imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

KAI-1020

1000 (H) x 1000 (V) Interline CCD Image Sensor

Description

The KAI–1020 Image Sensor is a one megapixel interline CCD with integrated clock drivers and on-chip correlated double sampling. The progressive scan architecture and global electronic shutter provide excellent image quality for full motion video and still image capture.

The integrated clock drivers allow for easy integration with CMOS logic timing generators. The sensor features a fast line dump for high-speed sub-window readout and single (30 fps) or dual (48 fps) output operation.

Parameter	Typical Value
Architecture	Interline CCD, Progressive Scan
Total Number of Pixels	1028 (H) × 1008 (V)
Number of Effective Pixels	1004 (H) × 1004 (V)
Number of Active Pixels	1000 (H) × 1000 (V)
Number of Outputs	1 or 2
Pixel Size	7.4 μ m (H) $ imes$ 7.4 μ m (V)
Active Image Size	7.4 mm (H) \times 7.4 mm (V) 10.5 mm (Diagonal) 2/3" Optical Format
Aspect Ratio	1:1
Saturation Signal	40,000 e ⁻
Output Sensitivity	12 μV/e-
Quantum Efficiency ABA (500 nm) CBA (620 nm, 540 nm, 460 nm) FBA (600 nm, 540 nm, 460 nm)	44% 33%, 39%, 41% 39%, 42%, 44%
Dark Noise	50 e [–] rms
Dark Current (Typical)	< 0.5 nA/cm ²
Dynamic Range	58 dB
Blooming Suppression	100 X
Image Lag	< 10 e ⁻
Smear	< 0.03%
Maximum Data Rate	40 MHz/Channel (2 Channels)
Frame Rate Progressive Scan, One Output Progressive Scan, Dual Outputs Interlaced Scan, One Output	30 fps 48 fps 49 fps
Integrated Vertical Clock Driver	
Integrated Correlated Double Samplin	ng (CDS)
Integrated Electronic Shutter Driver	
Package	68 Pin PGA or 64 Pin CLCC
Cover Glass	AR Coated, 2 Sides

ON Semiconductor®

www.onsemi.com

Figure 1. KAI–1020 Interline CCD Image Sensor

Features

- 10-Bits Dynamic Range at 40 MHz
- Large 7.4 µm Square Pixels for High Sensitivity
- Progressive Scan (Non-Interlaced)
- Integrated Correlated Double Sampling (CDS) Up to 40 MHz
- Integrated Electronic Shutter Driver
- Reversible HCCD Capable of 40 MHz Operation All Timing Inputs 0 to 5 V
- Single or Dual Video Output Operation
- Progressive Scan or Interlaced
- Fast Dump Gate for High Speed Sub-Window Readout
- Anti-Blooming Protection

Applications

- Machine Vision
- Medical
- Scientific
- Surveillance

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

NOTE: All Parameters are specified at T = 40° C unless otherwise noted.

ORDERING INFORMATION

Table 2. ORDERING INFORMATION - KAI-1020 IMAGE SENSOR

Part Number	Description	Marking Code
KAI-1020-AAA-JP-BA	Monochrome, No Microlens, PGA Package, Taped Clear Cover Glass, No Coatings, Standard Grade	KAI–1020 Serial Number
KAI–1020–ABB–FD–AE	Monochrome, Telecentric Microlens, CLCC Package, Clear Cover Glass with AR Coating (Both Sides), Engineering Sample	
KAI-1020-ABB-FD-BA	Monochrome, Telecentric Microlens, CLCC Package, Clear Cover Glass with AR Coating (Both Sides), Standard Grade	
KAI-1020-ABB-JP-AE	Monochrome, Telecentric Microlens, PGA Package, Taped Clear Cover Glass (No Coatings), Engineering Sample	
KAI-1020-ABB-JP-BA	Monochrome, Telecentric Microlens, PGA Package, Taped Clear Cover Glass (No Coatings), Standard Grade	KAI–1020–ABB
KAI-1020-ABB-JB-AE	Monochrome, Telecentric Microlens, PGA Package, Clear Cover Glass (No Coatings), Engineering Sample	Serial Number
KAI-1020-ABB-JB-BA	Monochrome, Telecentric Microlens, PGA Package, Clear Cover Glass (No Coatings), Standard Grade	
KAI-1020-ABB-JD-AE	Monochrome, Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Engineering Sample	
KAI-1020-ABB-JD-BA	Monochrome, Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Standard Grade	
KAI-1020-FBA-FD-AE	Gen2 Color (Bayer RGB), Telecentric Microlens, CLCC Package, Clear Cover Glass with AR Coating (Both Sides), Engineering Sample	
KAI-1020-FBA-FD-BA	Gen2 Color (Bayer RGB), Telecentric Microlens, CLCC Package, Clear Cover Glass with AR Coating (Both Sides), Standard Grade	KAI–1020–FBA
KAI-1020-FBA-JD-AE	Gen2 Color (Bayer RGB), Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Engineering Sample	Serial Number
KAI-1020-FBA-JD-BA	Gen2 Color (Bayer RGB), Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Standard Grade	
KAI-1020-CBA-FD-AE*	Gen1 Color (Bayer RGB), Telecentric Microlens, CLCC Package, Clear Cover Glass with AR Coating (Both Sides), Engineering Sample	
KAI-1020-CBA-FD-BA*	Gen1 Color (Bayer RGB), Telecentric Microlens, CLCC Package, Clear Cover Glass with AR Coating (Both Sides), Standard Grade	KAI-1020CM
KAI-1020-CBA-JD-AE*	Gen1 Color (Bayer RGB), Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Engineering Sample	Serial Number
KAI-1020-CBA-JD-BA*	Gen1 Color (Bayer RGB), Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Standard Grade	

*Not recommended for new designs.

Table 3. ORDERING INFORMATION – EVALUATION SUPPORT

Part Number	Description
KAI-1020-12-40-A-EVK	Evaluation Board (Complete Kit)

See the ON Semiconductor *Device Nomenclature* document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at <u>www.onsemi.com</u>.

DEVICE DESCRIPTION

Architecture

There are 4 light shielded rows followed 1004 photoactive rows. The first 2 and the last 2 photoactive rows are buffer rows giving a total of 1000 lines of image data.

In the single output mode all pixels are clocked out of the Video 1 output in the lower left corner of the sensor. The first 8 empty pixels of each line do not receive charge from the vertical shift register. The next 12 pixels receive charge from the left light-shielded edge followed by 1004 photo-sensitive pixels and finally 12 more light shielded pixels from the right edge of the sensor. The first and last 2

photosensitive pixels are buffer pixels giving a total of 1000 pixels of image data.

In the dual output mode the clocking of the right half of the horizontal CCD is reversed. The left half of the image is clocked out Video 1 and the right half of the image is clocked out Video 2. Each row consists of 8 empty pixels followed by 12 light shielded pixels followed by 502 photosensitive pixels. When reconstructing the image, data from Video 2 will have to be reversed in a line buffer and appended to the Video 1 data.

Physical Description

Pin Description and Device Orientation

Pin Grid Array

When viewed from the top with the pin 1 index to the upper left, the center of the photoactive pixel array is offset 0.006" above the physical center of the package. The pin 1 index is located in the corner of the package above pins L2

and K1. When operated in single output mode the first pixel out of the sensor will be in the corner closest to VOUT1B (pin L9). The HCCD is parallel to the row of pins A10 to L10. In the pictures below, the VCCD transfers charge down.

Figure 4. PGA Package Pin Description (Top View)

Table 4. PIN DESCRIPTION

Pin	Label	Function
K2	V2IN	VCCD Gate Phase 2 Input
L2	VSUB	Substrate Voltage Input
К3	V2LOW	VCCD Phase 2 Clock Driver Low
L3	V2OUT	VCCD Phase 2 Clock Driver Output
K4	V2MID	VCCD Phase 2 Clock Driver Mid
L4	V2HIGH	VCCD Phase 2 Clock Driver High
K5	φV2A	VCCD Phase 2 Clock Driver Input A
L5	VSUB	Substrate Voltage Input
K6	V2S9	VCCD Phase 2 Clock Driver +9 V
L6	V2S5	VCCD Phase 2 Clock Driver +5 V Fast Dump Clock Driver +5 V
K7	φV2B	VCCD Phase 2 Clock Driver Input B
L7	φFD	Fast Dump Clock Driver Input

KAI-1020

Table 4. PIN DESCRIPTION (continued)

Pin	Label	Function
K8	VDD1	Video 1 CDS +15 V
L8	VOUT1A	Video 1 CDS Output A
K9	GND	Ground (0 V)
L9	VOUT1B	Video 1 CDS Output B
L10	VDD1	Video 1 CDS +15 V Supply
K11	φT1	Video 1 CDS Transfer Clock Input
J10	φR1	Video 1 CDS Reset Clock Input
J11	φS1A	Video 1 CDS Sample A Clock Input
H10	φS1B	Video 1 CDS Sample B Clock Input
H11	φH2BL	HCCD Left Phase 2 Barrier Clock Input
G10	φH1BL	HCCD Left Phase 1 Barrier Clock Input
G11	GND	Ground (0 V)
F10	φH2S	HCCD Storage Phase 2 Clock Input
F11	φH1S	HCCD Storage Phase 1 Clock Input
E10	GND	Ground (0 V)
E11	φH1BR	HCCD Right Phase 1 Barrier Clock Input
D10	φH2BR	HCCD Right Phase 2 Barrier Clock Input
D11	φS2B	Video 2 CDS Sample B Clock Input
C10	φS2A	Video 2 CDS Sample A Clock Input
C11	φR2	Video 2 CDS Reset Clock Input
B11	φT2	Video 2 CDS Transfer Clock Input
B10	VDD2	Video 2 CDS +15 V
A10	VOUT2B	Video 2 CDS Output B
B9	GND	Ground (0 V)
A9	VOUT2A	Video 2 CDS Output A
B8	VDD2	Video 2 CDS +15 V
A8	φV1	VCCD Phase 1 Clock Driver Input
B7	V1S5	VCCD Phase 1 Clock Driver +5 V
A7	V1MID	VCCD Phase 1 Clock Driver Mid
B6	V1OUT	VCCD Phase 1 Clock Driver Output
B5	V1LOW	VCCD Phase 1 Clock Driver Low
A5	SHD1C1	Shutter Driver Connection
B4	SHC2	Shutter Driver Connection
A4	SHC1	Shutter Driver Connection
B3	φSH	Shutter Driver Clock Input
A3	VSH15	Shutter Driver +15 V
A2	V1IN	VCCD Gate Phase 1 Input

1. All pins not listed must be unconnected.

Table 5. PIN DESCRIPTION

Pin	Label	Function
1	V2IN	VCCD Gate Phase 2 Input
2	VSUB	Substrate Voltage Input
3	V2LOW	VCCD Phase 2 Clock Driver Low
4	V2OUT	VCCD Phase 2 Clock Driver Output
5	V2MID	VCCD Phase 2 Clock Driver Mid
6	V2HIGH	VCCD Phase 2 Clock Driver High
7	V2A	VCCD Phase 2 Clock Driver Input A
8	N/C	No Connect
9	V2S9	VCCD Phase 2 Clock Driver +9 V
10	V2S5	VCCD Phase 2 Clock Driver +5 V Fast Dump Clock Driver +5 V
11	V2B	VCCD Phase 2 Clock Driver Input B
12	FD	Fast Dump Clock Driver Input

KAI-1020

Table 5. PIN DESCRIPTION (continued)

Pin	Label	Function
13	VDD	Video CDS +15 V
14	VOUT1A	Video 1 CDS Output A
15	GND	Ground (0 V)
16	VOUT1B	Video 1 CDS Output B
17	VDD	Video CDS +15 V
18	T1	Video 1 CDS Transfer Clock Input
19	R1	Video 1 CDS Reset Clock Input
20	S1A	Video 1 CDS Sample A Clock Input
21	S1B	Video 1 CDS Sample B Clock Input
22	H2BL	HCCD Left Phase 2 Barrier Clock Input
23	H1BL	HCCD Left Phase 1 Barrier Clock Input
24	GND	Ground (0 V)
25	H2S	HCCD Storage Phase 2 Clock Input
26	H1S	HCCD Storage Phase 1 Clock Input
27	GND	Ground (0 V)
28	H1BR	HCCD Right Phase 1 Barrier Clock Input
29	H2BR	HCCD Right Phase 2 Barrier Clock Input
30	S2B	Video 2 CDS Sample B Clock Input
31	S2A	Video 2 CDS Sample A Clock Input
32	R2	Video 2 CDS Reset Clock Input
33	T2	Video 2 CDS Transfer Clock Input
34	VDD	Video CDS +15 V
35	VOUT2B	Video 2 CDS Output B
36	GND	Ground (0 V)
37	VOUT2A	Video 2 CDS Output A
38	VDD	Video CDS +15 V
39	V1	VCCD Phase 1 Clock Driver Input
40	V1S5	VCCD Phase 1 Clock Driver +5 V
41	V1MID	VCCD Phase 1 Clock Driver Mid
42	V1OUT	VCCD Phase 1 Clock Driver Output
43	V1LOW	VCCD Phase 1 Clock Driver Low
44	SHD1C1	Shutter Driver Connection
45	SHC2	Shutter Driver Connection
46	SHC1	Shutter Driver Connection
47	SH	Shutter Driver Clock Input
48	VSH15	Shutter Driver +15 V
49	V1IN	VCCD Gate Phase 1 Input
50–64	N/C	No Connect

IMAGING PERFORMANCE

Table 6. SPECIFICATIONS

Description	Symbol	Min.	Nom.	Max.	Unit	Notes	Sampling Plan*
OPTICAL SPECIFICATION							
Peak Quantum Efficiency	QE _{MAX}	42	45	-	%	1	Design
Peak Quantum Efficiency Wavelength	λQE	-	490	_	nm	1	Design
Microlens Acceptance Angle (Horizontal)	ΘQE _H	±12	±13	-	Degrees	2	Design
Microlens Acceptance Angle (Vertical)	ΘQE _V	±25	±30	-	Degrees	2	Design
Quantum Efficiency at 540 nm	QE ₍₅₄₀₎	38	40	-	%	1	Design
Photoresponse Non-Uniformity	PNU	-	5	-	%		Design
Maximum Photoresponse Non-Linearity	NL	-	2	-	%	3, 4, 18	Die
Maximum Gain Difference Between Outputs	ΔG	_	10	-	%	3, 4, 18	Die
Maximum Signal Error caused by Non-Linearity Differences	ΔNL	-	1	-	%	3, 4, 18	Die
Dark Center Uniformity		-	-	12	e- rms	19, 20	Die
Dark Global Uniformity		-	-	2	mV pp	19, 20	Die
Global Uniformity		-	-	5	% rms	19, 20	Die
Global Peak to Peak Uniformity		-	-	15	% pp	19, 20	Die
Center Uniformity		-	-	0.7	% rms	19, 20	Die
CCD SPECIFICATIONS							
Vertical CCD Charge Capacity	V _{ne}	54	60	-	ke-		Design
Horizontal CCD Charge Capacity	H _{ne}	110	120	-	ke-		Design
Photodiode Charge Capacity	P _{ne}	38	42	-	ke-	5	Die
Dark Current	Ι _D	-	0.2	0.5	nA/cm ²	6	Die
Image Lag	Lag	-	< 10	50	e-	7	Design
Anti-Blooming Factor	X _{AB}	100	300	_		1, 8, 9, 10, 11	Design
Vertical Smear	Smr	-	-75	-72	dB	1, 8, 9	Design
CDS OUTPUT SPECIFICATION							
Power Dissipation	PD	-	213	-	mW	12	Design
Bandwidth	F _{-3dB}	-	140	-	MHz	12	Design
Max Off-chip Load	CL	-	10	-	pF	13	Design
Gain	A _V	-	0.70	-		12	Design
Sensitivity	$\Delta V / \Delta N$	-	13	-	μV/e ⁻	12	Design
Output Impedance	R	-	160	-	Ω	12	Design
Saturation Voltage	V _{SAT}	-	500	-	mV	5, 12	Die
Output Bias Current	I _{OUT}	-	3.0	-	mA		Design
GENERAL - MONOCHROME							
Total Camera Noise	n _{e-T}	-	42	-	e- rms	6, 14	Design
Dynamic Range	DR	_	60	_	dB	15	Design
GENERAL – COLOR							
Total Camera Noise	n _{e-T}	-	50	-	e- rms	6, 14	Design
Dynamic Range	DR	-	58	-	dB	15	Design

Table 6. SPECIFICATIONS (continued)

Description	Symbol	Min.	Nom.	Max.	Unit	Notes	Sampling Plan*
POWER							
Single Channel CDS		-	213	-	mW	12	
VCCD clock driver		-	71	-	mW	16	

		•				
Electronic shutter driver	_	1.1	-	mW		
HCCD	-	122	-	mW	16, 17	
Total Power	_	407	_	mW	12, 16	

*Sampling plan defined as "Die" indicates that every device is verified against the specified performance limits. Sampling plan defined as "Design" indicates a sampled test or characterization, at the discretion of ON Semiconductor, against the specified performance limits.

1. Measured with F/4 imaging optics.

- Value is the angular range of incident light for which the quantum efficiency is at least 50% of QE_{MAX} at a wavelength of λQE. Angles are
 measured with respect to the sensor surface normal in a plane parallel to the horizontal axis (ΘQE_H) or in a plane parallel to the vertical axis
 (ΘQE_V).
- 3. Value is over the range of 10% to 90% of photodiode saturation.
- 4. Value is for the sensor operated without binning.
- 5. This value depends on the substrate voltage setting. Higher photodiode saturation charge capacities will lower the anti-blooming specification. Substrate voltage will be specified with each part for 42 ke⁻.
- 6. Measured at 40°C, 40 MHz HCCD frequency.
- 7. This is the first field decay lag at 70% saturation. Measured by strobe illumination of the device at 70% of photodiode saturation, and then measuring the subsequent frame's average pixel output in the dark.
- 8. Measured with a spot size of 100 vertical pixels, no electronic shutter.
- 9. Measured with green light (500 nm to 580 nm).
- 10. A blooming condition is defined as when the spot size doubles in size.
- 11. Anti-blooming factor is the light intensity which causes blooming divided by the light intensity which first saturates the photodiodes.
- 12. Single output power, 3 mA load.
- 13. With total output load capacitance of C_L = 10 pF between the outputs and AC ground.
- 14. Includes system electronics noise, dark pattern noise and dark current shot noise at 40 MHz. Total noise measured on the KAI-1020 evaluation board.
- 15. Uses 20LOG (P_{ne} / n_{e-T})
- 16. At 30 frames/sec, single output.
- 17. This includes the power of the external HCCD clock driver.
- 18. For the sampling plan, measured at 10 MHz
- 19. Tested at 27°C and 40°C
- 20. See Tests

TYPICAL PERFORMANCE CURVES

Monochrome Quantum Efficiency

Figure 6. Monochrome Quantum Efficiency

Figure 7. Color (Bayer RGB) Quantum Efficiency

www.onsemi.com 11

Photoresponse vs. Angle

The horizontal curve is where the incident light angle is varied in a plane parallel to the HCCD. The vertical curve is where the incident light angle is varied in a plane perpendicular to the HCCD.

Figure 8. Photoresponse vs. Angle

Sensor Power

KAI-1020 Power (Single Output)

Figure 9. Power

Frame Rate

Figure 10. Frame Rate 1000 × 750 Pixels

Figure 12. Frame Rate 1000 × 1000 Pixels

Figure 11. Frame Rate 1000 × 250 Pixels

Figure 14. Frame Rate 1000 × 1000 Pixels Interlaced

DEFECT DEFINITIONS

Table 7. SPECIFICATIONS

Name	Definition	Maximum	Temperature(s) Tested at (°C)	Notes	Sampling Plan
Dark Field Major Bright Defective Pixel	Defect ≥ 28 mV	10	27, 40	1	Die
Bright Field Major Dark or Bright Defective Pixel	Defect ≥ 11%	10	27, 40		Die
Bright Field Minor Dark Defective Pixel	Defect ≥ 5%	20 in Zone 2	27, 40	8	Die
Dark Field Minor Bright Defective Pixel	Defect ≥ 14 mV	100	27, 40	2	Die
Bright Field Dead Dark Pixel	Defect ≥ 40%	0	27, 40	5	Die
Bright Field Nearly Dead Dark Pixel	Defect ≥ 20%	0 in Zone 1 1 in Zone 2	27, 40	5, 8	Die
Dark Field Saturated Bright Pixel	Defect ≥ 106 mV	0	27, 40	3	Die
Dark Field Minor Cluster Defect	A Group of 2 to 10 Contiguous Dark Field Minor Defective Pixels	0	27, 40	4	Die
Bright Field Minor Cluster Defect	A Group of 2 to 10 Contiguous Bright Field Minor Defective Pixels	2 in Zone 2	27, 40	4, 8	Die
Major Cluster Defect	A Group of 2 to 10 Contiguous Major Defective Pixels	0	27, 40	4	Die
Column Defect	A Group of More than 10 Contiguous Major Defective Pixels along a Single Column	0	27, 40		Die
Column Average Magnitude	Within ±0.4% of Regional Average (5 Columns)	0	27, 40	6, 7	Die

The defect threshold was determined by using a threshold of 8 mV at an integration time of 33 milliseconds and scaling it by the actual 1. integration time used of 117 ms. [8 mV \cdot (117 ms / 33 ms) = 28 mV]

2. The defect threshold was determined by using a threshold of 4mV at an integration time of 33 milliseconds and scaling it by the actual integration time used of 117 ms. $[4 \text{ mV} \cdot (117 \text{ ms} / 33 \text{ ms}) = 14 \text{ mV}]$ The defect threshold was determined by using a threshold of 30 mV at an integration time of 33 milliseconds and scaling it by the actual

3. integration time used of 117 ms. [30 mV · (117 ms / 33 ms) = 106 mV]

The maximum width of any cluster defect is 2 pixels. 4.

Only dark defects. 5.

6. Local average is centered on column.

See Test Regions of Interest for region used. 7.

8. See Figure 18 for zone 1 and 2 definitions.

Defect Map

The defect map supplied with each sensor is based upon testing at an ambient (27°C) temperature. Minor point

defects are not included in the defect map. All defective pixels are referenced to pixel 1, 1 in the defect map (see Figure 16: Regions of Interest).

TEST DEFINITIONS

Table 8. TEST CONDITIONS

Name	Definition	Notes
Frame Time	117 ms	1
Horizontal Clock Frequency	10 MHz	
Light source (LED)	Continuous Green Illumination Centered at 530 nm	2
Operation	Nominal Operating Voltages and Timing	

1. Electronic shutter is not used. Integration time equals frame time.

2. Green LED used: Nichia NSPG500S.

Test System Conversion Factors

KAI-1020 Output Sensitivity:	13 µV per e⁻
Test System Gain (Measured):	0.25 mV per ADU
Test System Gain (Calculated):	19 e⁻ per ADU

Tests

Dark Field Center Uniformity

This test is performed under dark field conditions. Only the center 100 by 100 pixels of the sensor are used for this test (pixels 431, 431 to pixel 530, 530). See Figure 17.

Dark Field Center Uniformity = Standard Deviation of Center 100 by 100 Pixels in Electrons $\cdot \left(\frac{\text{DPS Integration Time}}{\text{Actual Integration Time Used}} \right)$

Units: mV rms. DPS Integration Time: Device Performance Specification Integration Time = 33 ms.

Dark Field Global Uniformity

This test is performed under dark field conditions. The sensor is partitioned into 100 sub regions of interest, each of which is 100 by 100 pixels in size. See Figure 15. The average signal level of each of the 100 sub regions of interest is calculated. The signal level of each of the sub regions of interest is calculated using the following formula:

Signal of ROI[i] = (ROI Average in ADU -

```
- Horizontal Overclock Average in ADU) ·
```

· mV per Count

Units : mVpp (millivolts Peak to Peak)

Where i = 1 to 100. During this calculation on the 100 sub regions of interest, the maximum and minimum signal levels are found. The dark field global uniformity is then calculated as the maximum signal found minus the minimum signal level found.

Global Uniformity

This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 520 mV. Global uniformity is defined as:

Global Uniformity =
$$100 \cdot \left(\frac{\text{Active Area Standard Deviation}}{\text{Active Area Signal}}\right)$$

Units: % rms

Active Area Signal = Active Area Average - H. Overclock Average

Global Peak to Peak Uniformity

This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 520 mV. The sensor is partitioned into 100 sub regions of interest, each of which is 100 by 100 pixels in size. See Figure 15. The average signal level of each of the 100 sub regions of interest (ROI) is calculated. The signal level of each of the sub regions of interest is calculated using the following formula:

Signal of ROI[i] = (ROI Average in ADU -

- Horizontal Overclock Average in ADU) ·

· mV per Count

Where i = 1 to 100. During this calculation on the 100 sub regions of interest, the maximum and minimum signal levels are found. The global peak to peak uniformity is then calculated as:

Global Uniformity =
$$\frac{\text{Maximum Signal} - \text{Minimum Signal}}{\text{Active Area Signal}}$$
Units : % pp

Center Uniformity

This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 520 mV. Defects are excluded for the calculation of this test. This test is performed on the center 100 by 100 pixels (See Test Regions of Interest and Figure 17) of the sensor. Center uniformity is defined as:

Center ROI Uniformity =
$$100 \cdot \left(\frac{\text{Center ROI Standard Deviation}}{\text{Center ROI Signal}}\right)$$

Units : % rms

Center ROI Signal = Center ROI Average – H. Overclock Average

Dark Field Defect Test

This test is performed under dark field conditions. The sensor is partitioned into 100 sub regions of interest, each of which is 100 by 100 pixels in size (see Figure 15). In each region of interest, the median value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the defect threshold specified.

Bright Field Defect Test

This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 520 mV. The average signal level of all active pixels is found. The bright and dark thresholds are set as:

Dark Defect Threshold = Active Area Signal · Threshold

Bright Defect Threshold = Active Area Signal · Threshold

The sensor is then partitioned into 100 sub regions of interest, each of which is 100 by 100 pixels in size. See Figure 15: Test Sub Regions of Interest. In each region of interest, the average value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the bright threshold specified or if it is less than or equal to the median value of that region defective the dark threshold specified.

Example for major bright field defective pixels:

- Average value of all active pixels is found to be 365 mV.
- Dark defect threshold: $365 \text{ mV} \cdot 11\% = 40 \text{ mV}$
- Bright defect threshold: $365 \text{ mV} \cdot 11\% = 40 \text{ mV}$
- Region of interest #1 selected. This region of interest is pixels 1, 1 to pixels 100,100.
 - Median of this region of interest is found to be 366 mV.
 - Any pixel in this region of interest that is
 ≥ (366 + 40 mV) 406 mV in intensity will be marked
 defective.
 - Any pixel in this region of interest that is ≤ (366 - 40 mV) 324 mV in intensity will be marked defective.
- All remaining 99 sub regions of interest are analyzed for defective pixels in the same manner.

Bright Field Minor Defect Test

This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 520 mV. The average signal level of all active pixels is found. The dark threshold is set as:

Dark Defect Threshold = Active Area Signal · Threshold

The sensor is then partitioned into 2500 sub regions of interest, each of which is 20 by 20 pixels in size. In each region of interest, the average value of all pixels is found. For each region of interest, a pixel is marked defective if it is less than or equal to the median value of that region of interest minus the dark threshold specified.

Example for bright field minor defective pixels:

- Average value of all active pixels is found to be 365 mV.
- Dark defect threshold: $365 \text{ mV} \cdot 5\% = 18 \text{ mV}$
- Region of interest #1 selected. This region of interest is pixels 1, 1 to pixels 20, 20.
 - Median of this region of interest is found to be 366 mV.
 - Any pixel in this region of interest that is ≤ (366 – 18 mV) 348 mV in intensity will be marked defective.
- All remaining 2499 sub regions of interest are analyzed for defective pixels in the same manner.

Bright Field Column Average Magnitude Test

This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 520 mV. A column is marked as defective if

$$100 \cdot Abs\left(\frac{Avg(Column n) - Avg(Avg(Column x)))}{Avg(Avg(Column x))}\right) > 0.4$$

Where x = n-2 to n+2

Table 9. TEST REGIONS OF INTEREST

Name	Definition
Number of Pixels	1027 (H) × 1008 (V)
Number of Photo Sensitive Pixels	1004 (H) × 1004 (V)
Number of Active Pixels	1000 (H) × 1000 (V)
Active Area ROI	Pixel (1, 1) to Pixel (1000, 1000)
Column Magnitude Test ROI	Pixel (11, 11) to Pixel (990, 990)

1. Only the active pixels are used for performance and defect tests. See Figure 16.

Test Sub Regions of Interest

91	92	93	94	95	96	97	98	99	100
81	82	83	84	85	86	87	88	89	90
71	72	73	74	75	76	77	78	79	80
61	62	63	64	65	66	67	68	69	70
51	52	53	54	55	56	57	58	59	60
41	42	43	44	45	46	47	48	49	50
31	32	33	34	35	36	37	38	39	40
21	22	23	24	25	26	27	28	29	30
11	12	13	14	15	16	17	18	19	20
1	2	3	4	5	6	7	8	9	10

Pixel (1000,1000)

Pixel (1,1)

Figure 15. Test Sub Regions of Interest

Signal Level Calculation

Signal levels are calculated by using the average of the region of interest under test and subtracting off the horizontal overclock region. The test system timing is configured such that the sensor is overclocked in both the vertical and horizontal directions. See Figure 16 for a pictorial representation of the regions.

Example: To determine the active area average in millivolts, the following calculation used:

Active Area Signal (mV) = (Active Area Average – Horizontal Overclock Average) \cdot mV per Count

KAI-1020

Figure 16. Regions of Interest

Figure 17. Center Region of Interest

Zones 1 and 2 Zone 2 includes zone 1

Figure 18. Zones 1 and 2

OPERATION

Single or Dual Output

Figure 19. Single or Dual Output Mode of Operation

The KAI–1020 is designed to read the image out of one output at 30 frames/second or two outputs at 48 frames/second. In the dual output mode the right half of the horizontal shift register reverses its direction of charge transfer. The left half of the image is read out of video 1 and the right half of the image is read out of video 2.

There are no dark reference rows at the top and 4 dark rows at the bottom of the image sensor. The 4 dark rows should not be used for a dark reference level. The dark rows will contain smear signal from bright light sources. Use the 12 dark columns on the left or right side of the image sensor as a dark reference.

The KAI-1020 Pixel

The pixel is 7.4 μ m square. It consists of a light sensitive photodiode and an optically shielded vertical shift register. The vertical shift register is a charge-coupled device (VCCD). Each pixel is covered by a microlens to increase the light gathering efficiency of the photodiode.

Under normal operation, the image capture process begins with a 4 μ s long pulse on the electronic shutter trigger input ϕ SH. The electronic shutter empties all charge from every photodiode in the pixel array.

The photodiodes start collecting light on the falling edge of the ϕ SH pulse. For each photon that is incident upon the 7.4 µm square area of the pixel, the probability of an electron being generated in the photodiode is given by the quantum efficiency (QE). At the end of the desired integration time, a 10 µs pulse on ϕ V2B transfers the charge (electrons) collected in the photodiode into the VCCD. The integration time ends on the falling edge of ϕ V2B.

Figure 20. Pixel

High Level Block Diagram

All timing inputs are driven by 5 V logic. The image sensor has integrated clock drivers to generate the proper voltages for the internal CCD gates. There are two VCCD clock drivers. Both the phase 1 and phase 2 VCCD drivers control the shifting of charge through the VCCD. The phase 2 driver also controls the transfer of charge from the photodiodes to the VCCD.

There is an integrated fast dump driver, which allows an entire row of pixels to be quickly discarded without clocking the row through the HCCD. An integrated electronic shutter driver generates a > 30 V pulse on the substrate to simultaneously empty every photodiode on the image sensor.

Each of the two outputs has a correlated double sampling circuit to simplify the analog signal processing in the camera. The horizontal clock timing selects which outputs are active. **Main Timing**

Figure 22. Timing Flow Chart

Vertical Frame Timing

The vertical frame timing may begin once the last pixel of the image sensor has been read out of the HCCD. The beginning of the vertical frame timing is at the rising edge of ϕ V2A. After the rising edge of ϕ V2A there must be a delay of t_{VP} µs before a pulse of t_{V3} µs on ϕ V2B and ϕ V1. The charge is transferred from the photodiodes to the VCCD during the time t_{V3}. The falling edge of ϕ V2B marks the end of the photodiode integration time. After the pulse on ϕ V2B the ϕ V1 and ϕ V2A should remain idle for t_{VP} µs before the horizontal line timing period begins. This allows the clock and well voltages time to settle for efficient charge transfer in the VCCD.

All HCCD and CDS timing inputs should run continuously through the vertical frame timing period. For an extremely short integration time, it is allowed to place an electronic shutter pulse on ϕ SH at any time during the vertical frame timing. The ϕ SH and ϕ V2B pulses may be overlapped. The integration time will be from the falling edge of ϕ SH to the falling edge of ϕ V2B.

KAI-1020

Horizontal Line Timing

When the ϕ V2A and ϕ V1 timing inputs are pulsed, charge in every pixel of the VCCD is shifted one row towards the HCCD. The last row next to the HCCD is shifted into the HCCD when the VCCD is shifted, the timing signals to the HCCD must be stopped. ϕ H1S must be stopped in the high state and ϕ H2S must be stopped in the low state. The HCCD clocking may begin t_{VCCD} µs after the falling edge of the ϕ V2A and ϕ V1 pulse. The timing inputs to the CDS should run continuously through the horizontal line timing.

The HCCD has a total of 1036 pixels. The 1028 vertical shift registers (columns) are shifted into the center 1028 pixels of the HCCD. There are 8 pixels at both ends of the HCCD which receive no charge from a vertical shift register.

The first 8 clock cycles of the HCCD will be empty pixels (containing no electrons). The next 12 clock cycles will contain only electrons generated by dark current in the VCCD and photodiodes. The next 1004 clock cycles will contain photo-electrons (image data). Finally, the last 12 clock cycles will contain only electrons generated by dark current in the VCCD and photodiodes. Of the 12 dark columns, the first and last dark columns should not be used for determining the zero signal level. Some light does leak into the first and last dark columns. Only use the center 10 columns of the 12 column dark reference.

When the HCCD is shifting valid image data, the timing inputs to the electronic shutter driver (ϕ SH), VCCD driver

 $(\phi V2A, \phi V2B, \phi V1)$, and fast dump drivers (ϕFD) should be held at the low level. This prevents unwanted noise from being introduced into the CDS circuit.

The HCCD is a type of charge coupled device known as a pseudo-two phase CCD. This type of CCD has the ability to shift charge in two directions. This allows the entire image to be shifted out to the video 1 output CDS, or to the video 2 output CDS (left/right image reversal). The HCCD is split into two equal halves of 522 pixels each. When operating the sensor in single output mode the two halves of the HCCD are shifted in the same direction. When operating the sensor in dual output mode the two halves of the HCCD are shifted in opposite directions. The direction of charge transfer in each half is controlled by the ϕ H1BL, ϕ H2BL, ϕ H1BR, and ϕ H2BR timing inputs.

Single Output

To direct all pixels to the video 1 output make the following HCCD connections:

 ϕ H1S = ϕ H1BL, ϕ H2BR ϕ H2S = ϕ fH2BL, ϕ H1BR

To direct all pixels to the video 2 output make the following HCCD connections:

 ϕ H1S = ϕ H2BL, ϕ H1BR ϕ H2S = ϕ fH1BL, ϕ H2BR

In each case the first 8 pixels will contain no electrons, followed by 12 dark reference pixels containing only electrons generated by dark current, followed by 1004 photo-active pixels, followed by 12 dark reference pixels. The HCCD must be clocked for at least 1028 cycles. The VCCD may be clocked immediately after the 1028th HCCD clock cycle.

If the sensor is to be permanently operated in single output mode through video 1, then VDD2 (pins B8, and B10) may be connected to GND. This disables the video 2 CDS and lowers the power consumption.

If the sensor is to be permanently operated in single output mode through video 2, then VDD1 and VDD2 supplies must be +15 V. The VDD1 supplies must always be at +15 V for the sensor to operate properly.

Dual Output

To use both outputs for faster image readout, make the following HCCD connections:

 ϕ H1S = ϕ H1BL, ϕ H1BR

 ϕ H2S = ϕ H2BL, ϕ H2BR

For both outputs the first 8 HCCD clock cycles contain no electrons, followed by 12 dark reference pixels containing only dark current electrons, followed by 502 photo-active pixels. This adds up to 522 pixels, but the HCCD should be

clocked for at least 523 cycles before the next VCCD line shift takes place. The extra HCCD clock cycle ensures that the signal from the last pixel exits the CDS circuit before the VCCD drivers switch the gate voltages. This extra cycle is not needed for the single output modes because in that case, the last pixel is from a column of the dark reference which is not used. See the section on correlated double sampling for a description of the one pixel delay in the CDS ci rcuit.

Electronic Shutter

Substrate Voltage

The voltage on the substrate, pins L1 and L5, determines the charge capacity of the photodiodes. When VSUB is 8 V the photodiodes will be at their maximum charge capacity. Increasing VSUB above 8 V decreases the charge capacity of the photodiodes until 30 V when the photodiodes have a charge capacity of zero electrons. Therefore, a short pulse on VSUB, with a peak amplitude greater than 30 V, empties all photodiodes and provides the electronic shuttering action.

Substrate Voltage and Anti-Blooming

It may appear the optimal substrate voltage setting is 8 V to obtain the maximum charge capacity and dynamic range. While setting VSUB to 8 V will provide the maximum dynamic range, it will also provide the minimum anti-blooming protection.

The KAI–1020 VCCD has a charge capacity of 60,000 electrons (60 ke⁻). If the VSUB voltage is set such that the photodiode holds more than 60 ke⁻, then when the charge is transferred from a full photodiode to VCCD, the VCCD will overflow. This overflow condition manifests itself in the image by making bright spots appear elongated in the vertical direction. The size increase of a bright spot is called blooming when the spot doubles in size.

The blooming can be eliminated by increasing the voltage on VSUB to lower the charge capacity of the photodiode. This ensures the VCCD charge capacity is greater than the photodiode capacity. There are cases where an extremely bright spot will still cause blooming in the VCCD. Normally, when the photodiode is full, any additional electrons generated by photons will spill out of the photodiode. The excess electrons are drained harmlessly out to the substrate. There is a maximum rate at which the electrons can be drained to the substrate.

If that maximum rate is exceeded, (say, for example, by a very bright light source) then it is possible for the total amount of charge in the photodiode to exceed the VCCD capacity. This results in blooming.

The amount of anti-blooming protection also decreases when the integration time is decreased.

There is a compromise between photodiode dynamic range (controlled by VSUB) and the amount of