

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3296 (H) x 2472 (V) Interline CCD Image Sensor

Description

The KAI-08051 Image Sensor is an 8-megapixel CCD in a 4/3" optical format that provides increased QE, reduced read noise, and improved color accuracy compared to earlier generation devices in the TRUESENSE 5.5 micron Interline Transfer CCD family. The sensor features broad dynamic range, excellent imaging performance, and a flexible readout architecture that enables use of 1, 2, or 4 outputs. Full resolution readout is supported at up to 16 frames per second, a Region of Interest (ROI) mode supports partial readout of the sensor at even higher frame rates.

The sensor is available with the TRUESENSE Sparse Color Filter Pattern, which provides a 2x improvement in light sensitivity compared to a standard color Bayer part.

The sensor shares common pin-out and electrical configurations with other devices based on the TRUESENSE 5.5 micron Interline Transfer Platform, allowing a single camera design to support multiple members of this family.

Table 1. GENERAL SPECIFICATIONS

Parameter		Typical Value		
Architecture	Interline CCD; Progressive Scan			
Total Number of Pixels		3364 (H) x 2520 (V)		
Number of Effective Pixels	3320	(H) x 2496 (V)		
Number of Active Pixels	3296	(H) x 2472 (V)		
Pixel Size	5.5 μn	n (H) x 5.5 μm (V)		
Active Image Size		mm (H) x 13.60 mm (V) mm (diag), 4/3" optical format		
Aspect Ratio	4:3			
Number of Outputs	1, 2, c	or 4		
Charge Capacity	20,00	0 electrons		
Output Sensitivity	39 μV	/e ⁻		
Quantum Efficiency RGB (-FXA-JD, -FXA-JP (no glass), -QXF RGB (-FBA-JD, -FBA-JP (no glass)) Mono, PAN (-AAA-JP) Mono (-AXA-JD, -AXA-JP (no glass)) Mono (-ABA-JD, -ABA-JP (no glass))	P–JD)	33%, 41%, 42% 30%, 37%, 39% 4.0%, 4.4% 51%		
Read Noise (f = 40 MHz)	10 e-			
Dark Current Photodiode VCCD		trons/s lectrons/s		
Dark Current Doubling Temp. Photodiode VCCD	7°C 9°C			
Dynamic Range	66 dB			
Charge Transfer Efficiency	0.999	999		
Blooming Suppression	> 300	X		
Smear	-100	dB		
Image Lag	< 10 €	electrons		
Maximum Pixel Clock Speed	40 MH	łz		
Maximum Frame Rates Quad Output Dual Output Single Output	16 fps 8 fps 4 fps			
Package	68 pin	PGA		
Cover Glass	1	ated, 2 Sides or Clear Glass		

NOTE: All parameters are specified at T = 40°C unless otherwise noted.

ON Semiconductor®

www.onsemi.com

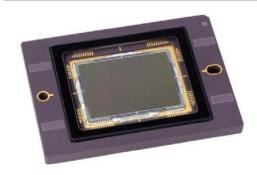


Figure 1. KAI-08051 CCD Image Sensor

Features

- Increased QE, Reduced Read Noise, and and Improved Color Accuracy
- Bayer Color Pattern, TRUESENSE Sparse Color Filter Pattern, and Monochrome Configurations
- Progressive Scan Readout
- Flexible Readout Architecture
- High Frame Rate
- High Sensitivity
- Low Noise Architecture
- Excellent Smear Performance
- Package Pin Reserved for Device Identification

Applications

- Industrial Imaging
- Medical Imaging
- Security

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Table 2. ORDERING INFORMATION - KAI-08051 IMAGE SENSOR

Part Number	Description	Marking Code
Monochrome, No Microlens, PGA Package, Taped Clear Cover Glass, no coatings, Standard Grade Monochrome, No Microlens, PGA Package, Taped Clear Cover		KAI-08051-AAA
KAI-08051-AAA-JP-AE	Monochrome, No Microlens, PGA Package, Taped Clear Cover Glass, no coatings, Engineering Grade	Serial Number
KAI-08051-AXA-JD-BA	Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Standard Grade	KAI-08051-AXA
KAI-08051-AXA-JD-AE	Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Engineering Grade	Serial Number
KAI-08051-AXA-JP-BA	Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass, no coatings, Standard Grade	KAI-08051-AXA
KAI-08051-AXA-JP-AE	Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass, no coatings, Engineering Grade	Serial Number
KAI-08051-FXA-JD-BA	Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Standard Grade	KAI-08051-FXA
KAI-08051-FXA-JD-AE	Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Engineering Grade	Serial Number
KAI-08051-FXA-JB-B2	Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover Glass, no coatings, Grade 2	KAI-08051-FXA
KAI-08051-FXA-JB-AE	Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover Glass, no coatings, Engineering Grade	Serial Number
KAI-08051-QXA-JD-BA	Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Standard Grade	KAI-08051-QXA
KAI-08051-QXA-JD-AE	Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Engineering Grade	Serial Number
KAI-08051-ABA-JD-BA *	Monochrome, Telecentric Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Standard Grade	KAI-08051-ABA
KAI-08051-ABA-JD-AE *	Monochrome, Telecentric Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Engineering Grade	Serial Number
KAI-08051-ABA-JP-BA *	Monochrome, Telecentric Microlens, PGA Package, Taped Clear Cover Glass, no coatings, Standard Grade	KAI-08051-ABA
KAI-08051-ABA-JP-AE *	Monochrome, Telecentric Microlens, PGA Package, Taped Clear Cover Glass, no coatings, Engineering Grade	Serial Number
KAI-08051-FBA-JD-BA *	Gen2 Color (Bayer RGB), Telecentric Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Standard Grade	KAI-08051-FBA
KAI-08051-FBA-JD-AE *	Gen2 Color (Bayer RGB), Telecentric Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Engineering Grade	Serial Number
KAI-08051-FBA-JB-B2 *	Gen2 Color (Bayer RGB), Telecentric Microlens, PGA Package, Sealed Clear Cover Glass, no coatings, Grade 2	KAI-08051-FBA
KAI-08051-FBA-JB-AE *	Gen2 Color (Bayer RGB), Telecentric Microlens, PGA Package, Sealed Clear Cover Glass, no coatings, Engineering Grade	Serial Number
KAI-08051-QBA-JD-BA *	Gen2 Color (Sparse CFA), Telecentric Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Standard Grade	KAI-08051-FBA
KAI-08051-QBA-JD-AE *	Gen2 Color (Sparse CFA), Telecentric Microlens, PGA Package, Sealed Clear Cover Glass with AR coatings (both sides), Engineering Grade	Serial Number

^{*}Not recommended for new designs.

See the ON Semiconductor *Device Nomenclature* document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.onsemi.com.

DEVICE DESCRIPTION

Architecture

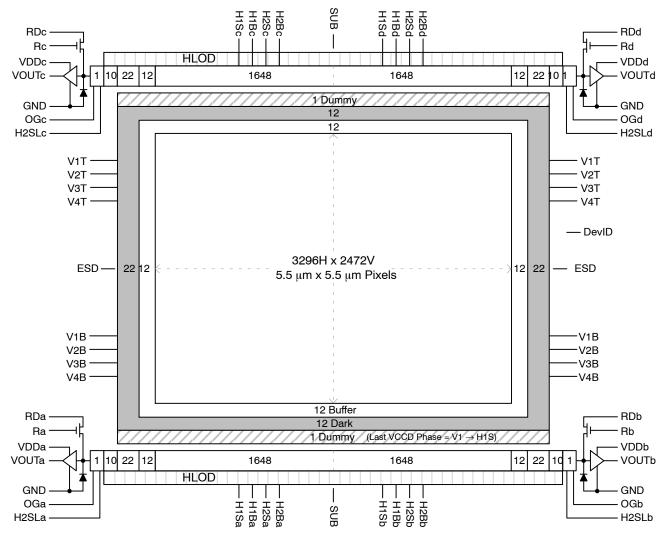


Figure 2. Block Diagram (Monochrome - No Filter Pattern)

Dark Reference Pixels

There are 12 dark reference rows at the top and 12 dark rows at the bottom of the image sensor. The dark rows are not entirely dark and so should not be used for a dark reference level. Use the 22 dark columns on the left or right side of the image sensor as a dark reference.

Under normal circumstances use only the center 20 columns of the 22 column dark reference due to potential light leakage.

Dummy Pixels

Within each horizontal shift register there are 11 leading additional shift phases. These pixels are designated as dummy pixels and should not be used to determine a dark reference level.

In addition, there is one dummy row of pixels at the top and bottom of the image.

Active Buffer Pixels

12 unshielded pixels adjacent to any leading or trailing dark reference regions are classified as active buffer pixels. Eight of the active buffer pixels that are adjacent to the dark reference region have a lower response than the rest of the 4 active buffer pixels that are directly adjacent to the active pixels. These pixels are light sensitive but are not tested for defects and non–uniformities.

Image Acquisition

An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-hole pairs within the individual silicon photodiodes. These photoelectrons are collected locally by the formation of potential wells at each photosite. Below photodiode saturation, the number of photoelectrons collected at each pixel is linearly dependent upon light level

and exposure time and non-linearly dependent on wavelength. When the photodiodes charge capacity is reached, excess electrons are discharged into the substrate to prevent blooming.

ESD Protection

Adherence to the power-up and power-down sequence is critical. Failure to follow the proper power-up and power-down sequences may cause damage to the sensor. See Power-Up and Power-Down Sequence section.

Bayer Color Filter Pattern

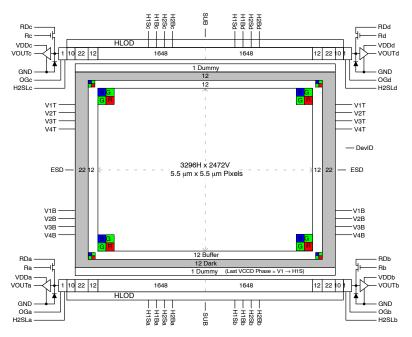


Figure 3. Bayer Color Filter Pattern

TRUESENSE Sparse Color Filter Pattern

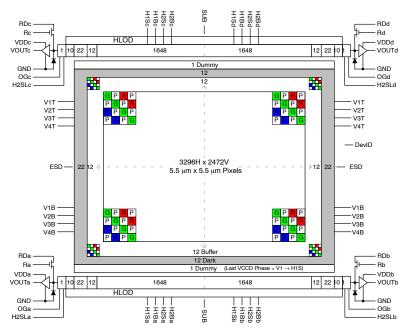


Figure 4. TRUESENSE Sparse Color Filter Pattern

PHYSICAL DESCRIPTION

Pin Description and Device Orientation

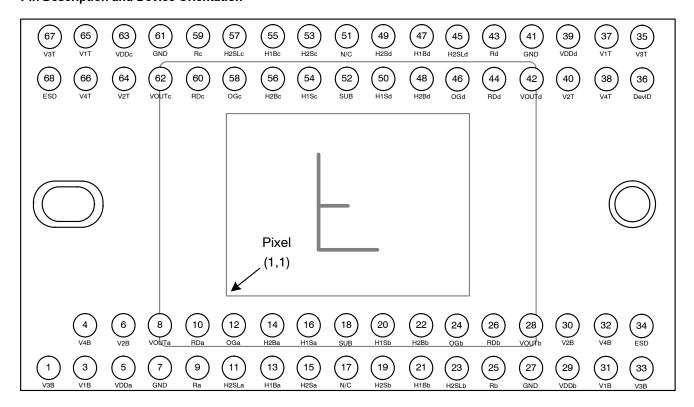


Figure 5. Package Pin Designations - Top View

Table 3. PIN DESCRIPTION

Pin	Name	Description
1	V3B	Vertical CCD Clock, Phase 3, Bottom
'	VSB	Vertical GGD Glock, Fliase 3, Bottom
3	V1B	Vertical CCD Clock, Phase 1, Bottom
4	V4B	Vertical CCD Clock, Phase 4, Bottom
5	VDDa	Output Amplifier Supply, Quadrant a
6	V2B	Vertical CCD Clock, Phase 2, Bottom
7	GND	Ground
8	VOUTa	Video Output, Quadrant a
9	Ra	Reset Gate, Quadrant a
10	RDa	Reset Drain, Quadrant a
11	H2SLa	Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant a
12	OGa	Output Gate, Quadrant a
13	H1Ba	Horizontal CCD Clock, Phase 1, Barrier, Quadrant a
14	H2Ba	Horizontal CCD Clock, Phase 2, Barrier, Quadrant a
15	H2Sa	Horizontal CCD Clock, Phase 2, Storage, Quadrant a
16	H1Sa	Horizontal CCD Clock, Phase 1, Storage, Quadrant a
17	N/C	No Connect
18	SUB	Substrate
19	H2Sb	Horizontal CCD Clock, Phase 2, Storage, Quadrant b
20	H1Sb	Horizontal CCD Clock, Phase 1, Storage, Quadrant b
21	H1Bb	Horizontal CCD Clock, Phase 1, Barrier, Quadrant b
22	H2Bb	Horizontal CCD Clock, Phase 2, Barrier, Quadrant b
23	H2SLb	Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant b
24	OGb	Output Gate, Quadrant b
25	Rb	Reset Gate, Quadrant b
26	RDb	Reset Drain, Quadrant b
27	GND	Ground
28	VOUTb	Video Output, Quadrant b
29	VDDb	Output Amplifier Supply, Quadrant b
30	V2B	Vertical CCD Clock, Phase 2, Bottom
31	V1B	Vertical CCD Clock, Phase 1, Bottom
32	V4B	Vertical CCD Clock, Phase 4, Bottom
33	V3B	Vertical CCD Clock, Phase 3, Bottom
34	ESD	ESD Protection Disable

Pin	Name	Description
68	ESD	ESD Protection Disable
67	V3T	Vertical CCD Clock, Phase 3, Top
66	V4T	Vertical CCD Clock, Phase 4, Top
65	V1T	Vertical CCD Clock, Phase 1, Top
64	V2T	Vertical CCD Clock, Phase 2, Top
63	VDDc	Output Amplifier Supply, Quadrant c
62	VOUTc	Video Output, Quadrant c
61	GND	Ground
60	RDc	Reset Drain, Quadrant c
59	Rc	Reset Gate, Quadrant c
58	OGc	Output Gate, Quadrant c
57	H2SLc	Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant c
56	H2Bc	Horizontal CCD Clock, Phase 2, Barrier, Quadrant c
55	H1Bc	Horizontal CCD Clock, Phase 1, Barrier, Quadrant c
54	H1Sc	Horizontal CCD Clock, Phase 1, Storage, Quadrant c
53	H2Sc	Horizontal CCD Clock, Phase 2, Storage, Quadrant c
52	SUB	Substrate
51	N/C	No Connect
50	H1Sd	Horizontal CCD Clock, Phase 1, Storage, Quadrant d
49	H2Sd	Horizontal CCD Clock, Phase 2, Storage, Quadrant d
48	H2Bd	Horizontal CCD Clock, Phase 2, Barrier, Quadrant d
47	H1Bd	Horizontal CCD Clock, Phase 1, Barrier, Quadrant d
46	OGd	Output Gate, Quadrant d
45	H2SLd	Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant d
44	RDd	Reset Drain, Quadrant d
43	Rd	Reset Gate, Quadrant d
42	VOUTd	Video Output, Quadrant d
41	GND	Ground
40	V2T	Vertical CCD Clock, Phase 2, Top
39	VDDd	Output Amplifier Supply, Quadrant d
38	V4T	Vertical CCD Clock, Phase 4, Top
37	V1T	Vertical CCD Clock, Phase 1, Top
36	DevID	Device Identification
35	V3T	Vertical CCD Clock, Phase 3, Top
1. Like	d named pin	s are internally connected and should have a

- Liked named pins are internally connected and should have a common drive signal.
 N/C pins (17, 51) should be left floating.

IMAGING PERFORMANCE

Table 4. TYPICAL OPERATION CONDITIONS

Unless otherwise noted, the Imaging Performance Specifications are measured using the following conditions.

Description	Condition	Notes
Light Source	Continuous red, green and blue LED illumination	For monochrome sensor, only green LED used.
Operation	Nominal operating voltages and timing	

Table 5. SPECIFICATIONS All Configurations

Description	Symbol	Min.	Nom.	Max.	Units	Sampling Plan	Temperature Tested At (°C)	Notes
Dark Field Global Non-Uniformity	DSNU	-	-	2.0	mVpp	Die	27, 40	
Bright Field Global Non-Uniformity		-	2.0	5.0	%rms	Die	27, 40	1
Maximum Gain Difference Between Outputs	ΔG	-	10	-	%	Design		2
Maximum Signal Error due to Nonlinearity Differences	ΔNL	-	1	-	%	Design		2
Horizontal CCD Charge Capacity	HNe	-	55	-	ke-	Design		
Vertical CCD Charge Capacity	VNe	-	40	-	ke-	Design		
Photodiode Charge Capacity	PNe	-	20	-	ke-	Die	27, 40	3
Horizontal CCD Charge Transfer Efficiency	HCTE	0.999995	0.999999	-		Die		
Vertical CCD Charge Transfer Efficiency	VCTE	0.999995	0.999999	-		Die		
Photodiode Dark Current	lpd	-	1	70	e/p/s	Die	40	
Vertical CCD Dark Current	lvd	-	100	300	e/p/s	Die	40	
Image Lag	Lag	-	-	10	e ⁻	Design		
Antiblooming Factor	Xab	300	-	-		Design		
Vertical Smear	Smr	-	-100	-	dB	Design		
Read Noise	n _{e-T}	-	10	-	e ⁻ rms	Design		4
Dynamic Range	DR	-	66	-	dB	Design		4, 5
Output Amplifier DC Offset	V _{odc}	-	8.9	-	V	Die	27, 40	
Output Amplifier Bandwidth	f_3db	-	250	_	MHz	Die		6
Output Amplifier Impedance	R _{OUT}	-	127	-	Ω	Die	27, 40	
Output Amplifier Sensitivity	ΔV/ΔΝ	_	39	_	μV/e-	Design		
Bright Field Global Non-Uniformity (-FXA, -QXA)		-	2.2	5	%rms	Die	27, 40	1
Bright Field Global Peak to Peak Non-Uniformity (-FXA, -QXA)	PRNU	_	9.5	20	%рр	Die	27, 40	1

- 1. Per color
- 2. Value is over the range of 10% to 90% of photodiode saturation.
- 3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such that the photodiode charge capacity is 780 mV.
- 4. At 40 MHz
- 5. Uses 20LOG (PNe/ n_{e-T})
- 6. Assumes 5 pF load.
- 7. Monochrome or PAN pixels

Table 5. SPECIFICATIONS All Configurations

Description	Symbol	Min.	Nom.	Max.	Units	Sampling Plan	Temperature Tested At (°C)	Notes
Bright Field Center Non-Uniformity (-FXA, -QXA)		-	1.3	2.5	%	Die	27, 40	1
Bright Field Global Non–Uniformity (–AXA, –QXA)		-	1.5	2	%rms	Die	27, 40	7
Bright Field Global Peak to Peak Non-Uniformity (-AXA, -QXA)	PRNU	-	5	12	%рр	Die	27, 40	7
Bright Field Center Non-Uniformity (-AXA, -QXA)		-	0.9	1.5	%	Die	27, 40	7
Bright Field Global Non-Uniformity (-FBA, -QBA)		-	2	5	%rms	Die	27, 40	1
Bright Field Global Peak to Peak Non-Uniformity (-FBA, -QBA)	PRNU	-	5	15	%рр	Die	27, 40	1
Bright Field Center Non-Uniformity (-FBA, -QBA)		-	1	2	%	Die	27, 40	1
Bright Field Global Non–Uniformity (–ABA, –QBA)		-	2	5	%rms	Die	27, 40	7
Bright Field Global Peak to Peak Non-Uniformity (-ABA, -QBA)	PRNU	-	5	15	%рр	Die	27, 40	7
Bright Field Center Non-Uniformity (-ABA, -QBA)		-	1	2	%	Die	27, 40	7

- 1. Per color
- 2. Value is over the range of 10% to 90% of photodiode saturation.
- 3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such that the photodiode charge capacity is 780 mV.
- 4. At 40 MHz
- 5. Uses 20LOG (PNe/ n_{e-T})
- 6. Assumes 5 pF load.
- 7. Monochrome or PAN pixels

Table 6. MONO (OR PAN) PIXEL QUANTUM EFFICIENCY FOR KAI-08051-AXA, KAI-08051-ABA $^{(1)}$, KAI-08051-QBA, AND KAI-08051-PBA $^{(1)}$ CONFIGURATIONS WITH AR GLASS

Description		Symbol	Min.	Nom.	Max.	Units	Sampling Plan	Temperature Tested At (°C)	Notes
Peak Quantum Efficiency	Mono or Pan	QE _{max}	-	51	-	%	Design	30	
Peak Quantum Efficiency	Mono or Pan	λQE	-	460	-	nm	Design	30	

^{1.} Configuration KAI-08051-ABA and KAI-08051-PBA are not recommended for new designs.

Table 7. QUANTUM EFFICIENCY FOR KAI-08051-FXA, KAI-08051-FBA $^{(1)}$, KAI-08051-QXA AND KAI-08051-QBA $^{(1)}$ CONFIGURATIONS WITH AR GLASS

Description		Symbol	Min.	Nom.	Max.	Units	Sampling Plan	Temperature Tested At (°C)	Notes
Peak Quantum Efficiency	Blue Green Red	QE _{max}	-	42 41 34	-	%	Design	30	
Peak Quantum Efficiency	Blue Green Red	λQE	-	460 540 600	-	nm	Design	30	

^{1.} Configuration KAI-08051-FBA and KAI-08051-QBA are not recommended for new designs.

Table 8. QUANTUM EFFICIENCY FOR KAI-08051-FXA, KAI-08051-FBA $^{(1)}$, KAI-08051-QXA AND KAI-08051-QBA $^{(1)}$ CONFIGURATIONS WITH CLEAR GLASS

Description		Symbol	Min.	Nom.	Max.	Units	Sampling Plan	Temperature Tested At (°C)	Notes
Peak Quantum Efficiency	Blue Green Red	QE _{max}	-	38 38 31	-	%	Design	30	
Peak Quantum Efficiency Wavelength	Blue Green Red	λQE	-	460 540 600	-	nm	Design	30	

^{1.} Configuration KAI-08051-FBA and KAI-08051-QBA are not recommended for new designs.

TYPICAL PERFORMANCE CURVES

Quantum Efficiency

Monochrome with Microlens

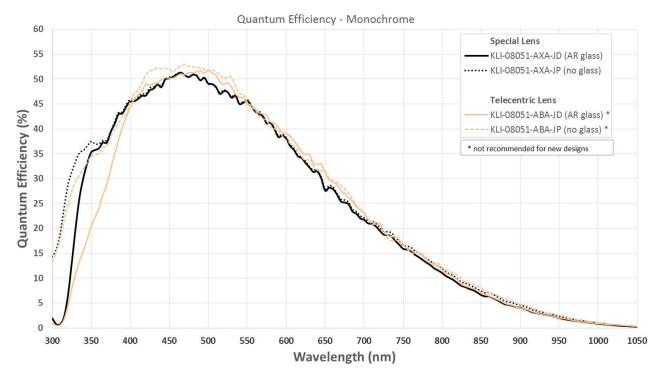


Figure 6. Quantum Efficiency: Monochrome with Microlens. Configuration with AR Glass and with No Glass.

Monochrome without Microlens

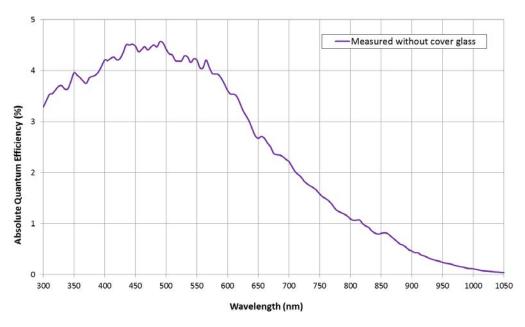


Figure 7. Monochrome without Microlens (No Cover Glass) Quantum Efficiency

KAI-08051 Color (Bayer RGB) with Microlens MAR Glass (compared to KAI-08050)

Figure 8. Quantum Efficiency: Color Bayer with Microlens and AR Glass Configuration. KAI-08051 compared to KAI-08050.

KAI-08051 Color (Bayer RGB) with Microlens (compared MAR vs. Clear Glass)

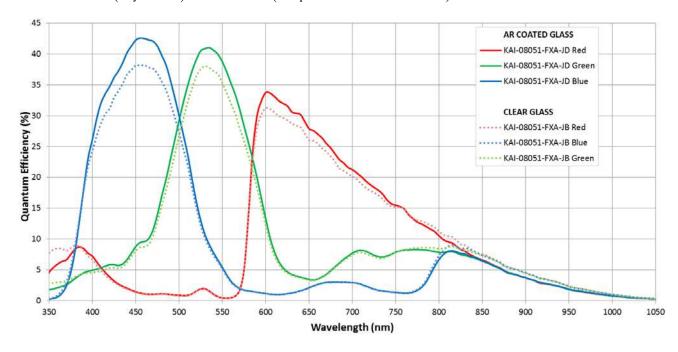


Figure 9. Quantum Efficiency: KAI-08051 Color Bayer with Microlens (AR vs. Clear Glass Configuration)

KAI-08051 Color (TRUESENSE Sparse CFA) with Microlens (MAR Glass)

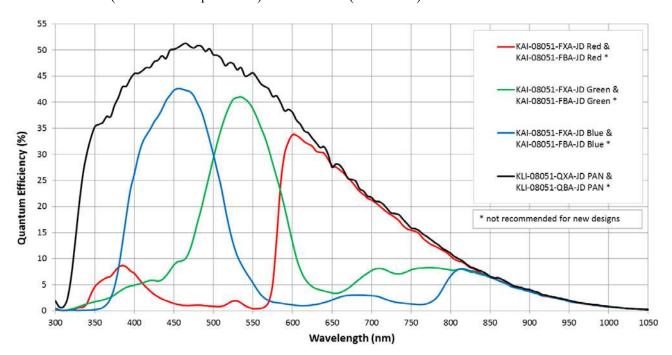


Figure 10. KAI-08051 Color (TRUESENSE Sparse CFA) with Microlens (MAR Glass) Quantum Efficiency

Angular Quantum Efficiency

For the curves marked "Horizontal", the incident light angle is varied in a plane parallel to the HCCD.

For the curves marked "Vertical", the incident light angle is varied in a plane parallel to the VCCD.

Monochrome with Microlens

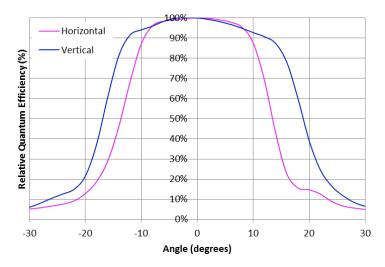


Figure 11. KAI-08051-ABA Monochrome with Microlens Angular Quantum Efficiency (not recommended for new designs)

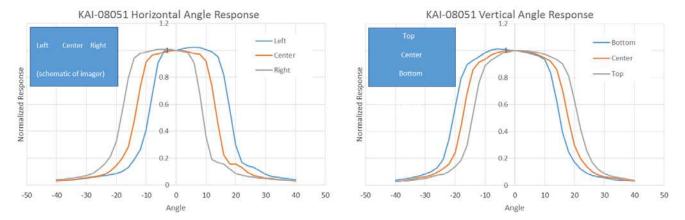


Figure 12. KAI-08051-AXA Monochrome with Special Microlens - Angular Quantum Efficiency

Dark Current versus Temperature

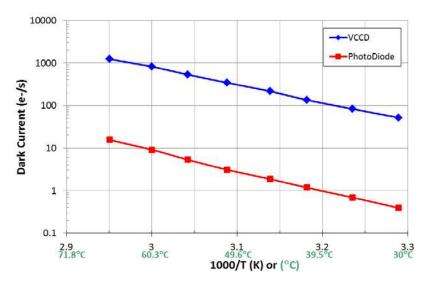


Figure 13. Dark Current versus Temperature

Power - Estimated

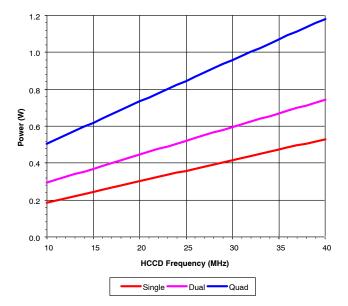


Figure 14. Power

Frame Rates

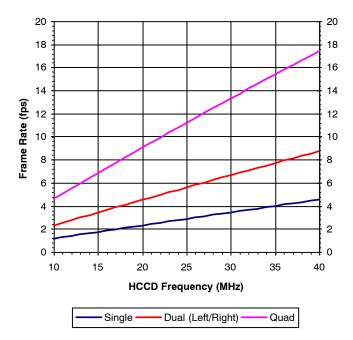


Figure 15. Frame Rates

DEFECT DEFINITIONS

Table 9. OPERATION CONDITIONS FOR DEFECT TESTING AT 40°C

Description	Condition	Notes
Operational Mode	Two outputs, using VOUTa and VOUTc, continuous readout	
HCCD Clock Frequency	10 MHz	
Pixels Per Line	3520	1
Lines Per Frame	1360	2
Line Time	354.9 μsec	
Frame Time	482.7 msec	
Photodiode Integration Time	Mode A: PD_Tint = Frame Time = 482.7 msec, no electronic shutter used	
	Mode B: PD_Tint = 33 msec, electronic shutter used	
VCCD Integration Time	447.2 msec	3
Temperature	40°C	
Light Source	Continuous red, green and blue LED illumination	4
Operation	Nominal operating voltages and timing	

- Horizontal overclocking used.
 Vertical overclocking used.
- VCCD Integration Time = 1260 lines x Line Time, which is the total time a pixel will spend in the VCCD registers.
 For monochrome sensor, only the green LED is used.

Table 10. DEFECT DEFINITIONS FOR TESTING AT 40°C

Description	Definition	Standard Grade	Grade 2	Notes
Major dark field defective bright pixel	PD_Tint = Mode A → Defect ≥ 191 mV	80	80	1
	or			
	PD_Tint = Mode B → Defect ≥ 13.8 mV			
Major bright field defective dark pixel	Defect ≥ 12%			
Minor dark field defective bright pixel	PD_Tint = Mode A → Defect ≥ 99 mV	800	800	
	or			
	PD_Tint = Mode B → Defect ≥ 7 mV			
Cluster defect	A group of 2 to 10 contiguous major defective pixels, but no more than 3 adjacent defects horizontally.	15	n/a	2
Cluster defect (grade 2)	A group of 2 to 10 contiguous major defective pixels	n/a	15	2
Column defect	A group of more than 10 contiguous major defective pixels along a single column	0	0	2

^{1.} For the color device (KAI-08051-FBA), a bright field defective pixel deviates by 12% with respect to pixels of the same color.

^{2.} Column and cluster defects are separated by no less than two (2) good pixels in any direction (excluding single pixel defects).

Table 11. OPERATION CONDITIONS FOR DEFECT TESTING AT 27°C

Description	Condition	Notes
Operational Mode	Two outputs, using VOUTa and VOUTc, continuous readout	
HCCD Clock Frequency	20 MHz	
Pixels Per Line	3520	1
Lines Per Frame	1360	2
Line Time	177.8 μsec	
Frame Time	241.8 msec	
Photodiode Integration Time	Mode A: PD_Tint = Frame Time = 241.8 msec, no electronic shutter used	
(PD_Tint)	Mode B: PD_Tint = 33 msec, electronic shutter used	
VCCD Integration Time	224.0 msec	3
Temperature	27°C	
Light Source	Continuous red, green and blue LED illumination	4
Operation	Nominal operating voltages and timing	

- 1. Horizontal overclocking used.
- 2. Vertical overclocking used.
- 3. VCCD Integration Time = 1260 lines x Line Time, which is the total time a pixel will spend in the VCCD registers.
- 4. For monochrome sensor, only the green LED is used.

Table 12. DEFECT DEFINITIONS FOR TESTING AT 27°C

Description	Definition	Standard Grade	Grade 2	Notes	
Major dark field defective bright pixel	PD_Tint = Mode A → Defect ≥ 30 mV or PD_Tint = Mode B → Defect ≥ 4.6 mV	80	80	1	
Major bright field defective dark pixel	Defect ≥ 12%				
Cluster defect	A group of 2 to 10 contiguous major defective pixels, but no more than 3 adjacent defects horizontally.	15	n/a	2	
Cluster defect (grade 2)	A group of 2 to 10 contiguous major defective pixels	n/a	15	2	
Column defect	A group of more than 10 contiguous major defective pixels along a single column	0	0	2	

^{1.} For the color device (KAI-08051-FBA), a bright field defective pixel deviates by 12% with respect to pixels of the same color.

Defect Map

The defect map supplied with each sensor is based upon testing at an ambient (27°C) temperature. Minor point

defects are not included in the defect map. All defective pixels are reference to pixel 1, 1 in the defect maps. See Figure 16: Regions of interest for the location of pixel 1,1.

^{2.} Column and cluster defects are separated by no less than two (2) good pixels in any direction (excluding single pixel defects).

TEST DEFINITIONS

Test Regions of Interest

Image Area ROI: Pixel (1, 1) to Pixel (3320, 2496)
Active Area ROI: Pixel (13, 13) to Pixel (3308, 2484)
Center ROI: Pixel (1611, 1199) to Pixel (1710, 1298)
Only the Active Area ROI pixels are used for performance and defect tests.

Overclocking

The test system timing is configured such that the sensor is overclocked in both the vertical and horizontal directions.

See Figure 16 for a pictorial representation of the regions of interest.

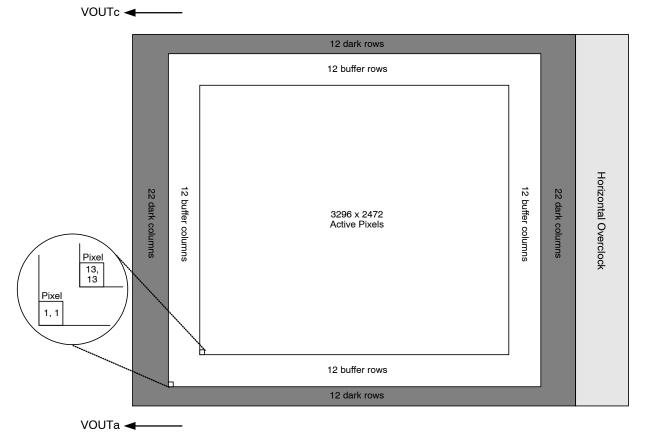


Figure 16. Regions of Interest

Tests

Dark Field Global Non-Uniformity

This test is performed under dark field conditions. The sensor is partitioned into 768 sub regions of interest, each of which is 103 by 103 pixels in size. The average signal level of each of the 768 sub regions of interest is calculated. The signal level of each of the sub regions of interest is calculated using the following formula:

Signal of ROI[i] = (ROI Average in counts – Horizontal overclock average in counts) * mV per count

Where i = 1 to 768. During this calculation on the 768 sub regions of interest, the maximum and minimum signal levels

GlobalNon–Uniformity = $100 \times \left(\frac{\text{ActiveAreaStandardDeviation}}{\text{ActiveAreaSignal}}\right)$

Units: %rms.

Active Area Signal = Active Area Average - Dark Column Average

Global Peak to Peak Non-Uniformity

This test is performed with the imager illuminated to a level such that the output is at 70% of saturation (approximately 546 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 780 mV. The sensor is partitioned into 768 sub regions of interest, each of which is 103 by 103

 $Global Uniformity = 100 \times \frac{Maximum Signal - Minimum Signal}{Active Area Signal}$

Center Non-Uniformity This test is performed with the imager illuminated to a level such that the output is at 70% of saturation (approximately 560 mV). Prior to this test being performed

Units: %rms.

Units: %pp

Center ROI Signal = Center ROI Average - Dark Column Average

Dark Field Defect Test

This test is performed under dark field conditions. The sensor is partitioned into 768 sub regions of interest, each of which is 103 by 103 pixels in size. In each region of interest, the median value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the defect threshold specified in the "Defect Definitions" section.

Bright Field Defect Test

This test is performed with the imager illuminated to a level such that the output is at approximately 546 mV. Prior are found. The dark field global uniformity is then calculated as the maximum signal found minus the minimum signal level found.

Units: mVpp (millivolts peak to peak)

Global Non-Uniformity

This test is performed with the imager illuminated to a level such that the output is at 70% of saturation (approximately 546 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 780 mV. Global non-uniformity is defined as

pixels in size. The average signal level of each of the 768 sub regions of interest (ROI) is calculated. The signal level of each of the sub regions of interest is calculated using the following formula:

Signal of ROI[i] = (ROI Average in counts – Horizontal overclock average in counts) * mV per count

Where i = 1 to 768. During this calculation on the 768 sub regions of interest, the maximum and minimum signal levels are found. The global peak to peak uniformity is then calculated as:

the substrate voltage has been set such that the charge capacity of the sensor is 780 mV. Defects are excluded for the calculation of this test. This test is performed on the center 100 by 100 pixels of the sensor. Center uniformity is defined as:

Center ROI Uniformity = $100 \times \left(\frac{\text{Center ROI Standard Deviation}}{\text{Center ROI Signal}} \right)$

to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 780 mV. The average signal level of all active pixels is found. The bright and dark thresholds are set as:

Dark defect threshold = Active Area Signal * threshold Bright defect threshold = Active Area Signal * threshold

The sensor is then partitioned into 768 sub regions of interest, each of which is 103 by 103 pixels in size. In each region of interest, the average value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the bright threshold specified or if it is less than or equal to the median value of that region of interest minus the dark threshold specified.

Example for major bright field defective pixels:

- Average value of all active pixels is found to be 546 mV
- Dark defect threshold: 546 mV * 12 % = 66 mV
- Bright defect threshold: 546 mV * 12 % = 66 mV
- Region of interest #1 selected. This region of interest is pixels 13, 13 to pixels 115, 115.
 - Median of this region of interest is found to be 546 mV.

- Any pixel in this region of interest that is ≥ (546 + 66 mV) 612 mV in intensity will be marked defective.
- Any pixel in this region of interest that is ≤ (546 – 66 mV) 480 mV in intensity will be marked defective.
- All remaining 768 sub regions of interest are analyzed for defective pixels in the same manner.

OPERATION

Table 13. ABSOLUTE MAXIMUM RATINGS

Description	Symbol	Minimum	Maximum	Units	Notes
Operating Temperature	T _{OP}	-50	+70	°C	1
Humidity	RH	+5	+90	%	2
Output Bias Current	l _{out}		60	mA	3
Off-chip Load	CL		10	pF	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Noise performance will degrade at higher temperatures.
- T = 25°C. Excessive humidity will degrade MTTF.
- 3. Total for all outputs. Maximum current is -15 mA for each output. Avoid shorting output pins to ground or any low impedance source during operation. Amplifier bandwidth increases at higher current and lower load capacitance at the expense of reduced gain (sensitivity).

Table 14. ABSOLUTE MAXIMUM VOLTAGE RATINGS BETWEEN PINS AND GROUND

Description	Minimum	Maximum	Units	Notes
VDDα, VOUΤα	-0.4	15.5	V	1
RDα	-0.4	15.5	V	1
V1B, V1T	ESD - 0.4	ESD + 24.0	V	
V2B, V2T, V3B, V3T, V4B, V4T	ESD - 0.4	ESD + 14.0	V	
H1Sα, H1Bα, H2Sα, H2Bα, H2SLα, Rα, OGα	ESD - 0.4	ESD + 14.0	V	1
ESD	-10.0	0.0	V	
SUB	-0.4	40.0	V	2

^{1.} α denotes a, b, c or d

Power-Up and Power-Down Sequence

Adherence to the power-up and power-down sequence is critical. Failure to follow the proper power-up and power-down sequences may cause damage to the sensor.

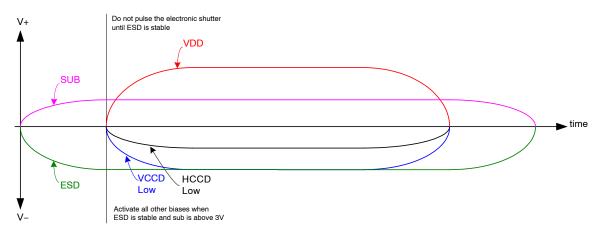


Figure 17. Power-Up and Power-Down Sequence

Notes:

- 1. Activate all other biases when ESD is stable and SUB is above 3 V
- 2. Do not pulse the electronic shutter until ESD is stable
- 3. VDD cannot be +15 V when SUB is 0 V
- 4. The image sensor can be protected from an accidental improper ESD voltage by current

limiting the SUB current to less than 10 mA. SUB and VDD must always be greater than GND. ESD must always be less than GND. Placing diodes between SUB, VDD, ESD and ground will protect the sensor from accidental overshoots of SUB, VDD and ESD during power on and power off. See the figure below.

^{2.} Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.

The VCCD clock waveform must not have a negative overshoot more than 0.4 V below the ESD voltage.

> 0.0V ESD - 0.4V All VCCD Clocks absolute maximum overshoot of 0.4 V

Figure 18.

Example of external diode protection for SUB, VDD and ESD. α denotes a, b, c or d

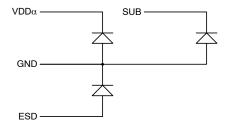


Figure 19.

Table 15. DC BIAS OPERATING CONDITIONS

Description	Pins	Symbol	Minimum	Nominal	Maximum	Units	Maximum DC Current	Notes
Reset Drain	RDα	RD	+11.8	+12.0	+12.2	V	10 μΑ	1
Output Gate	OGα	OG	-2.2	-2.0	-1.8	V	10 μΑ	1
Output Amplifier Supply	VDDα	VDD	+14.5	+15.0	+15.5	V	11.0 mA	1,2
Ground	GND	GND	0.0	0.0	0.0	V	–1.0 mA	
Substrate	SUB	VSUB	+5.0	VAB	VDD	V	50 μΑ	3, 8
ESD Protection Disable	ESD	ESD	-9.2	-9.0	Vx_L	V	50 μΑ	6, 7, 9
Output Bias Current	VOUTα	lout	-3.0	-7.0	-10.0	mA		1, 4, 5

- 1. α denotes a, b, c or d
- The maximum DC current is for one output. Idd = lout + Iss. See Figure 20.
 The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such that the photodiode charge capacity is the nominal PNe (see Specifications).

 4. An output load sink must be applied to each VOUT pin to activate each output amplifier.
- 5. Nominal value required for 40 MHz operation per output. May be reduced for slower data rates and lower noise.
- Adherence to the power-up and power-down sequence is critical. See Power-Up and Power-Down Sequence section.
- 7. ESD maximum value must be less than or equal to V1 L + 0.4 V and V2 L + 0.4 V
- 8. Refer to Application Note *Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions*9. Where Vx_L is the level set for V1_L, V2_L, V3_L, or V4_L in the application.

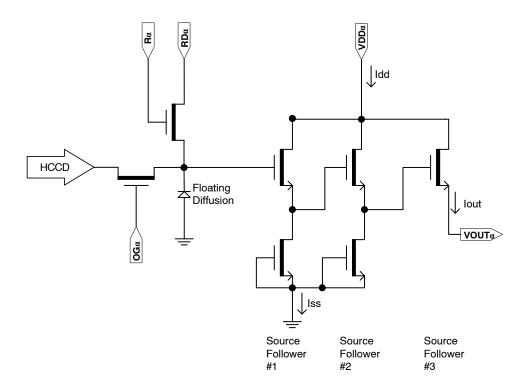


Figure 20. Output Amplifier

AC Operating Conditions

Table 16. CLOCK LEVELS

Description	Pins ¹	Symbol	Level	Minimum	Nominal	Maximum	Units	Capacitance ²
Vertical CCD Clock,	V1B, V1T	V1_L	Low	-8.2	-8.0	-7.8	V	43 nF (6)
Phase 1		V1_M	Mid	-0.2	0.0	+0.2		
		V1_H	High	+11.5	+12.0	+12.5		
Vertical CCD Clock,	V2B, V2T	V2_L	Low	-8.2	-8.0	-7.8	V	43 nF (6)
Phase 2		V2_H	High	-0.2	0.0	+0.2		
Vertical CCD Clock,	V3B, V3T	V3_L	Low	-8.2	-8.0	-7.8	V	43 nF (6)
Phase 3		V3_H	High	-0.2	0.0	+0.2		
Vertical CCD Clock,	V4B, V4T	V4_L	Low	-8.2	-8.0	-7.8	V	43 nF (6)
Phase 4		V4_H	High	-0.2	0.0	+0.2		
Horizontal CCD Clock,	H1Sα	H1S_L	Low	-5.2 (7)	-4.0	-3.8	V	280 pF (6)
Phase 1 Storage		H1S_A	Amplitude	+3.8	+4.0	+5.2 (7)		
Horizontal CCD Clock,	Η1Βα	H1B_L	Low	-5.2 (7)	-4.0	-3.8	V	190 pF (6)
Phase 1 Barrier		H1B_A	Amplitude	+3.8	+4.0	+5.2 (7)		
Horizontal CCD Clock,	H2Sα	H2S_L	Low	-5.2 (7)	-4.0	-3.8	V	280 pF (6)
Phase 2 Storage		H2S_A	Amplitude	+3.8	+4.0	+5.2 (7)		
Horizontal CCD Clock,	Η2Βα	H2B_L	Low	-5.2 (7)	-4.0	-3.8	V	190 pF (6)
Phase 2 Barrier		H2B_A	Amplitude	+3.8	+4.0	+5.2 (7)		
Horizontal CCD Clock,	H2SLa	H2SL_L	Low	-5.2	-5.0	-4.8	V	20 pF (6)
Last Phase ³		H2SL_A	Amplitude	+4.8	+5.0	+5.2		
Reset Gate	Rα	R_L ⁴	Low	-3.5	-2.0	-1.5	V	16 pF (6)
		R_H	High	+2.5	+3.0	+4.0		
Electronic Shutter ⁵	SUB	VES	High	+29.0	+30.0	+40.0	V	3 nF (6)

- 1. α denotes a, b, c or d
- 2. Capacitance is total for all like named pins
- 3. Use separate clock driver for improved speed performance.
- 4. Reset low should be set to –3 volts for signal levels greater than 40,000 electrons.
 5. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions
- 6. Capacitance values are estimated
- 7. If the minimum horizontal clock low level is used (-5.2 V), then the maximum horizontal clock amplitude should be used (5.2 V amplitude) to create a -5.2 V to 0.0 V clock. If a 5 volt clock driver is used, the horizontal low level should be set to -5.0 V and the high level should be a set to 0.0 V.

The figure below shows the DC bias (VSUB) and AC clock (VES) applied to the SUB pin. Both the DC bias and AC clock are referenced to ground.

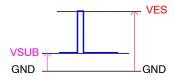


Figure 21.

Device Identification

The device identification pin (DevID) may be used to determine which ON Semiconductor 5.5 micron pixel interline CCD sensor is being used.

Table 17. DEVICE IDENTIFICATION

Description	Pins	Symbol	Minimum	Nominal	Maximum	Units	Maximum DC Current	Notes
Device Identification	DevID	DevID	8,000	10,000	12,000	Ω	TBD	1, 2, 3

- 1. Nominal value subject to verification and/or change during release of preliminary specifications.
- 2. If the Device Identification is not used, it may be left disconnected.
- 3. Values specified are for 40°C.

Recommended Circuit

Note that V1 must be a different value than V2.

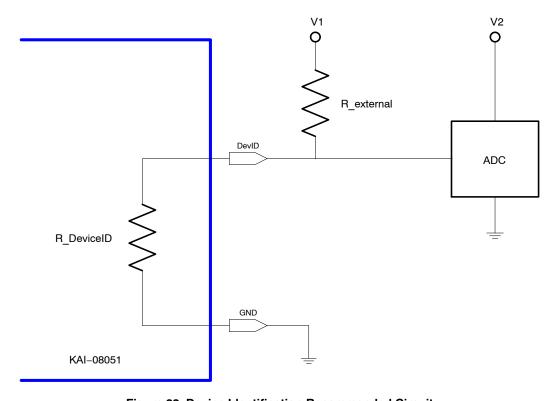


Figure 22. Device Identification Recommended Circuit