ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

sparkfun

Page 1 of 38

SparkFun Inventor's Kit for MicroView

CONTRIBUTORS: %— JOELEB

Introduction

Welcome to the SparkFun Inventor’s Kit for MicroView Experiment Guide,
or the SIK for MicroView for short. This tutorial will guide you through
eleven experiments to help you better understand your MicroView, and,
once finished, you should have the knowledge necessary to make your
MicroView project dreams a reality.

Included Materials

Before you do anything, you should make sure that you have all the
necessary parts included with the SIK for MicroView. It's a good idea to
familiarize yourself with the parts now, so you know what to look for when it
comes time to build the circuits.

SparkFun MicroView - OLED Arduino Module
SparkFun MicroView - USB Programmer
USB Cable Extension - 1.5 Foot

White Solderless Breadboard

74HC595 Shift Register

2N2222 Transistors

1N4148 Diodes

DC Motor with Gear

Small Servo

SPDT 5V Relay

TMP36 Temp Sensor

Softpot

Jumper Wires

Photocell

RGB LED

Red & Yellow LEDs
10K Trimpot

Piezo Speaker

Big 12mm Button

330 and 10K Resistors

Suggested Reading

To make your MicroView experience as enjoyable as possible, we

recommend you be familiar with the following concepts before beginning.

What is a Circuit

How to Use a Breadboard
What is an Arduino?
Installing the Arduino IDE
Installing an Arduino Library
Polarity

Analog vs Digital

Analog to Digital Conversion

MicroView Overview

Before we dive into the experiments, let’s fist familiarize ourselves with the
MicroView and its pins.

The MicroView is the first chip-sized Arduino compatible module that lets
you see what your Arduino is thinking by using a built-in OLED display. In
the heart of MicroView, there is an ATMEL ATmega328P, 5V & 3.3V LDOs
and a 64x48 pixel OLED display, together with other passive components
that allow the MicroView to operate without any external components other
than a power supply.

Hardware Specifications

Display : 64x48 OLED Display
Microcontroller : ATmega328P
Operating Voltage : 5V

Input Voltage : 3.3VDC - 16VDC
Digital I/O Pins : 12 (of which 3 provide PWM output)
Analog Input Pins : 6

Flash Memory : 32 KB

SRAM : 2 KB

EEPROM : 1 Kilobyte

Clock Speed : 16 Mhz

No other components required

Pin Configuration

Page 2 of 38

The MicroView has 16 “physical pins” that map to corresponding “Arduino
pins” that can be referenced from within your Arduino sketch. For example,
Physical Pin2 maps to the Arduino’s pin A5 (analog pin 5).

[zoaphig gl ol TIPTS50
Sy i =]

T e D PN

Pinout of MicroView on it’s side. The top of the MicroView is on the right.
(Click for larger image)

The pin numbering for the MicroView increments as you move anti-
clockwise.

The MicroView's physical Pin1 is denoted by a dot on the underside of the
MicroView.

Dot marking
Pin 1 at the back of %
MicroView

Programmer

Pin 1
For more details on pins of MicroView, please refer to the ATmega328P
Datasheet.

Programming the MicroView

In order to get your MicroView up and running, there a few easy steps you
will need to follow:

Download the FTDI Drivers

Install Arduino software and MicroView Library
Select the right board

Run your first sketch

.

Step 1 - Download and Install FTDI Drivers

To use the MicroView with the Arduino IDE, you will first need to install the

drivers for the FTDI chip on the USB Programmer. Visit our comprehensive
tutorial on how to install FDTI drivers, then come on back to continue your

MicroView Adventure.

Once you have finished the FTDI driver installation, you will need to
prepare your MicroView to be inserted into the computer’s USB port.

If you're using the USB Programmer, insert the MicroView into the USB
Programmer now, if you have not done so already. Please take note that at
the back of MicroView, there is a round dot marking showing the Pin 1 of
the MicroView where you need to match the Pin 1 of the USB Programmer.
Once you have inserted the MicroView into the USB Programmer, you can
now insert the USB Programmer into the USB port of the computer as

Page 3 of 38

pictured below. If your computer does not have a right-sided USB port,
please use a USB Cable Extension to extend the USB port to the front so
that you can easily work with the MicroView.

As an alternative to the USB Programmer, you can use a 5V FTDI Basic
Breakout or 5V FTDI Cable instead. Connect the FTDI Basic Breakout
board as below, and you are ready to go.

FTDI BASIC 5V

Step 2 - Install the Arduino Software (IDE)

We will be using the Arduino IDE to program the MicroView. If you have
already installed it, skip to installing the library.

Install Arduino IDE and the MicroView Library

If you have not installed the Arduino IDE already, now is the time to do so.
Visit our Installing the Arduino IDE tutorial for detailed instructions.

Install MicroView Library
Download MicroView’s library from the MicroView Github repo, or click the
link below to download the zip file directly.

MICROVIEW LIBRARY ZIP

Save the ZIP file to your download folder, and then unzip the .ZIP file. Find
the Library folder under MicroView-master -> Libraries ->
SparkFun_Microview.

Open the Arduino IDE, click Sketch, Import Library, and then Add Library.

8 shach_fumJa | Ardwine 50,5

Page 4 of 38

Browse to the MicroView folder that was renamed, and select that folder.
The MicroView library will be automatically installed.

Click File, Example, and find MicroView Example to confirm the installation.

% akaich_jundda | Ardwina1.0.4

If you wish to compile and upload the MicroViewDemo from our example,
there is a 3rd party Time library that is required to be installed. Download
the Time library and use the same library installation method discussed
above to install it into the Arduino IDE.

Step 3 - Select the Right Board

In the Arduino IDE, click Tools, board and select Arduino Uno. Due to the
nature of Arduino IDE being not able to detect a board, the COM port
(Serial Port) of the MicroView USB Programmer needs to be manually
selected by clicking Tools, Serial Port and select the right port that was
created in the previous driver installation. Click Upload to upload your first
sketch to MicroView.

MicroView is using the same bootloader as Uno. It behaves like an
Uno when uploading sketches.

For advance user that like to see MicroView as a board by itself in the IDE,
add the following board definition to the boards.txt file. Depending on your
setup, the boards.txt file usually located at arduino-
version\hardware\arduino folder. Replace arduino-version with the right
folder name for your Arduino version installed in your computer.

uview.upload.tool=avrdude
uview.bootloader.tool=avrdude
uview.name=MicroView
uview.upload.protocol=arduino
uview.upload.maximum_size=32256
uview.upload.speed=115200
uview.bootloader.low_fuses=0xff
uview.bootloader.high_fuses=0xde
uview.bootloader.extended_fuses=0x05
uview.bootloader.path=optiboot
uview.bootloader.file=optiboot_atmega328.hex
uview.bootloader.unlock_bits=0x3F
uview.bootloader.lock_bits=0x0F
uview.build.mcu=atmega328p
uview.build.f_cpu=16000000L
uview.build.core=arduino
uview.build.variant=standard

Page 5 of 38

Step 4 - Run Your First Sketch
Select the correct COM port, and you're ready to upload. Simply cut and
paste the sketch below into the Arduino IDE, and click upload.

#include <MicroView.h>

void setup() {
uView.begin(); // start MicroView
uView.clear(PAGE); // clear page
uvView.print("HelloWorld"); // display HelloWorld
uView.display();

void loop () {}

Once you have uploaded your first sketch, it's time to get started with the
experiments.

Experiment O: Quick Start

The MicroView comes with a nice quick start experiment preinstalled to get
you learning right out of the box without having to upload any code. Using
just a few components, you can learn the ins and outs of the MicroView in
this first step of the SIK for MicroView.

Unboxing and Setting Up Your MicroView

Remove all parts from the SparkFun Inventor’s Kit for MicroView.

Identify PIN 1 of MicroView based on the following diagram, or refer back to
the MicroView Overview section.

In this guide, when there is a reference for PIN x of MicroView, it is referring
to the above diagram’s PIN number. For example, connect PIN 5 and PIN 8
of the MicroView.

MicroView with Factory USB Programmer

The quickest way to get started is to use the USB programmer included in
the SIK for MicroView. You will also need

« USB Extension Cable
* Breadboard

Insert the MicroView to the factory USB Programmer then connect the
female end of the USB extension cable to the factory USB Programmer
based on the following diagram:

Page 6 of 38

Connect the male end of the USB extension cable to the computer, and the
MicroView demo will start.

MicroView without Factory USB Programmer

If you would like to use the MicroView without the USB Programmer, you
will need the following (please note that the 9V battery and snap connector
are not included in the SIK for MicroView and will need to be purchased
separately):

« 9V Battery

* 9V Snap Connector (Remove the Molex connector, replace both
wires with male header pins if necessary)

» Jumper Wires M/M Pack of 10 (If you need more, you can also get
the Pack of 100)

» Breadboard

Connect the required parts based on the diagram below, leave the battery
snap connector to the last step:

As soon as the battery snap connector is snapped to the 9V battery, the
MicroView demo will start.

Learn How to Use MicroView

The MicroView is factory pre-programmed with a few simple built-in tutorials
to help you get use to inserting jumper wires, resistors and LED. Skip these
tutorials if you are already familiar with them. The simple tutorials will start
after the demo.

Note: The simple tutorials' diagrams are based on MicroView without
the USB Programmer, if you have the USB Programmer, please
ignore the battery, red jumper and black jumper. MicroView with USB
Programmer gets its power supply from the USB Programmer via the
USB cable connected to the computer.

Simple Tutorial 1

Follow the instruction displayed on the MicroView, connect PIN 5 and PIN 8

Page 7 of 38

of the MicroView with a jumper using the following diagram as reference:

Once you have successfully connected PIN 5 and PIN 8 of the MicroView,
a “Well done!” message will be displayed. To proceed to the next simple
tutorial, remove the jumper.

Simple Tutorial 2

Follow the instruction displayed on the MicroView, connect PIN 3 and PIN 8
of the MicroView with a jumper using the following diagram as reference:

Once you have successfully connected PIN 3 and PIN 8 of the MicroView,
a “Well done!” message will be displayed. To proceed to the next simple
tutorial, remove the jumper.

Simple Tutorial 3

Follow the instruction displayed on the MicroView, connect PIN 2 and PIN 8
of the MicroView with a jumper using the following diagram as reference:

Once you have successfully connected PIN 2 and PIN 8 of the MicroView,
a “Well done!” message will be displayed. To proceed to the next simple
tutorial, remove the jumper.

Simple Tutorial 4

Follow the instruction displayed on the MicroView, connect PIN 4 and PIN 8
of the MicroView with a 330 ohm resistor using the following diagram as
reference:

Page 8 of 38

Once you have successfully connected PIN 4 and PIN 8 of the MicroView
with the resistor, a “Well done!” message will be displayed. To proceed to
the next simple tutorial, remove the resistor.

Simple Tutorial 5

Follow the instruction displayed on the MicroView, connect PIN 4 and PIN 8
of the MicroView with a 10K ohm resistor using the following diagram as
reference:

Once you have successfully connected PIN 4 and PIN 8 of the MicroView
with the resistor, a “Well done!” message will be displayed. To proceed to
the next simple tutorial, remove the resistor.

Simple Tutorial 6

Follow the instruction displayed on the MicroView, connect PIN 5 and PIN 8
of the MicroView with a 330 ohm resistor using the following diagram as
reference:

With the resistor still at the same place, insert a LED with both of the pins at
PIN 4 and PIN 5 of MicroView respectively using the following diagram as
reference.

Page 9 of 38

The MicroView is able to detect if the LED is inserted with the correct
polarity, if the LED does not blink, remove the LED and turn the pins the
other way round and connect them to PIN 4 and PIN 5 of the MicroView.

With that, you are now ready to upload code and begin building the
experiments in this guide.

Experiment 1: Blinking an LED

LEDs (light-emitting diodes) are small, powerful lights that are used in many
different applications. To start off the MicroView course, we will work on
blinking an LED. That's right — it's as simple as turning a light on and off. It
might not seem like much, but establishing this important baseline will give
you a solid foundation as we work toward more complex experiments. Blink
is the “Hello World” of hardware.

Parts Needed
You will need the following parts:
* 1xLED
» 1x 330Q Resistor (Orange, Orange, Brown, Gold)
Breadboard Setup
Pay close attention to the polarity of the LED.

—

Flat Edge

Short Leg

s

Hook up your circuit as pictured below:

Page 10 of 38

R
R B I)

fritzing
MicroView Arduino Code
Upload the following code to your MicroView:
int LED = A2; // declare LED as pin A3 of MicroV

iew

void setup()

{
pinMode(LED, OUTPUT); // set LED pin as OUTPUT

void loop()
{

digitalWrite(LED, HIGH); // set LED pin HIGH voltage, L
ED will be on

delay(1000); // delay 1000 ms

digitalWrite(LED, LOW); // set LED pin LOW voltage, LE
D will be off

delay(1000); // delay 1000 ms

What You Should See

You should see your LED blink on and off. If it isn’t, make sure you have
assembled the circuit correctly and verified and uploaded the code to your
MicroView or see the troubleshooting tips below.

Code to Note

Before you can use one of the MicroView’s pins, you need to tell the
MicroView whether it is an INPUT or OUTPUT. We use a built-in “function”
called pinMode() to do this.

pinMode (A3, OUTPUT);

When you’re using a pin as an OUTPUT, you can command it to be HIGH
(output 5 volts), or LOW (output 0 volts).

digitalWrite(A3, HIGH);
Arduino programs run in a loop. When the MicroView sees the delay()
command, it will pause the loop for the amount of time (in milliseconds). For
example delay(1000) will stop the loop for one second as there are 1000

ms in one second.

delay(1000);

Page 11 of 38

Troubleshooting
LED Not Lighting Up?

LEDs will only work in one direction. Try taking it out and turning it around
180 degrees (no need to worry, installing it backward does no permanent
harm).

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as
soon as we can: TechSupport@sparkfun.com

Experiment 2: Reading a Potentiometer

In this circuit, you’ll work with a potentiometer. A potentiometer is also
known as a variable resistor. When it's connected with 5 volts across its two
outer pins, the middle pin outputs a voltage between 0 and 5, depending on
the position of the knob on the potentiometer. A potentiometer is a perfect
demonstration of a variable voltage divider circuit. The voltage is divided
proportionate to the resistance between the middle pin and the ground pin.
In this circuit, you’ll learn how to use a potentiometer and display its value
on the MicroView.

Parts Needed
You will need the following parts:
» 1x Potentiometer

* 3x Jumper Wire

Breadboard Setup

Hook up your circuit as pictured below:

.........................

fritzing

MicroView Arduino Code

Upload the following code to your MicroView:

Page 12 of 38

#include <MicroView.h> // include MicroView library
MicroViewWidget *widget; // create widget pointer
MicroViewWidget *widget2; // create widget pointer

int sensorPin = Al; // select the input pin for the potenti
ometer

int sensorValue = @; // variable to store the value coming fr
om the sensor

void setup()

{
digitalWrite(sensorPin, HIGH); // Internal Pull-up
pinMode(sensorPin, INPUT); // make pin as INPUT
uView.begin(); // start MicroView
uView.clear(PAGE); // clear page

widget = new MicroViewSlider(e, 0, 0, 1024); // make wi
dget as Slider

widget2 = new MicroViewSlider(®, 20, 0, 1024, WIDGETSTYLE
1); // make widget as Silder STYLE1

uView.display(); // display the conten
t in the screen buffer
}
void loop()
{
sensorValue = analogRead(sensorPin); // read sensorPin
widget->setValue(sensorValue); // set value of se
nsorPin to widget
widget2->setValue(sensorValue); // set value of se
nsorPin to widget
uview.display(); // display the con
tent in the screen buffer
}

What You Should See

By turning the potentiometer’s knob you should see on your MicroView's
display two different styles of widget reflect the reading of the
potentiometer.

Code to Note

A “variable” is a stored value you’ve given a name to. You must introduce,
or “declare” variables before you use them; here we’re declaring a variable
called sensorValue, of type “int” (integer). Don’t forget that variable names
are case-sensitive!

int sensorValue;
We use the analogRead() function to read the value on an analog pin.
analogRead() takes one parameter, the analog pin you want to use
(“sensorPin”), and returns a number (“sensorValue”) between 0 (0 volts)
and 1023 (5 volts).

sensorValue = analogRead(sensorPin);

Troubleshooting
LED Not Lighting Up?

Page 13 of 38

LEDs will only work in one direction. Try taking it out and turning it around
180 degrees (no need to worry, installing it backward does no permanent
harm).

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as
soon as we can: TechSupport@sparkfun.com

Experiment 3: RGB LED

You know what’s even more fun than a blinking LED? Changing colors with
one LED. RGB, or red-green-blue, LEDs have three different color-emitting
diodes that can be combined to create all sorts of colors. In this circuit,
you'll learn how to use an RGB LED to create unique color combinations.
Depending on how bright each diode is, nearly any color is possible!

Parts Needed

You will need the following parts:
* 1x RGB LED
» 3x 330Q Resistor (Orange, Orange, Brown, Gold)
* 5x Jumper Wire
Breadboard Setup
Be sure to pay close attention to the polarity of the RGB LED.

Flat Edge —g,)/

Page 14 of 38

Page 15 of 38

MicroView Arduino Code

#include <MicroView.h> // include MicroView library
MicroViewWidget *redWidget, *greenWidget, *blueWidget; // dec
lare 3 widget pointers
int RED = 6; // declare RED LED pin 6
int GREEN = 5; // declare GREEN LED pin 5
int BLUE = 3; // declare BLUE LED pin 3
int fadeStep = 10; // declare fading steps
int dly=20; // declare delay
void setup()
{
uView.begin(); // start M
icroView
uView.clear(PAGE); // clear p
age
redWidget = new MicroviewSlider(®,0,0,255); // declar
e RED widget as slider
greenWidget = new MicroViewSlider(0,10,0,255); // declar
e GREEN widget as slider
blueWidget = new MicroViewSlider(0,20,0,255); // declar
e BLUE widget as slider
pinMode(RED, OUTPUT); // set RE
D LED pin as OUTPUT
pinMode (GREEN, OUTPUT); // set GRE
EN LED pin as OUTPUT
pinMode (BLUE, OUTPUT); // set BLU
E LED pin as OUTPUT
}
void loop()
{
int i; // init i variabl
e for general use
// brightening
for (i=0;i<=255;i+=fadeStep) { // step i from @ t
o 255 by fadeSteps
redWidget->setValue(i); // set brightness
value for RED LED to widget
uView.display(); // display the con
tent of the screen buffer
analogWrite(RED,1i); // set brightness
value for RED LED to the pin
delay(dly);
}
// dimming
for (i=255;i>=0;i-=fadeStep) { // step i from 25

5 to @ by fadeSteps
redwidget->setValue(i);
uView.display();
analogWrite(RED,1);
delay(dly);

// brightening

for (i=0;i<=255;i+=fadeStep) {
greenWidget->setValue(i);
uView.display();
analogWrite(GREEN,1i);
delay(dly);

Page 16 of 38

// dimming

for (i=255;i>=0;i-=fadeStep) {
greenWidget->setValue(i);
uView.display();
analogWrite(GREEN,1i);
delay(dly);

// brightening

for (i=0;1<256;i+=fadeStep) {
blueWidget->setValue(i);
uview.display();

analogWrite(BLUE,i);
delay(dly);

}

// dimming

for (i=255;i>=0;i-=fadeStep) {
blueWidget->setValue(i);
uView.display();
analogWrite(BLUE,1i);
delay(dly);

What You Should See

You should see your RGB LED go through a colorful sequence of various
colors with the slider widget showing the value of each color channel's
brightness.

Code to Note

A for() loop is used to step a number across a range, and repeatedly runs
code within the brackets {} until a condition is met. We use for loops to
change over time the intensity of our RGB pin’s brightness. The variable “i”
starts a 0, ends at 255, and increases by the amount of the variable
fadeStep.

for (i=0;i<=255;i+=fadeStep)
{3

The MicroView is very very fast, capable of running thousands of lines of
code each second. To slow it down so that we can see what it's doing, we'll
often insert delays into the code. delay() counts in milliseconds; there are
1000 ms in one second.

delay(dly);

Troubleshooting
LED Remains Dark or Shows Incorrect Color

With the four pins of the LED so close together, it's sometimes easy to
misplace one. Double check each pin is where it should be.

Seeing Red

The red diode within the RGB LED may be a bit brighter than the other two.
To make your colors more balanced, use a higher Ohm resistor. Or adjust
in code. Change

Page 17 of 38

analogWrite(RED,1i);
to
analogWrite(RED,i/3);

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as
soon as we can: TechSupport@sparkfun.com

Pulse-Width Modulation

We've seen that the Arduino can read analog voltages (voltages between 0
and 5 volts) using the analogRead() function. Is there a way for the
MicroView to output analog voltages as well?

The answer is no... and yes. The MicroView does not have a true analog
voltage output. But, because the MicroView is so fast, it can fake it using
something called PWM (“Pulse-Width Modulation”).

Pins named 3, 5, and 6 within the Arduino code, map to the MicoView
physical pins of 12, 13, and 14. Each of these pins are PWM/analogWrite
out compatible.

PWM varies the amount of time that a blinking pin spends HIGH vs. the
time it spends LOW. If the pin spends most of its time HIGH, a LED
connected to that pin will appear bright. If it spends most of its time LOW,
the LED will look dim. Because the pin is blinking much faster than your eye
can detect, the MicroView creates the illusion of a “true” analog output.

SN | | N | |

Experiment 4: Push Buttons

In this circuit, we’'ll be looking at one of the most common and simple inputs
— a push button. The way a push button works with this MicroView tutorial is
that when the button is pushed, the contacts in the button connects to the
ground, MicroView reads this and reacts accordingly.

Parts Needed
You will need the following parts:
* 1x Push Button
¢ 2x Jumper Wire
Breadboard Setup

Hook up your circuit as pictured below:

Page 18 of 38

fritzing

MicroView Arduino Code

#include <MicroView.h> // include MicroView library

int buttonPin = A@; // push button pin

int buttonState = ©; // variable to store the pushbutto
n status

void setup() {

uvView.begin(); // start MicroView
uView.clear(PAGE); // clear page
pinMode(buttonPin, INPUT); // initialize the pushbutt

on pin as an input
digitalWrite(buttonPin,HIGH); // set Internal pull-up

void loop() {
buttonState = digitalRead(buttonPin); // read the state
of the pushbutton value

// check if the pushbutton is pressed.

// if it is not pressed, the buttonState is HIGH:

if (buttonState == HIGH) {
uView.setCursor(0,0); // set cursor at 0,0
uView.print("OFF"); // print OFF
uView.display();

}

else {
uView.setCursor(0,0);
uview.print("ON ");
uView.display();

What You Should See

You should see your MicroView print “ON” if you push the button, and
“OFF” if you let go. (See the code to find out why!) If it isn’t working, make
sure you have assembled the circuit correctly and verified and uploaded the
code to your MicroView or see the troubleshooting tips below.

Code to Note

The digital pins can be used as inputs as well as outputs. Before you do
either, you need to tell the MicroView which direction you're going.

pinMode(buttonPin, INPUT);

To read a digital input, you use the digitalRead() function. It will return HIGH
if there’s 5V present at the pin, or LOW if there’s 0V present at the pin.

Page 19 of 38

buttonState = digitalRead(buttonPin);

Because we’ve connected the button to GND, it will read LOW when it's
being pressed. Here we’re using the “equivalence” operator (“==") to see if
the button is being pressed.

if (buttonState == LOW)

Troubleshooting
Light Not Turning On

The pushbutton is square, and because of this it is easy to put it in the
wrong way. Rotate the button by 90 degrees and see if it starts working.

Underwhelmed

No worries, these circuits are all super stripped down to make playing with

the components easy, but once you throw them together the sky is the limit.

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as
soon as we can: TechSupport@sparkfun.com

Getting Logical

One of the things that makes the MicroView so useful is that it can make
complex decisions based on the input it's getting. For example, you could
make a thermostat that turns on a heater if it gets too cold, a fan if it gets
too hot, waters your plants if they get too dry, etc.

== EQUIVALENCE A== Bistrue it Aand B are the SAME
1= DIFFERENCE A != Bistrue if Aand B are NOT THE SAME
&& AND A& B is true if BOTH A and B are TRUE
Il OR ANB s true it A or B or BOTH are TRUE
1A i TRUE i A is FALSE
! Not 1A ks FALSE if A is TRUE

You can combine these functions to build complex if() statements.

if ((mode == heat) &% ((temperature < threshold) || (override

== true))) {
digitalWrite(HEATER, HIGH);

...will turn on a heater if you're in heating mode AND the temperature is
low, OR if you turn on a manual override. Using these logic operators, you
can program your MicroView to make intelligent decisions and take control
of the world around it! To learn more about logic, check out our tutorial on
digital logic.

To learn more about the different types of buttons and switches you can
use in your projects, visit the Switch Basics tutorial.

Experiment 5: Photoresistors

You've already played with a potentiometer, which varies resistance based
on the twisting of a knob. In this circuit, you’ll be using a photoresistor (also
known as a photocell), which changes resistance based on how much light
the sensor receives.

Parts Needed

Page 20 of 38

You will need the following parts:

* 1x Photoresistor

Breadboard Setup

Hook up your circuit as pictured below:

fritzing

MicroView Arduino Code
#include <MicroView.h> // include MicroView library

MicroViewWidget *widget; // declare widget pointer

int sensorPin = A2; // select the input pin for the photor
esistor
int sensorValue = ©0; // variable to store the value coming

from the sensor

void setup() {

pinMode(sensorPin, INPUT); // set sensor pin as INPUT
digitalWrite(sensorPin,HIGH); // set Internal pull-up
uView.begin(); // start MicrView
uView.clear(PAGE); // clear page

widget = new MicroViewGauge(32,24,0,1023,WIDGETSTYLE
1); // set widget as gauge STYLE1l

}
void loop() {

sensorValue= analogRead(sensorPin); // read value fro
m sensorPin

widget->setValue(sensorValue); // set the sensorV
alue to the gauge widget

uView.display(); // display the wid
get
}

What You Should See

You should see the potentiometer value being displayed on the MicroView’s
display.

Code to Note

A “variable” is a stored value you've given a name to. You must introduce,
or “declare” variables before you use them; here we’re declaring a variable
called sensorValue, of type “int” (integer). Don’t forget that variable names
are case-sensitive!

int sensorValue;

Page 21 of 38

We use the analogRead() function to read the value on an analog pin.
analogRead() takes one parameter, the analog pin you want to use
(“sensorPin”), and returns a number (“sensorValue”) between 0 (0 volts)
and 1023 (5 volts).

sensorValue = analogRead(sensorPin);

Troubleshooting
Sporadically Working

This is most likely due to a slightly dodgy connection with the
photoresistor’s pins. This can usually be conquered by pushing the
photoresistor down into the breadboard.

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as
soon as we can: TechSupport@sparkfun.com

Pull-up Resistors

Many of the sensors you'll use (potentiometers, photoresistors, etc.) are
resistors in disguise. Their resistance changes in proportion to whatever
they’re sensing (light level, temperature, sound, etc.).

The MicroView’s analog input pins measure voltage, not resistance. But we
can easily read voltage by using the MicroView’s internal pull-up resistors.
Visit our pull-up resistors tutorial for more info. To get the most out of your
photoresistor, we recommend replacing one of the resistors in a voltage
divider circuit with a photoresistor.

Experiment 6: Temperature Sensor

A temperature sensor is exactly what it sounds like — a sensor used to
measure ambient temperature. This particular sensor has three pins — a
positive, a ground, and a signal. This is a linear temperature sensor. A
change in temperature of one degree centigrade is equal to a change of 10
millivolts at the sensor output. The TMP36 sensor has a nominal 750 mV at
25°C (about room temperature). In this circuit, you'll learn how to integrate
the temperature sensor with your MicroView, and use the serial monitor to
display the temperature.

Heads up! When you’re building the circuit be careful not to mix up
the transistor and the temperature sensor, they’re almost identical.
Look for “TMP” on the body of the temperature sensor.

w A

SIGNAL 1
GND

Page 22 of 38

Page 23 of 38

Parts Needed
You will need the following parts:

* 1x TMP36 Temperature Sensor
* 2x Jumper Wire

Breadboard Setup
Hook up your circuit as pictured below:

Be sure to insert the TMP36 in the correct orientation. It is polarized and will
not work if inserted incorrectly.

Once you are sure orientation is correct, you can place the remaining
jumper wires.

fritzing

MicroView Arduino Code
#include <MicroView.h> // include MicroView library

MicroViewWidget *widget; // declare widget pointer

int sensorPin = AQ; // select the input pin for the temper
ature sensor
int sensorValue = 0; // variable to store the value coming

from the sensor

void setup() {
pinMode(sensorPin, INPUT); // set sensor pin as INPUT

uView.begin(); // start MicroView

uView.clear(PAGE); // clear page

widget = new MicroViewGauge(32,24,0,255,WIDGETSTYLE
1); // declare as gauge widget

uView.drawChar(47,33,67); // Character C is ASCII code 6
7
}
void loop() {

sensorValue= analogRead(sensorPin); // read se
nsor pin value

float voltage = sensorValue * 5.0; // voltag
e at pin in volt

voltage /= 1024.0; // voltag

e = sensorValue x (5/1024)
float temperatureC = (voltage - ©.5) * 100 ; // C = (vo
ltage - 0.5) x 100

widget->setValue(temperatureC); // set tem
perature value to the gauge

uView.display(); // displa
y gauge tick

}

What You Should See

As you warm and cool your temperature sensor, you should be able to see
the gauge on your MicroView’s display go up or down.

Troubleshooting
Temperature Value is Unchanging

Try pinching the sensor with your fingers to heat it up or pressing a bag of
ice against it to cool it down.

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as
soon as we can: TechSupport@sparkfun.com

Experiment 7: Servo Motors

Servos are ideal for embedded electronics applications because they do
one thing very well that motors cannot — they can move to a position
accurately. By varying the pulse width of the output voltage to a servo, you
can move a servo to a specific position. For example, a pulse of 1.5
milliseconds will move the servo 90 degrees. In this circuit, you'll learn how
to use PWM (pulse width modulation) to control and rotate a servo. To learn
more about PWM, visit our tutorial.

Parts Needed

Page 24 of 38

You will need the following parts:

* 1x Servo Motor
* 3x Jumper Wire

Breadboard Setup

Hook up your circuit as pictured below:

R
sr s e Ew

fritzing

MicroView Arduino Code

#include <MicroView.h>
#include <Servo.h>

Servo servo;

void setup()

//
//

//

//
//
//

//
//

include MicroView library
include Servo library

declare servo object

start MicroView
clear page
servo control pin at D6

set cursor to 0,0
display Mid

about 20 degree

{
uView.begin();
uView.clear(PAGE);
servo.attach(6);
}
void loop()
{
uView.setCursor(0,0);
uView.print("Mid ");
uView.display();
servo.write(90); // about 90 degree
delay(2000); // delay 2 seconds
uView.setCursor(0,0);
uView.print("Left ");
uView.display();
servo.write(20); //
delay(2000);
uView.setCursor(0,0);
uView.print("Mid ");
uview.display();
servo.write(90); // about 90 degree
delay(2000);
uView.setCursor(0,0);
uView.print("Right");
uview.display();
servo.write(160); // about 160 degree
delay(2000);
}

What You Should See

Page 25 of 38

	Contact us

