quadrant b                 |
| B21     | VSS1b   | Amplifier 1 return, quadrant b                |
| B22     | GND     | Ground                                        |
| B23     | V4B     | VCCD bottom phase 4                           |
| B24     | ESD     | Charge injection clock, quadrants b and d     |
| B25     | GND     | Ground                                        |
| B26     | N/C     | No connect                                    |
| C1      | GND     | Ground                                        |
| C2      | ID      | Device ID                                     |
| C3      | V3B     | VCCD bottom phase 3                           |
| C4      | V2B     | VCCD bottom phase 2                           |

## Table 3. PIN DESCRIPTION (continued)

| Pin No. | Label  | Description                                  |
|---------|--------|----------------------------------------------|
| C5      | V1B    | VCCD bottom phase 1                          |
| C6      | H2Xa   | Floating gate exit HCCD gate, quadrant a     |
| C7      | H2SW2a | HCCD output 2 selector, quadrant a           |
| C8      | H2SW3a | HCCD output 3 selector, quadrant a           |
| C9      | H2SEMa | EMCCD storage multiplier phase 2, quadrant a |
| C10     | H1SEMa | EMCCD storage multiplier phase 1, quadrant a |
| C11     | H1Ba   | HCCD barrier phase 1, quadrant a             |
| C12     | H2Ba   | HCCD barrier phase 2, quadrant a             |
| C13     | SUB    | substrate                                    |
| C14     | H2Bb   | HCCD barrier phase 2, quadrant b             |
| C15     | H1Bb   | HCCD barrier phase 1, quadrant b             |
| C16     | H1SEMb | EMCCD storage multiplier phase 1, quadrant b |
| C17     | H2SEMb | EMCCD storage multiplier phase 2, quadrant b |
| C18     | H2SW3b | HCCD Output 3 Selector, Quadrant b           |
| C19     | H2SW2b | HCCD Output 2 Selector, Quadrant b           |
| C20     | H2Xb   | Floating gate exit HCCD gate, quadrant b     |
| C21     | V1B    | VCCD bottom phase 1                          |
| C22     | V2B    | VCCD bottom phase 2                          |
| C23     | V3B    | VCCD bottom phase 3                          |
| C24     | N/C    | No connect                                   |
| C25     | GND    | Ground                                       |
| C26     | N/C    | No connect                                   |
| D1      | N/C    | No connect                                   |
| D2      | N/C    | No connect                                   |
| D3      | V3T    | VCCD top phase 3                             |
| D4      | V2T    | VCCD top phase 2                             |
| D5      | V1T    | VCCD top phase 1                             |
| D6      | H2Xc   | Floating gate exit HCCD gate, quadrant c     |
| D7      | H2SW2c | HCCD Output 2 Selector, Quadrant c           |
| D8      | H2SW3c | HCCD Output 3 Selector, Quadrant c           |
| D9      | H2SEMc | EMCCD storage phase 2, quadrant c            |
| D10     | H1SEMc | EMCCD storage phase 1, quadrant c            |
| D11     | H1Bc   | HCCD barrier phase 1, quadrant c             |
| D12     | H2Bc   | HCCD barrier phase 2, quadrant c             |
| D13     | SUB    | Substrate                                    |
| D14     | H2Bd   | HCCD barrier phase 2, quadrant d             |
| D15     | H1Bd   | HCCD barrier phase 1, quadrant d             |
| D16     | H1SEMd | EMCCD storage multiplier phase 1, quadrant d |
| D17     | H2SEMd | EMCCD storage multiplier phase 2, quadrant d |
| D18     | H2SW3d | HCCD output 3 selector, quadrant d           |
| D19     | H2SW2d | HCCD output 2 selector, quadrant d           |
| D20     | H2Xd   | Floating gate exit HCCD gate, quadrant d     |
| D21     | V1T    | VCCD top phase 1                             |
| D22     | V2T    | VCCD top phase 2                             |
| D23     | V3T    | VCCD top phase 3                             |

| Table | 3. PIN                  | DESCRIPTION | (continued) |
|-------|-------------------------|-------------|-------------|
| Table | <b>5.</b> 1 II <b>1</b> |             | (continued) |

| Pin No. | Label   | Description                                   |
|---------|---------|-----------------------------------------------|
| D24     | VSUBREF | Substrate voltage reference                   |
| D25     | GND     | Ground                                        |
| D26     | N/C     | No connect                                    |
| E1      | N/C     | No connect                                    |
| E2      | GND     | Charge injection gate, quadrants a and c      |
| E3      | V4T     | VCCD top phase 4                              |
| E4      | GND     | Ground                                        |
| E5      | VSS1c   | Amplifier 1 return, quadrant c                |
| E6      | RG1c    | Amplifier 1 reset, quadrant c                 |
| E7      | RG23c   | Amplifier 2 and 3 reset, quadrant c           |
| E8      | GND     | Ground                                        |
| E9      | H2BEMc  | EMCCD barrier phase 2, quadrant c             |
| E10     | H1BEMc  | EMCCD barrier phase 1, quadrant c             |
| E11     | H1Sc    | HCCD storage phase 1, quadrant c              |
| E12     | H2Sc    | HCCD storage phase 2, quadrant c              |
| E13     | GND     | Ground                                        |
| E14     | H2Sd    | HCCD storage phase 2, quadrant d              |
| E15     | H1Sd    | HCCD storage phase 1, quadrant d              |
| E16     | H1BEMd  | EMCCD barrier phase 1, quadrant d             |
| E17     | H2BEMd  | EMCCD barrier phase 2, quadrant d             |
| E18     | GND     | Ground                                        |
| E19     | RG23d   | Amplifier 2 and 3 reset, quadrant d           |
| E20     | RG1d    | Amplifier 1 reset, quadrant d                 |
| E21     | VSS1d   | Amplifier 1 return, quadrant d                |
| E22     | GND     | Ground                                        |
| E23     | V4T     | VCCD top phase 4                              |
| E24     | GND     | Charge injection gate, quadrants b and d      |
| E25     | GND     | Ground                                        |
| E26     | N/C     | No connect                                    |
| F1      | N/C     | No connect                                    |
| F2      | V2B     | Charge injection clock, quadrants a and c     |
| F3      | ESD     |                                               |
| F4      | VDD1c   | Amplifier 1 supply, quadrant c                |
| F5      | VOUT1c  | Video output 1, quadrant c                    |
| F6      | VDD2c   | Amplifier 2 supply, quadrant c                |
| F7      | VOUT2c  | Video output 2, quadrant c                    |
| F8      | H2Lc    | HCCD last gate, outputs 1,2 and 3, quadrant c |
| F9      | VDD3c   | Amplifier 3 supply, quadrant c                |
| F10     | VOUT3c  | Video output 3, quadrant c                    |
| F11     | H1c     | HCCD phase 1, quadrant c                      |
| F12     | H2c     | HCCD phase 2, quadrant c                      |
| F13     | GND     | Ground                                        |
| F14     | H2d     | HCCD phase 2, quadrant d                      |
| F15     | H1d     | HCCD phase 1, quadrant d                      |
| F16     | VOUT3d  | Video output 3, quadrant b                    |

## Table 3. PIN DESCRIPTION (continued)

| Pin No. | Label  | Description                                   |
|---------|--------|-----------------------------------------------|
| F17     | VDD3d  | Amplifier 3 supply, quadrant d                |
| F18     | H2Ld   | HCCD last gate, outputs 1,2 and 3, quadrant d |
| F19     | VOUT2d | Video output 2, quadrant d                    |
| F20     | VDD2d  | amplifier 2 supply, quadrant d                |
| F21     | VOUT1d | Amplifier 1 Output, Quadrant d                |
| F22     | VDD1d  | Amplifier 1 Supply, Quadrant d                |
| F23     | ESD    |                                               |
| F24     | V2B    | Charge injection clock, quadrants b and d     |

#### Table 4. PIN DESCRIPTION FOR PACKAGE WITH INTEGRATED TEC

| Pin No. | Label   | Description                                    |
|---------|---------|------------------------------------------------|
| A2      | +9 V    | +9 V Supply                                    |
| A3      | VDD15ac | +15 V Supply                                   |
| A4      | VDD1a   | Amplifier 1 Supply, Quadrant a                 |
| A5      | VOUT1a  | Video Output 1, Quadrant a                     |
| A6      | VDD2a   | Amplifier 2 Supply, Quadrant a                 |
| A7      | VOUT2a  | Video Output 2, Quadrant a                     |
| A8      | H2La    | HCCD Last Gate, Outputs 1, 2 and 3, Quadrant a |
| A9      | VDD3a   | Amplifier 3 Supply, Quadrant a                 |
| A10     | VOUT3a  | Video Output 3, Quadrant a                     |
| A11     | H1a     | HCCD Phase 1, Quadrant a                       |
| A12     | H2a     | HCCD Phase 2, Quadrant a                       |
| A13     | GND     | Ground                                         |
| A14     | H2b     | HCCD Phase 2, Quadrant b                       |
| A15     | H1b     | HCCD Phase 1, Quadrant b                       |
| A16     | VOUT3b  | Video Output 3, Quadrant b                     |
| A17     | VDD3b   | Amplifier 3 Supply, Quadrant b                 |
| A18     | H2Lb    | HCCD Last Gate, Outputs 1, 2 and 3, Quadrant b |
| A19     | VOUT2b  | Video Output 2, Quadrant b                     |
| A20     | VDD2b   | Amplifier 2 Supply, Quadrant b                 |
| A21     | VOUT1b  | Amplifier 1 Output, Quadrant b                 |
| A22     | VDD1b   | Amplifier 1 Supply, Quadrant b                 |
| A23     | VDD15bd | +15 V Supply, Quadrants b and d                |
| A24     | +9 V    | +9 V Supply                                    |
| A25     | GND     | Ground                                         |
| A26     | TEC-    | Thermoelectric Cooler Negative Bias            |
| B1      | GND     | Ground                                         |
| B2      | ESD     | ESD                                            |
| B3      | V4B     | VCCD Bottom Phase 4                            |
| B4      | GND     | Ground                                         |
| B5      | VSS1a   | Amplifier 1 Return, Quadrant a                 |
| B6      | RG1a    | Amplifier 1 Reset, Quadrant a                  |
| B7      | RG23a   | Amplifier 2 and 3 Reset, Quadrant a            |
| B8      | GND     | Ground                                         |

# Table 4. PIN DESCRIPTION FOR PACKAGE WITH INTEGRATED TEC (continued)

| Pin No. | Label  | Description                                  |
|---------|--------|----------------------------------------------|
| B9      | H2BEMa | EMCCD Barrier Phase 2, Quadrant a            |
| B10     | H1BEMa | EMCCD Barrier Phase 1, Quadrant a            |
| B11     | H1Sa   | HCCD Storage Phase 1, Quadrant a             |
| B12     | H2Sa   | HCCD Storage Phase 2, Quadrant a             |
| B13     | GND    | Ground                                       |
| B14     | H2Sb   | HCCD Storage Phase 2, Quadrant b             |
| B15     | H1Sb   | HCCD Storage Phase 1, Quadrant b             |
| B16     | H1BEMb | EMCCD Barrier Phase 1, Quadrant b            |
| B17     | H2BEMb | EMCCD Barrier Phase 2, Quadrant b            |
| B18     | GND    | Ground                                       |
| B19     | RG23b  | Amplifier 2 and 3 Reset, Quadrant b          |
| B20     | RG1b   | Amplifier 1 Reset, Quadrant b                |
| B21     | VSS1b  | Amplifier 1 Return, Quadrant b               |
| B22     | GND    | Ground                                       |
| B23     | V4B    | VCCD Bottom Phase 4                          |
| B24     | ESD    | ESD                                          |
| B25     | GND    | Ground                                       |
| B26     | TEC-   | Thermoelectric Cooler Negative Bias          |
| C1      | GND    | Ground                                       |
| C2      | ID     | Device ID                                    |
| C3      | V3B    | VCCD Bottom Phase 3                          |
| C4      | V2B    | VCCD Bottom Phase 2                          |
| C5      | V1B    | VCCD Bottom Phase 1                          |
| C6      | H2Xa   | Floating Gate Exit HCCD Gate, Quadrant a     |
| C7      | H2SW2a | HCCD Output 2 Selector, Quadrant a           |
| C8      | H2SW3a | HCCD Output 3 Selector, Quadrant a           |
| C9      | H2SEMa | EMCCD Storage Multiplier Phase 2, Quadrant a |
| C10     | H1SEMa | EMCCD Storage Multiplier Phase 1, Quadrant a |
| C11     | H1Ba   | HCCD Barrier Phase 1, Quadrant a             |
| C12     | H2Ba   | HCCD Barrier Phase 2, Quadrant a             |
| C13     | SUB    | Substrate                                    |
| C14     | H2Bb   | HCCD Barrier Phase 2, Quadrant b             |
| C15     | H1Bb   | HCCD Barrier Phase 1, Quadrant b             |
| C16     | H1SEMb | EMCCD Storage Multiplier Phase 1, Quadrant b |
| C17     | H2SEMb | EMCCD Storage Multiplier Phase 2, Quadrant b |
| C18     | H2SW3b | HCCD Output 3 Selector, Quadrant b           |
| C19     | H2SW2b | HCCD Output 2 Selector, Quadrant b           |
| C20     | H2Xb   | Floating Gate Exit HCCD Gate, Quadrant b     |
| C21     | V1B    | VCCD Bottom Phase 1                          |
| C22     | V2B    | VCCD Bottom Phase 2                          |
| C23     | V3B    | VCCD Bottom Phase 3                          |
| C24     | N/C    | No connect                                   |
| C25     | GND    | Ground                                       |
| C26     | TEC-   | Thermoelectric Cooler Negative Bias          |
| D1      | N/C    | No connect                                   |

#### Table 4. PIN DESCRIPTION FOR PACKAGE WITH INTEGRATED TEC (continued)

| Pin No. | Label   | Description                                  |  |  |  |  |
|---------|---------|----------------------------------------------|--|--|--|--|
| D2      | N/C     | No connect                                   |  |  |  |  |
| D3      | V3T     | VCCD Top Phase 3                             |  |  |  |  |
| D4      | V2T     | VCCD Top Phase 2                             |  |  |  |  |
| D5      | V1T     | VCCD Top Phase 1                             |  |  |  |  |
| D6      | H2Xc    | Floating Gate Exit HCCD Gate, Quadrant c     |  |  |  |  |
| D7      | H2SW2c  | HCCD Output 2 Selector, Quadrant c           |  |  |  |  |
| D8      | H2SW3c  | HCCD Output 3 Selector, Quadrant c           |  |  |  |  |
| D9      | H2SEMc  | EMCCD Storage Phase 2, Quadrant c            |  |  |  |  |
| D10     | H1SEMc  | EMCCD Storage Phase 1, Quadrant c            |  |  |  |  |
| D11     | H1Bc    | HCCD Barrier Phase 1, Quadrant c             |  |  |  |  |
| D12     | H2Bc    | HCCD Barrier Phase 2, Quadrant c             |  |  |  |  |
| D13     | SUB     | Substrate                                    |  |  |  |  |
| D14     | H2Bd    | HCCD Barrier Phase 2, Quadrant d             |  |  |  |  |
| D15     | H1Bd    | HCCD Barrier Phase 1, Quadrant d             |  |  |  |  |
| D16     | H1SEMd  | EMCCD Storage Multiplier Phase 1, Quadrant d |  |  |  |  |
| D17     | H2SEMd  | EMCCD Storage Multiplier Phase 2, Quadrant d |  |  |  |  |
| D18     | H2SW3d  | HCCD Output 3 Selector, Quadrant d           |  |  |  |  |
| D19     | H2SW2d  | HCCD Output 2 Selector, Quadrant d           |  |  |  |  |
| D20     | H2Xd    | Floating Gate Exit HCCD Gate, Quadrant d     |  |  |  |  |
| D21     | V1T     | VCCD Top Phase 1                             |  |  |  |  |
| D22     | V2T     | VCCD Top Phase 2                             |  |  |  |  |
| D23     | V3T     | VCCD Top Phase 3                             |  |  |  |  |
| D24     | VSUBREF | Substrate Voltage Reference                  |  |  |  |  |
| D25     | GND     | Ground                                       |  |  |  |  |
| D26     | TEC+    | Thermoelectric Cooler Positive Bias          |  |  |  |  |
| E1      | N/C     | No connect                                   |  |  |  |  |
| E2      | GND     | Ground                                       |  |  |  |  |
| E3      | V4T     | VCCD Top Phase 4                             |  |  |  |  |
| E4      | GND     | Ground                                       |  |  |  |  |
| E5      | VSS1c   | Amplifier 1 Return, Quadrant c               |  |  |  |  |
| E6      | RG1c    | Amplifier 1 Reset, Quadrant c                |  |  |  |  |
| E7      | RG23c   | Amplifier 2 and 3 Reset, Quadrant c          |  |  |  |  |
| E8      | GND     | Ground                                       |  |  |  |  |
| E9      | H2BEMc  | EMCCD Barrier Phase 2, Quadrant c            |  |  |  |  |
| E10     | H1BEMc  | EMCCD Barrier Phase 1, Quadrant c            |  |  |  |  |
| E11     | H1Sc    | HCCD Storage Phase 1, Quadrant c             |  |  |  |  |
| E12     | H2Sc    | HCCD Storage Phase 2, Quadrant c             |  |  |  |  |
| E13     | GND     | Ground                                       |  |  |  |  |
| E14     | H2Sd    | HCCD Storage Phase 2, Quadrant d             |  |  |  |  |
| E15     | H1Sd    | HCCD Storage Phase 1, Quadrant d             |  |  |  |  |
| E16     | H1BEMd  | EMCCD Barrier Phase 1, Quadrant d            |  |  |  |  |
| E17     | H2BEMd  | EMCCD Barrier Phase 2, Quadrant d            |  |  |  |  |
| E18     | GND     | Ground                                       |  |  |  |  |
| E19     | RG23d   | Amplifier 2 and 3 Reset, Quadrant d          |  |  |  |  |
| E20     | RG1d    | Amplifier 1 Reset, Quadrant d                |  |  |  |  |

| Pin No. | Label | Description                    |  |  |  |  |  |
|---------|-------|--------------------------------|--|--|--|--|--|
| E21     | VSS1d | Amplifier 1 Return, Quadrant d |  |  |  |  |  |
| E22     | GND   | Ground                         |  |  |  |  |  |
|         |       |                                |  |  |  |  |  |

| E21 | VSS1d  | Amplifier 1 Return, Quadrant d                 |  |  |  |  |
|-----|--------|------------------------------------------------|--|--|--|--|
| E22 | GND    | Ground                                         |  |  |  |  |
| E23 | V4T    | VCCD Top Phase 4                               |  |  |  |  |
| E24 | GND    | Ground                                         |  |  |  |  |
| E25 | GND    | Ground                                         |  |  |  |  |
| E26 | TEC+   | Thermoelectric Cooler Positive Bias            |  |  |  |  |
| F1  | N/C    | No connect                                     |  |  |  |  |
| F2  | V2B    | VCCD Bottom Phase 2                            |  |  |  |  |
| F3  | ESD    | ESD                                            |  |  |  |  |
| F4  | VDD1c  | Amplifier 1 Supply, Quadrant c                 |  |  |  |  |
| F5  | VOUT1c | Video Output 1, Quadrant c                     |  |  |  |  |
| F6  | VDD2c  | Amplifier 2 Supply, Quadrant c                 |  |  |  |  |
| F7  | VOUT2c | Video Output 2, Quadrant c                     |  |  |  |  |
| F8  | H2Lc   | HCCD Last Gate, Outputs 1, 2 and 3, Quadrant c |  |  |  |  |
| F9  | VDD3c  | Amplifier 3 Supply, Quadrant c                 |  |  |  |  |
| F10 | VOUT3c | Video Output 3, Quadrant c                     |  |  |  |  |
| F11 | H1c    | HCCD Phase 1, Quadrant c                       |  |  |  |  |
| F12 | H2c    | HCCD Phase 2, Quadrant c                       |  |  |  |  |
| F13 | GND    | Ground                                         |  |  |  |  |
| F14 | H2d    | HCCD Phase 2, Quadrant d                       |  |  |  |  |
| F15 | H1d    | HCCD Phase 1, Quadrant d                       |  |  |  |  |
| F16 | VOUT3d | Video Output 3, Quadrant b                     |  |  |  |  |
| F17 | VDD3d  | Amplifier 3 Supply, Quadrant d                 |  |  |  |  |
| F18 | H2Ld   | HCCD Last Gate, Outputs 1, 2 and 3, Quadrant d |  |  |  |  |
| F19 | VOUT2d | Video Output 2, Quadrant d                     |  |  |  |  |
| F20 | VDD2d  | Amplifier 2 Supply, Quadrant d                 |  |  |  |  |
| F21 | VOUT1d | Amplifier 1 Output, Quadrant d                 |  |  |  |  |
| F22 | VDD1d  | Amplifier 1 Supply, Quadrant d                 |  |  |  |  |
| F23 | ESD    | ESD                                            |  |  |  |  |
| F24 | V2B    | VCCD Bottom Phase 2                            |  |  |  |  |
| F25 | GND    | Ground                                         |  |  |  |  |
| F26 | TEC+   | Thermoelectric Cooler Positive Bias            |  |  |  |  |
|     | •      |                                                |  |  |  |  |

#### **Imaging Performance**

#### Table 5. TYPICAL OPERATION CONDITIONS

(Unless otherwise noted, the Imaging Performance Specifications are measured using the following conditions.)

| Description           | Condition                                       |
|-----------------------|-------------------------------------------------|
| Light Source (Note 1) | Continuous Red, Green and Blue LED Illumination |
| Operation             | Nominal Operating Voltages and Timing           |

1. For monochrome sensor, only green LED light source is used.

#### Table 6. SPECIFICATIONS

| Description                                                                           | Symbol           | Min.     | Nom.     | Max. | Unit   | Sampling<br>Plan | Temperature<br>Tested at<br>(°C) |
|---------------------------------------------------------------------------------------|------------------|----------|----------|------|--------|------------------|----------------------------------|
| Dark Field Global Non-Uniformity                                                      | DSNU             | -        | -        | 2.0  | mV pp  | Die              | -10                              |
| Bright Field Global Non-Uniformity<br>(Note 2)                                        |                  | _        | 2.0      | 5.0  | % rms  | Die              | -10                              |
| Bright Field Global Peak to Peak<br>Non-Uniformity (Note 2)                           | PRNU             | _        | 5.0      | 15.0 | % рр   | Die              | -10                              |
| Bright Field Center Non-Uniformity<br>(Note 2)                                        |                  | _        | 1.0      | 2.0  | % rms  | Die              | -10                              |
| Maximum Photoresponse Non-Linear-<br>ity (EMCCD Gain = 1) (Note 3)                    | NL               | -        | 2        | -    | %      | Design           |                                  |
| Maximum Gain Difference Between<br>Outputs (EMCCD Gain = 1) (Note 8)                  | ΔG               | -        | 10       | -    | %      | Design           |                                  |
| Maximum Signal Error due to<br>Non-Linearity Differences<br>(EMCCD Gain = 1) (Note 3) | ΔNL              | _        | 1        | -    | %      | Design           |                                  |
| Horizontal CCD Charge Capacity                                                        | H <sub>Ne</sub>  | -        | 30       | -    | ke⁻    | Design           |                                  |
| Vertical CCD Charge Capacity                                                          | V <sub>Ne</sub>  | -        | 30       | -    | ke⁻    | Design           |                                  |
| Photodiode Charge Capacity (Note 4)                                                   | P <sub>Ne</sub>  | -        | 20       | -    | ke⁻    | Die              | -10                              |
| Horizontal CCD Charge Transfer Effi-<br>ciency                                        | HCTE             | 0.999995 | 0.999999 | -    |        | Die              | -10                              |
| Vertical CCD Charge Transfer Effi-<br>ciency                                          | VCTE             | 0.999995 | 0.999999 | -    |        | Die              | -10                              |
| Photodiode Dark Current (Average)                                                     | I <sub>PD</sub>  | -        | 0.1      | 3    | e/p/s  | Design           | -10                              |
| Vertical CCD Dark Current                                                             |                  | -        | 0.3      | -    | e/p/s  | Design           | -10                              |
| Image Lag                                                                             | Lag              | -        | -        | 10   | e-     | Design           |                                  |
| Anti-Blooming Factor                                                                  | X <sub>AB</sub>  | 1000     | -        | -    |        | Design           |                                  |
| Vertical Smear (Blue Light)                                                           | Smr              | -        | -100     | -    | dB     | Design           |                                  |
| Read Noise (EMCCD Gain = 1)<br>(Note 5)                                               | n <sub>e-T</sub> | -        | 9        | -    | e⁻ rms | Design           |                                  |
| Read Noise (EMCCD Gain = 20)                                                          |                  | -        | < 1      | -    | e⁻ rms | Design           |                                  |
| EMCCD Excess Noise Factor<br>(Gain = 20x)                                             |                  | -        | 1.4      | -    |        | Design           | 0                                |
| Dynamic Range (ECCD Gain = 1)<br>(Notes 5, 6)                                         | DR               | -        | 68       | -    | dB     | Design           |                                  |
| Dynamic Range (High Gain)                                                             |                  | -        | 60       | -    | dB     | Design           |                                  |
| Dynamic Range (Intra-Scene)                                                           |                  | -        | 86       | -    | dB     | Design           |                                  |
| Output Amplifier DC Offset<br>(VOUT2, VOUT3)                                          | V <sub>ODC</sub> | 8.0      | 10       | 12.0 | V      | Die              | -10                              |
| Output Amplifier DC Offset (VOUT1)                                                    | V <sub>ODC</sub> | -0.5     | 1.0      | 2.5  | V      | Die              | -10                              |

#### Table 6. SPECIFICATIONS (continued)

| Description                                                                                                                      | Symbol            | Min.                  | Nom.                                   | Max.                  | Unit  | Sampling<br>Plan | Temperature<br>Tested at<br>(°C) |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|----------------------------------------|-----------------------|-------|------------------|----------------------------------|
| Output Amplifier Bandwidth (Note 7)                                                                                              | f <sub>-3dB</sub> | -                     | 250                                    | -                     | MHz   | Design           |                                  |
| Output Amplifier Impedance                                                                                                       | R <sub>OUT</sub>  | -                     | 140                                    | -                     | Ω     | Die              | -10                              |
| Output Amplifier Sensitivity<br>(Normal Output)                                                                                  | ΔV/ΔΝ             | -                     | 44                                     | -                     | μV/e⁻ | Design           |                                  |
| Output Amplifier Sensitivity<br>(Floating Gate Amplifier)                                                                        | ΔV/ΔN<br>(FG)     | -                     | 6.5                                    | -                     | μV/e⁻ | Design           |                                  |
| Quantum Efficiency (Peak)<br>Monochrome<br>Red<br>Green<br>Blue                                                                  | QEmax             |                       | 50<br>33<br>41<br>43                   | -<br>-<br>-           | %     | Design           |                                  |
| Power<br>4-Output Mode<br>(20 MHz)<br>(40 MHz)<br>2-Output Mode<br>(20 MHz)<br>(40 MHz)<br>1-Output Mode<br>(20 MHz)<br>(40 MHz) |                   | -<br>-<br>-<br>-<br>- | 0.8<br>0.7<br>0.5<br>0.5<br>0.4<br>0.4 | -<br>-<br>-<br>-<br>- | W     | Design           |                                  |

2. Per color

3. Value is over the range of 10% to 90% of photodiode saturation.

4. The operating value of the substrate reference voltage,  $V_{AB}$ , can be read from VSUBREF. 5. At 20 MHz.

6. Uses 20 LOG ( $P_{Ne} / n_{e-T}$ ). 7. Calculated from  $f_{-3dB} = 1 / 2n \cdot R_{OUT} \cdot C_{LOAD}$  where  $C_{LOAD} = 5$  pF. 8. The output-to-output gain differences may be adjusted by independently adjusting the EMCCD amplitude for each output.

## **TYPICAL PERFORMANCE CURVES**

#### **Quantum Efficiency**

Monochrome and Color with Microlens, No Cover Glass



Figure 4. Monochrome and Color (Bayer RGB) Quantum Efficiencies

#### **Angular Response**

The incident light angle is varied in a plane parallel to the HCCD.

Monochrome with Microlens, No Cover Glass



Figure 5. Angled QE for 5.5 micron Pixel Monochrome Device



# Color (Bayer RGB) with Microlens, No Cover Glass





Figure 7. Frame Rates vs. Clock Frequency

# **DEFECT DEFINITIONS**

#### **Table 7. DEFECT DEFINITIONS**

| Description                             | Definition                                                                                                                                                 | Maximum Number Allowed |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Major Dark Field Defective Bright Pixel | Defect ≥ 30 mV deviation from the mean, for all pixels in the active image area.                                                                           | 80                     |  |
| Major Bright Field Defective Dark Pixel | ≥ 12%                                                                                                                                                      |                        |  |
| Minor Dark Field Defective Bright Pixel | Defect ≥ 15 mV deviation from the mean, for all pixels in the active image area.                                                                           | 800                    |  |
| Cluster Defect                          | A group of 2 to 10 contiguous major defective pixels,<br>with no more than 3 adjacent defects horizontally.                                                | 15                     |  |
| Column Defect                           | A group of more than 10 contiguous major dark<br>defective pixels along a single column or 10 contiguous<br>bright defective pixels along a single column. | 0                      |  |

9. Low exposure dark column defects are not counted at temperatures above -10°C
 10. For the color device, a bright field defective pixel deviates by 12% with respect to pixels of the same color.
 11. Column and cluster defects are separated by no less than 2 good pixels in any direction (excluding single pixel defects).

### OPERATION

#### **Absolute Maximum Ratings**

Absolute maximum rating is defined as a level or condition that should not be exceeded at any time per the description. If the level or the condition is exceeded, the device will be degraded and may be damaged. Operation at these values will reduce MTTF.

#### Table 8. ABSOLUTE MAXIMUM RATINGS

| Description                     | Symbol           | Minimum | Max. | Unit |
|---------------------------------|------------------|---------|------|------|
| Operating Temperature (Note 12) | T <sub>OP</sub>  | -40     | +40  | °C   |
| Humidity (Note 13)              | RH               | +5      | +90  | %    |
| Output Bias Current (Note 14)   | I <sub>OUT</sub> | -       | 5    | mA   |
| Off-chip Load                   | CL               | -       | 10   | pF   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

12. Noise performance will degrade at higher temperatures.

13. T = 25°C. Excessive humidity will degrade MTTF.

14. Total for all outputs. Maximum current is -15 mA for each output. Avoid shorting output pins to ground or any low impedance source during operation. Amplifier bandwidth increases at higher current and lower load capacitance at the expense of reduced gain (sensitivity).

#### Table 9. ABSOLUTE MAXIMUM VOLTAGE RATINGS BETWEEN PINS AND GROUND

| Description                                                                                                                                                                                                             | Minimum   | Max.       | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------|
| VDD2(a,b,c,d), VDD3(a,b,c,d)                                                                                                                                                                                            | -0.4      | 17.5       | V    |
| VOUT2(a,b,c,d), VOUT3(a,b,c,d)                                                                                                                                                                                          | -0.4      | 15         | V    |
| VDD1(a,b,c,d), VOUT1(a,b,c,d)                                                                                                                                                                                           | -0.4      | 7.0        | V    |
| V1B, V1T                                                                                                                                                                                                                | ESD – 0.4 | ESD + 22.0 | V    |
| V2B, V2T, V3B, V3T, V4B, V4T                                                                                                                                                                                            | ESD – 0.4 | ESD + 14.0 | V    |
| H1(a,b,c,d), H2(a,b,c,d)<br>H1S(a,b,c,d), H2S(a,b,c,d)<br>H1B(a,b,c,d), H2B(a,b,c,d)<br>H1BEM(a,b,c,d), H2BEM(a,b,c,d)<br>H2SW2(a,b,c,d), H2SW3(a,b,c,d)<br>H2L(a,b,c,d)<br>H2X(a,b,c,d)<br>RG1(a,b,c,d), RG23(a,b,c,d) | -0.4      | +10        | V    |
| H1SEM(a,b,c,d), H2SEM(a,b,c,d)                                                                                                                                                                                          | -0.4      | +20        | V    |
| ESD                                                                                                                                                                                                                     | -9.0      | 0.0        | V    |
| SUB (Notes 15 and 16)                                                                                                                                                                                                   | 6.5       | 40         | V    |

15. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.

16. The measured value for VSUBREF is a diode drop higher than the recommended minimum VSUB bias.

#### Power Up and Power Down Sequence

SUB and ESD power up first, then power up all other biases in any order. No pin may have a voltage less than ESD at any time. All HCCD pins must be greater than or equal to GND at all times. The SUBREF pin will not become valid until VDD15ac and VDD15bd have been powered. Therefore the SUB voltage cannot be directly derived from the SUBREF pin. The SUB pin should be at least 4 V before powering up VDD2(a,b,c,d) and VDD3(a,b,c,d).

The sequence for power down should be the reverse of that for power up, so that the SUB and ESD biases are shut off last.



Figure 8. Power Up Timing Diagram

| Table 10 | . DC BIAS | OPERATING | CONDITIONS |
|----------|-----------|-----------|------------|
|----------|-----------|-----------|------------|

| Description                    | Pins                                                 | Symbol           | Min.  | Nom.             | Max.            | Unit | Maximum<br>DC Current                         |
|--------------------------------|------------------------------------------------------|------------------|-------|------------------|-----------------|------|-----------------------------------------------|
| Output Amplifier Return        | VSS1(a,b,c,d)                                        | VSS1             | -8.3  | -8.0             | -7.7            | V    | 4 mA                                          |
| Output Amplifier Supply        | VDD1(a,b,c,d)                                        | VDD1             | 4.5   | 5.0              | 6.0             | V    | 15 mA                                         |
| Output Amplifier Supply        | VDD2(a,b,c,d),<br>VDD3(a,b,c,d)                      | VDD              | +14.7 | +15.0            | +15.3           | V    | 37.0 mA                                       |
| Supply Voltage<br>(Note 17)    | VDD15ac,<br>VDD15bd                                  | VDD2,<br>VDD3    | +14.7 | +15.0            | +15.3           | V    | 9 mA                                          |
| Ground                         | GND                                                  | GND              | 0.0   | 0.0              | 0.0             | V    | 17.0 mA                                       |
| Substrate<br>(Notes 18 and 19) | SUB                                                  | VSUB             | 6.0   | VSUBREF<br>– 0.5 | VSUBREF<br>+ 28 | V    | Up to 1 mA<br>(Determined by<br>Photocurrent) |
| ESD Protection Disable         | ESD                                                  | ESD              | -8.3  | -8.0             | -7.7            | V    | 2 mA                                          |
| Output Bias Current            | VOUT1(a,b,c,d),<br>VOUT2(a,b,c,d),<br>VOUT3(a,b,c,d) | I <sub>OUT</sub> | 2.0   | 2.5              | 5.0             | mA   |                                               |

17.VDD15ac and VDDD15bd bias pins must be maintained at 15 V during operation.

18. For each image sensor, the voltage output on the VSUBREF pin is programmed to be one diode drop, 0.5 V, above the nominal VSUB voltage. So, the applied VSUB should be one diode drop (0.5 V) lower than the VSUBREF value measured on the device, when VDD2(a,b,c,d) and VDD3(a,b,c,d) are at the specified voltage. This value corresponds to the VAB printed on the label for each sensor and applies to operation at 0°C. (For other temperatures, there is a temperature dependence of approximately 0.01 V/degree.) It is noted that VSUBREF is unique to each image sensor and may vary from 6.5 to 10.0 V. In addition, the output impedance of VSUBREF is approximately 100 k.

19. Caution: The EMCCD register must NOT be clocked while the electronic shutter pulse is high.

#### **AC Operating Conditions**

Clock Levels

#### Table 11. CLOCK LEVELS

|                                   | HCCD and RG               |      |           |      |     |           |      |  |
|-----------------------------------|---------------------------|------|-----------|------|-----|-----------|------|--|
|                                   |                           |      | Low Level |      |     | Amplitude |      |  |
| Pin                               | Function                  | Low  | Nominal   | High | Low | Nominal   | High |  |
| H2B(a,b,c,d)                      | Reversible HCCD Barrier 2 | -0.2 | 0.0       | +0.2 | 3.1 | 3.3       | 3.6  |  |
| H1B(a,b,c,d)                      | Reversible HCCD Barrier 1 | -0.2 | 0.0       | +0.2 | 3.1 | 3.3       | 3.6  |  |
| H2S(a,b,c,d)                      | Reversible HCCD Storage 2 | -0.2 | 0.0       | +0.2 | 3.1 | 3.3       | 3.6  |  |
| H1S(a,b,c,d)                      | Reversible HCCD Storage 1 | -0.2 | 0.0       | +0.2 | 3.1 | 3.3       | 3.6  |  |
| H2SW2(a,b,c,d),<br>H2SW3(a,b,c,d) | HCCD Switch 2 and 3       | -0.2 | 0.0       | +0.2 | 3.1 | 3.3       | 3.6  |  |
| H2L(a,b,c,d)                      | HCCD Last Gate            | -0.2 | 0.0       | +0.2 | 3.1 | 3.3       | 3.6  |  |
| H2X(a,b,c,d)                      | Floating Gate Exit        | -0.2 | 0.0       | +0.2 | 6.2 | 6.6       | 7.0  |  |
| RG1(a,b,c,d)                      | Floating Gate Reset       |      | Сар       |      | 3.1 | 3.3       | 3.6  |  |
| RG23(a,b,c,d)                     | Floating Diffusion Reset  |      | Сар       |      |     | 3.3       | 3.6  |  |
| H1BEM(a,b,c,d)                    | Multiplier Barrier 1      | -0.2 | 0.0       | +0.2 | 4.6 | 5.0       | 5.4  |  |
| H2BEM(a,b,c,d)                    | Multiplier Barrier 2      | -0.2 | 0.0       | +0.2 | 4.6 | 5.0       | 5.4  |  |
| H1SEM(a,b,c,d)                    | Multiplier Storage 1      | -0.3 | 0.0       | +0.3 | 7.0 | -         | 18.0 |  |
| H2SEM(a,b,c,d)                    | Multiplier Storage 2      | -0.3 | 0.0       | +0.3 | 7.0 | -         | 18.0 |  |

20. HCCD Operating Voltages. There can be no overshoot on any horizontal clock below -0.4 V: the specified absolute minimum. The H1SEM and H2SEM clock amplitudes need to be software programmable independently for each quadrant to adjust the charge multiplier gain.

21. Reset Clock Operation: The RG1, RG23 signals must be capacitive coupled into the image sensor with a 0.01 µF to 0.1 µF capacitor. The reset clock overshoot can be no greater than 0.3 V, as shown in Figure 9, below:



pF



#### Clock Capacitances

| Pin    | pF | Pin    | pF | Pin    |
|--------|----|--------|----|--------|
| H1SEMa | 45 | H1SEMb | 45 | H1SEMc |
| H2SEMa | 45 | H2SEMb | 45 | H2SEMc |
| H1BEMa | 45 | H1BEMb | 45 | H1BEMc |
| H2BEMa | 45 | H2BEMb | 45 | H2BEMc |
| H1a    | 65 | H1b    | 65 | H1c    |
| H2a    | 65 | H2b    | 65 | H2c    |
| H1Sa   | 75 | H1Sb   | 75 | H1Sc   |
| H2Sa   | 75 | H2Sb   | 75 | H2Sc   |
| H1Ba   | 75 | H1Bb   | 75 | H1Bc   |
| H2Ba   | 75 | H2Bb   | 75 | H2Bc   |

| Pin    | pF |
|--------|----|
| H1SEMd | 45 |
| H2SEMd | 45 |
| H1BEMd | 45 |
| H2BEMd | 45 |
| H1d    | 65 |
| H2d    | 65 |
| H1Sd   | 75 |
| H2Sd   | 75 |
| H1Bd   | 75 |
| H2Bd   | 75 |

NOTE: The capacitances of all other HCCD pins is 15 pF or less.



Figure 10. EMCCD Clock Adjustable Levels

For the EMCCD clocks, each quadrant must have independently adjustable high levels. All quadrants have a common low level of GND. The high level adjustments must be software controlled to balance the gain of the four outputs.



Figure 11. Reset Clock Drivers

The reset clock drivers must be coupled by capacitors to the image sensor. The capacitors can be anywhere in the range 0.01 to 0.1  $\mu$ F. The damping resistor values would

vary between 0 and 75 Ohms depending on the layout of the circuit board.

#### Table 12. VCCD

| Pin                                    | Function                                          | Low  | Nominal | High |
|----------------------------------------|---------------------------------------------------|------|---------|------|
| V1T, V1B, V2T, V2B, V3T, V3B, V4T, V4B | Vertical CCD Clock, Low Level                     | -8.0 | -8.0    | -6.0 |
| V1T, V1B, V2T, V2B, V3T, V3B, V4T, V4B | Vertical CCD Clock, Mid Level                     | -0.2 | 0.0     | +0.2 |
| V1T, V1B                               | Vertical CCD Clock, High (3 <sup>rd</sup> ) Level | 8.5  | 9.0     | 12.5 |

22. The Vertical CCD operating voltages. The VCCD low level will be -8.0 V for operating temperatures of -10°C and above. Below -10°C the VCCD low level should be made more positive for optimum noise performance.

#### Table 13. ELECTRONIC SHUTTER PULSE

| Pin | Function           | Low           | High         |
|-----|--------------------|---------------|--------------|
| SUB | Electronic Shutter | VSUBREF – 0.5 | VSUBREF + 28 |

#### **Device Identification**

The device identification pin (DevID) may be used to determine which ON Semiconductor 5.5 micron pixel interline CCD sensor is being used.

#### Table 14. DEVICE IDENTIFICATION VALUES

| Description                                 | Pins | Symbol | Min.  | Nom.   | Max.   | Unit | Maximum<br>DC Current |
|---------------------------------------------|------|--------|-------|--------|--------|------|-----------------------|
| Device Identification (Notes 23, 24 and 25) | ID   | ID     | 8,000 | 10,000 | 12,000 | Ω    | 0.3 mA                |

23. Nominal value subject to verification and/or change during release of preliminary specifications.

24. If the Device Identification is not used, it may be left disconnected.

25. After Device Identification resistance has been read during camera initialization, it is recommended that the circuit be disabled to prevent localized heating of the sensor due to current flow through the R\_DeviceID resistor.

#### **Recommended** Circuit

![](_page_23_Figure_9.jpeg)

Figure 12. Device Identification Recommended Circuit

#### THEORY OF OPERATION

#### Image Acquisition

![](_page_24_Figure_3.jpeg)

Figure 13. Illustration of Two Columns and Three Rows of Pixels

This image sensor is capable of detecting up to 20,000 electrons with a small signal noise floor of 1 electron all within one image. Each 5.5  $\mu$ m square pixel, as shown in Figure 13 above, consists of a light sensitive photodiode and a portion of the vertical CCD (VCCD). Not shown is a microlens positioned above each photodiode to focus light away from the VCCD and into the photodiode. Each photon incident upon a pixel will generate an electron in the photodiode with a probability equal to the quantum efficiency.

The photodiode may be cleared of electrons (electronic shutter) by pulsing the SUB pin of the image sensor up to a voltage of 30 V to 40 V (VSUBREF + 22 to VSUBREF +28 V) for a time of at least 1  $\mu$ s. When the SUB pin is above 30 V, the photodiode can hold no electrons, and the electrons flow downward into the substrate. When the voltage on SUB drops below 30 V, the integration of electrons in the photodiode begins. The HCCD clocks should be stopped when the electronic shutter is pulsed, to avoid having the large voltage pulse on SUB coupling into the video outputs and altering the EMCCD gain.

It should be noted that there are certain conditions under which the device will have no anti-blooming protection: when the V1T and V1B pins are high, very intense illumination generating electrons in the photodiode will flood directly into the VCCD. When the electronic shutter pulse overlaps the V1T and V1B high-level pulse that transfers electrons from the photodiode to the VCCD, then photo-electrons will flow to the substrate and not the VCCD. This condition may be desirable as a means to obtain very short integration times. The VCCD is shielded from light by metal to prevent detection of more photons. For very bright spots of light, some photons may leak through or around the metal light shield and result in electrons being transferred into the VCCD. This is called image smear.

#### **Image Readout**

At the start of image readout, the voltage on the V1T and V1B pins is pulsed from 0 V up to the high level for at least 1 µs and back to 0 V, which transfers the electrons from the photodiodes into the VCCD. If the VCCD is not empty, then the electrons will be added to what is already in the VCCD. The VCCD is read out one row at a time. During a VCCD row transfer, the HCCD clocks are stopped. All gates of type H1 stop at the high level and all gates of type H2 stop at the low level. After a VCCD row transfer, charge packets of electrons are advanced one pixel at a time towards the output amplifiers by each complimentary clock cycle of the H1 and H2 gates.

The charge multiplier has a maximum charge handling capacity (after gain) of 20,000 electrons. This is not the average signal level. It is the maximum signal level. Therefore, it is advisable to keep the average signal level at 15,000 electrons or less to accommodate a normal distribution of signal levels. For a charge multiplier gain of 20x, no more than 15,000/20 = 750 electrons should be allowed to enter the charge multiplier. Overfilling the charge multiplier beyond 20,000 electrons will shorten its useful operating lifetime.

To prevent overfilling the charge multiplier, a non-destructive floating gate output amplifier (VOUT1) is

provided on each quadrant of the image sensor as shown in Figure 14 below.

![](_page_25_Figure_2.jpeg)

The non-destructive floating gate output amplifier is able to sense how much charge is present in a charge packet without altering the number of electrons in that charge packet. This type of amplifier has a low charge-to-voltage conversion gain (about  $6.2 \,\mu V/e$ ) and high noise (about 50 electrons), but it is being used only as a threshold detector, and not an imaging detector. Even with 50 electrons of noise, it is adequate to determine whether a charge packet is greater than or less than the recommended threshold of 150 electrons.

After one row has been transferred from the VCCD into the HCCD, the HCCD clock cycles should begin. After 12 clock cycles, the first dark VCCD column pixel will arrive at VOUT1. After another 24 (34 total) clock cycles, the first photo-active charge packet will arrive at VOUT1. The transfer sequence of a charge packet through the floating gate amplifier is shown in Figure 15 below. The time steps of this sequence are labeled A through D, and are indicated in the timing diagram shown as Figure 16. The RG1 gate is pulsed high during the time that the H2X gate is pulsed high. This holds the floating gate at a constant voltage so the H2X gate can pull the charge packet out of the floating gate. The RG1 pulse should be at least as wide as the H2X pulse, and the H2X pulse width should be at least 12 ns. The rising edge of H2X relative to the falling edge of H1S is critical, specifically, the H2X pulse cannot begin its rising edge transition until the H1S edge is less than 0.4 V. If the H2X rising edge comes too soon then there may be some backward flow of charge for signals above 10,000 electrons.

![](_page_25_Figure_6.jpeg)

NOTE: The differently shaded rectangles represent two separate charge packets. The direction of charge transfer is from right to left. Gates after H2X are connected to H1 or H2. Gates before H2X are connected to H1S or H2S.

Figure 15. Charge Package Transfer Sequence through the Floating Gate Amplifier