
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SparkFun Inventor's Kit for MicroView

CONTRIBUTORS: JOELEB

Introduction

Welcome to the SparkFun Inventor’s Kit for MicroView Experiment Guide,

or the SIK for MicroView for short. This tutorial will guide you through

eleven experiments to help you better understand your MicroView, and,

once finished, you should have the knowledge necessary to make your

MicroView project dreams a reality.

Included Materials

Before you do anything, you should make sure that you have all the

necessary parts included with the SIK for MicroView. It’s a good idea to

familiarize yourself with the parts now, so you know what to look for when it

comes time to build the circuits.

� SparkFun MicroView - OLED Arduino Module

� SparkFun MicroView - USB Programmer

� USB Cable Extension - 1.5 Foot

� White Solderless Breadboard

� 74HC595 Shift Register

� 2N2222 Transistors

� 1N4148 Diodes

� DC Motor with Gear

� Small Servo

� SPDT 5V Relay

� TMP36 Temp Sensor

� Softpot

� Jumper Wires

Page 1 of 38

� Photocell

� RGB LED

� Red & Yellow LEDs

� 10K Trimpot

� Piezo Speaker

� Big 12mm Button

� 330 and 10K Resistors

Suggested Reading

To make your MicroView experience as enjoyable as possible, we

recommend you be familiar with the following concepts before beginning.

� What is a Circuit

� How to Use a Breadboard

� What is an Arduino?

� Installing the Arduino IDE

� Installing an Arduino Library

� Polarity

� Analog vs Digital

� Analog to Digital Conversion

MicroView Overview

Before we dive into the experiments, let’s fist familiarize ourselves with the

MicroView and its pins.

The MicroView is the first chip-sized Arduino compatible module that lets

you see what your Arduino is thinking by using a built-in OLED display. In

the heart of MicroView, there is an ATMEL ATmega328P, 5V & 3.3V LDOs

and a 64x48 pixel OLED display, together with other passive components

that allow the MicroView to operate without any external components other

than a power supply.

Hardware Specifications

� Display : 64x48 OLED Display

� Microcontroller : ATmega328P

� Operating Voltage : 5V

� Input Voltage : 3.3VDC - 16VDC

� Digital I/O Pins : 12 (of which 3 provide PWM output)

� Analog Input Pins : 6

� Flash Memory : 32 KB

� SRAM : 2 KB

� EEPROM : 1 Kilobyte

� Clock Speed : 16 Mhz

� No other components required

Pin Configuration

Page 2 of 38

The MicroView has 16 “physical pins” that map to corresponding “Arduino

pins” that can be referenced from within your Arduino sketch. For example,

Physical Pin2 maps to the Arduino’s pin A5 (analog pin 5).

Pinout of MicroView on it’s side. The top of the MicroView is on the right.

(Click for larger image)

The pin numbering for the MicroView increments as you move anti-

clockwise.

The MicroView’s physical Pin1 is denoted by a dot on the underside of the

MicroView.

For more details on pins of MicroView, please refer to the ATmega328P

Datasheet.

Programming the MicroView

In order to get your MicroView up and running, there a few easy steps you

will need to follow:

1. Download the FTDI Drivers

2. Install Arduino software and MicroView Library

3. Select the right board

4. Run your first sketch

Step 1 - Download and Install FTDI Drivers

To use the MicroView with the Arduino IDE, you will first need to install the

drivers for the FTDI chip on the USB Programmer. Visit our comprehensive

tutorial on how to install FDTI drivers, then come on back to continue your

MicroView Adventure.

Once you have finished the FTDI driver installation, you will need to

prepare your MicroView to be inserted into the computer’s USB port.

If you’re using the USB Programmer, insert the MicroView into the USB

Programmer now, if you have not done so already. Please take note that at

the back of MicroView, there is a round dot marking showing the Pin 1 of

the MicroView where you need to match the Pin 1 of the USB Programmer.

Once you have inserted the MicroView into the USB Programmer, you can

now insert the USB Programmer into the USB port of the computer as

Page 3 of 38

pictured below. If your computer does not have a right-sided USB port,

please use a USB Cable Extension to extend the USB port to the front so

that you can easily work with the MicroView.

As an alternative to the USB Programmer, you can use a 5V FTDI Basic

Breakout or 5V FTDI Cable instead. Connect the FTDI Basic Breakout

board as below, and you are ready to go.

Step 2 - Install the Arduino Software (IDE)

We will be using the Arduino IDE to program the MicroView. If you have

already installed it, skip to installing the library.

Install Arduino IDE and the MicroView Library

If you have not installed the Arduino IDE already, now is the time to do so.

Visit our Installing the Arduino IDE tutorial for detailed instructions.

Install MicroView Library

Download MicroView’s library from the MicroView Github repo, or click the

link below to download the zip file directly.

MICROVIEW LIBRARY ZIP

Save the ZIP file to your download folder, and then unzip the .ZIP file. Find

the Library folder under MicroView-master -> Libraries ->

SparkFun_Microview.

Open the Arduino IDE, click Sketch, Import Library, and then Add Library.

Page 4 of 38

Browse to the MicroView folder that was renamed, and select that folder.

The MicroView library will be automatically installed.

Click File, Example, and find MicroView Example to confirm the installation.

If you wish to compile and upload the MicroViewDemo from our example,

there is a 3rd party Time library that is required to be installed. Download

the Time library and use the same library installation method discussed

above to install it into the Arduino IDE.

Step 3 - Select the Right Board

In the Arduino IDE, click Tools, board and select Arduino Uno. Due to the

nature of Arduino IDE being not able to detect a board, the COM port

(Serial Port) of the MicroView USB Programmer needs to be manually

selected by clicking Tools, Serial Port and select the right port that was

created in the previous driver installation. Click Upload to upload your first

sketch to MicroView.

MicroView is using the same bootloader as Uno. It behaves like an

Uno when uploading sketches.

For advance user that like to see MicroView as a board by itself in the IDE,

add the following board definition to the boards.txt file. Depending on your

setup, the boards.txt file usually located at arduino-

version\hardware\arduino folder. Replace arduino-version with the right

folder name for your Arduino version installed in your computer.

uview.upload.tool=avrdude

uview.bootloader.tool=avrdude

uview.name=MicroView

uview.upload.protocol=arduino

uview.upload.maximum_size=32256

uview.upload.speed=115200

uview.bootloader.low_fuses=0xff

uview.bootloader.high_fuses=0xde

uview.bootloader.extended_fuses=0x05

uview.bootloader.path=optiboot

uview.bootloader.file=optiboot_atmega328.hex

uview.bootloader.unlock_bits=0x3F

uview.bootloader.lock_bits=0x0F

uview.build.mcu=atmega328p

uview.build.f_cpu=16000000L

uview.build.core=arduino

uview.build.variant=standard

Page 5 of 38

Step 4 - Run Your First Sketch

Select the correct COM port, and you’re ready to upload. Simply cut and

paste the sketch below into the Arduino IDE, and click upload.

#include <MicroView.h>

void setup() {

 uView.begin(); // start MicroView

 uView.clear(PAGE); // clear page

 uView.print("HelloWorld"); // display HelloWorld

 uView.display();

}

void loop () {}

Once you have uploaded your first sketch, it’s time to get started with the

experiments.

Experiment 0: Quick Start

The MicroView comes with a nice quick start experiment preinstalled to get

you learning right out of the box without having to upload any code. Using

just a few components, you can learn the ins and outs of the MicroView in

this first step of the SIK for MicroView.

Unboxing and Setting Up Your MicroView

Remove all parts from the SparkFun Inventor’s Kit for MicroView.

Identify PIN 1 of MicroView based on the following diagram, or refer back to

the MicroView Overview section.

In this guide, when there is a reference for PIN x of MicroView, it is referring

to the above diagram’s PIN number. For example, connect PIN 5 and PIN 8

of the MicroView.

MicroView with Factory USB Programmer

The quickest way to get started is to use the USB programmer included in

the SIK for MicroView. You will also need

� USB Extension Cable

� Breadboard

Insert the MicroView to the factory USB Programmer then connect the

female end of the USB extension cable to the factory USB Programmer

based on the following diagram:

Page 6 of 38

Connect the male end of the USB extension cable to the computer, and the

MicroView demo will start.

MicroView without Factory USB Programmer

If you would like to use the MicroView without the USB Programmer, you

will need the following (please note that the 9V battery and snap connector

are not included in the SIK for MicroView and will need to be purchased

separately):

� 9V Battery

� 9V Snap Connector (Remove the Molex connector, replace both

wires with male header pins if necessary)

� Jumper Wires M/M Pack of 10 (If you need more, you can also get

the Pack of 100)

� Breadboard

Connect the required parts based on the diagram below, leave the battery

snap connector to the last step:

As soon as the battery snap connector is snapped to the 9V battery, the

MicroView demo will start.

Learn How to Use MicroView

The MicroView is factory pre-programmed with a few simple built-in tutorials

to help you get use to inserting jumper wires, resistors and LED. Skip these

tutorials if you are already familiar with them. The simple tutorials will start

after the demo.

Note: The simple tutorials' diagrams are based on MicroView without

the USB Programmer, if you have the USB Programmer, please

ignore the battery, red jumper and black jumper. MicroView with USB

Programmer gets its power supply from the USB Programmer via the

USB cable connected to the computer.

Simple Tutorial 1

Follow the instruction displayed on the MicroView, connect PIN 5 and PIN 8

Page 7 of 38

of the MicroView with a jumper using the following diagram as reference:

Once you have successfully connected PIN 5 and PIN 8 of the MicroView,

a “Well done!” message will be displayed. To proceed to the next simple

tutorial, remove the jumper.

Simple Tutorial 2

Follow the instruction displayed on the MicroView, connect PIN 3 and PIN 8

of the MicroView with a jumper using the following diagram as reference:

Once you have successfully connected PIN 3 and PIN 8 of the MicroView,

a “Well done!” message will be displayed. To proceed to the next simple

tutorial, remove the jumper.

Simple Tutorial 3

Follow the instruction displayed on the MicroView, connect PIN 2 and PIN 8

of the MicroView with a jumper using the following diagram as reference:

Once you have successfully connected PIN 2 and PIN 8 of the MicroView,

a “Well done!” message will be displayed. To proceed to the next simple

tutorial, remove the jumper.

Simple Tutorial 4

Follow the instruction displayed on the MicroView, connect PIN 4 and PIN 8

of the MicroView with a 330 ohm resistor using the following diagram as

reference:

Page 8 of 38

Once you have successfully connected PIN 4 and PIN 8 of the MicroView

with the resistor, a “Well done!” message will be displayed. To proceed to

the next simple tutorial, remove the resistor.

Simple Tutorial 5

Follow the instruction displayed on the MicroView, connect PIN 4 and PIN 8

of the MicroView with a 10K ohm resistor using the following diagram as

reference:

Once you have successfully connected PIN 4 and PIN 8 of the MicroView

with the resistor, a “Well done!” message will be displayed. To proceed to

the next simple tutorial, remove the resistor.

Simple Tutorial 6

Follow the instruction displayed on the MicroView, connect PIN 5 and PIN 8

of the MicroView with a 330 ohm resistor using the following diagram as

reference:

With the resistor still at the same place, insert a LED with both of the pins at

PIN 4 and PIN 5 of MicroView respectively using the following diagram as

reference.

Page 9 of 38

The MicroView is able to detect if the LED is inserted with the correct

polarity, if the LED does not blink, remove the LED and turn the pins the

other way round and connect them to PIN 4 and PIN 5 of the MicroView.

With that, you are now ready to upload code and begin building the

experiments in this guide.

Experiment 1: Blinking an LED

LEDs (light-emitting diodes) are small, powerful lights that are used in many

different applications. To start off the MicroView course, we will work on

blinking an LED. That’s right – it’s as simple as turning a light on and off. It

might not seem like much, but establishing this important baseline will give

you a solid foundation as we work toward more complex experiments. Blink

is the “Hello World” of hardware.

Parts Needed

You will need the following parts:

� 1x LED

� 1x 330Ω Resistor (Orange, Orange, Brown, Gold)

Breadboard Setup

Pay close attention to the polarity of the LED.

Hook up your circuit as pictured below:

Page 10 of 38

MicroView Arduino Code

Upload the following code to your MicroView:

int LED = A2; // declare LED as pin A3 of MicroV

iew

void setup()

{

pinMode(LED, OUTPUT); // set LED pin as OUTPUT

}

void loop()

{

digitalWrite(LED, HIGH); // set LED pin HIGH voltage, L

ED will be on

delay(1000); // delay 1000 ms

digitalWrite(LED, LOW); // set LED pin LOW voltage, LE

D will be off

delay(1000); // delay 1000 ms

}

What You Should See

You should see your LED blink on and off. If it isn’t, make sure you have

assembled the circuit correctly and verified and uploaded the code to your

MicroView or see the troubleshooting tips below.

Code to Note

Before you can use one of the MicroView’s pins, you need to tell the

MicroView whether it is an INPUT or OUTPUT. We use a built-in “function”

called pinMode() to do this.

pinMode(A3, OUTPUT);

When you’re using a pin as an OUTPUT, you can command it to be HIGH

(output 5 volts), or LOW (output 0 volts).

digitalWrite(A3, HIGH);

Arduino programs run in a loop. When the MicroView sees the delay()

command, it will pause the loop for the amount of time (in milliseconds). For

example delay(1000) will stop the loop for one second as there are 1000

ms in one second.

delay(1000);

Page 11 of 38

Troubleshooting

LED Not Lighting Up?

LEDs will only work in one direction. Try taking it out and turning it around

180 degrees (no need to worry, installing it backward does no permanent

harm).

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as

soon as we can: TechSupport@sparkfun.com

Experiment 2: Reading a Potentiometer

In this circuit, you’ll work with a potentiometer. A potentiometer is also

known as a variable resistor. When it’s connected with 5 volts across its two

outer pins, the middle pin outputs a voltage between 0 and 5, depending on

the position of the knob on the potentiometer. A potentiometer is a perfect

demonstration of a variable voltage divider circuit. The voltage is divided

proportionate to the resistance between the middle pin and the ground pin.

In this circuit, you’ll learn how to use a potentiometer and display its value

on the MicroView.

Parts Needed

You will need the following parts:

� 1x Potentiometer

� 3x Jumper Wire

Breadboard Setup

Hook up your circuit as pictured below:

MicroView Arduino Code

Upload the following code to your MicroView:

Page 12 of 38

#include <MicroView.h> // include MicroView library

MicroViewWidget *widget; // create widget pointer

MicroViewWidget *widget2; // create widget pointer

int sensorPin = A1; // select the input pin for the potenti

ometer

int sensorValue = 0; // variable to store the value coming fr

om the sensor

void setup()

{

digitalWrite(sensorPin, HIGH); // Internal Pullup
pinMode(sensorPin, INPUT); // make pin as INPUT

 uView.begin(); // start MicroView

 uView.clear(PAGE); // clear page

 widget = new MicroViewSlider(0, 0, 0, 1024); // make wi

dget as Slider

 widget2 = new MicroViewSlider(0, 20, 0, 1024, WIDGETSTYLE

1); // make widget as Silder STYLE1

 uView.display(); // display the conten

t in the screen buffer

}

void loop()

{

 sensorValue = analogRead(sensorPin); // read sensorPin

 widget>setValue(sensorValue); // set value of se
nsorPin to widget

 widget2>setValue(sensorValue); // set value of se
nsorPin to widget

 uView.display(); // display the con

tent in the screen buffer

}

What You Should See

By turning the potentiometer’s knob you should see on your MicroView’s

display two different styles of widget reflect the reading of the

potentiometer.

Code to Note

A “variable” is a stored value you’ve given a name to. You must introduce,

or “declare” variables before you use them; here we’re declaring a variable

called sensorValue, of type “int” (integer). Don’t forget that variable names

are case-sensitive!

int sensorValue;

We use the analogRead() function to read the value on an analog pin.

analogRead() takes one parameter, the analog pin you want to use

(“sensorPin”), and returns a number (“sensorValue”) between 0 (0 volts)

and 1023 (5 volts).

sensorValue = analogRead(sensorPin);

Troubleshooting

LED Not Lighting Up?

Page 13 of 38

LEDs will only work in one direction. Try taking it out and turning it around

180 degrees (no need to worry, installing it backward does no permanent

harm).

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as

soon as we can: TechSupport@sparkfun.com

Experiment 3: RGB LED

You know what’s even more fun than a blinking LED? Changing colors with

one LED. RGB, or red-green-blue, LEDs have three different color-emitting

diodes that can be combined to create all sorts of colors. In this circuit,

you’ll learn how to use an RGB LED to create unique color combinations.

Depending on how bright each diode is, nearly any color is possible!

Parts Needed

You will need the following parts:

� 1x RGB LED

� 3x 330Ω Resistor (Orange, Orange, Brown, Gold)

� 5x Jumper Wire

Breadboard Setup

Be sure to pay close attention to the polarity of the RGB LED.

Hook up your circuit as pictured below:

Page 14 of 38

MicroView Arduino Code

Page 15 of 38

#include <MicroView.h> // include MicroView library

MicroViewWidget *redWidget, *greenWidget, *blueWidget; // dec

lare 3 widget pointers

int RED = 6; // declare RED LED pin 6

int GREEN = 5; // declare GREEN LED pin 5

int BLUE = 3; // declare BLUE LED pin 3

int fadeStep = 10; // declare fading steps

int dly=20; // declare delay

void setup()

{

 uView.begin(); // start M

icroView

 uView.clear(PAGE); // clear p

age

 redWidget = new MicroViewSlider(0,0,0,255); // declar

e RED widget as slider

 greenWidget = new MicroViewSlider(0,10,0,255); // declar

e GREEN widget as slider

 blueWidget = new MicroViewSlider(0,20,0,255); // declar

e BLUE widget as slider

pinMode(RED, OUTPUT); // set RE

D LED pin as OUTPUT

pinMode(GREEN, OUTPUT); // set GRE

EN LED pin as OUTPUT

pinMode(BLUE, OUTPUT); // set BLU

E LED pin as OUTPUT

}

void loop()

{

int i; // init i variabl

e for general use

// brightening

for (i=0;i<=255;i+=fadeStep) { // step i from 0 t

o 255 by fadeSteps

 redWidget>setValue(i); // set brightness
value for RED LED to widget

 uView.display(); // display the con

tent of the screen buffer

analogWrite(RED,i); // set brightness

value for RED LED to the pin

delay(dly);

 }

// dimming

for (i=255;i>=0;i=fadeStep) { // step i from 25
5 to 0 by fadeSteps

 redWidget>setValue(i);
 uView.display();

analogWrite(RED,i);

delay(dly);

 }

// brightening

for (i=0;i<=255;i+=fadeStep) {

 greenWidget>setValue(i);
 uView.display();

analogWrite(GREEN,i);

delay(dly);

Page 16 of 38

 }

// dimming

for (i=255;i>=0;i=fadeStep) {
 greenWidget>setValue(i);
 uView.display();

analogWrite(GREEN,i);

delay(dly);

 }

// brightening

for (i=0;i<256;i+=fadeStep) {

 blueWidget>setValue(i);
 uView.display();

analogWrite(BLUE,i);

delay(dly);

 }

// dimming

for (i=255;i>=0;i=fadeStep) {
 blueWidget>setValue(i);
 uView.display();

analogWrite(BLUE,i);

delay(dly);

 }

}

What You Should See

You should see your RGB LED go through a colorful sequence of various

colors with the slider widget showing the value of each color channel’s

brightness.

Code to Note

A for() loop is used to step a number across a range, and repeatedly runs

code within the brackets {} until a condition is met. We use for loops to

change over time the intensity of our RGB pin’s brightness. The variable “i”

starts a 0, ends at 255, and increases by the amount of the variable

fadeStep.

for (i=0;i<=255;i+=fadeStep)

{}

The MicroView is very very fast, capable of running thousands of lines of

code each second. To slow it down so that we can see what it’s doing, we’ll

often insert delays into the code. delay() counts in milliseconds; there are

1000 ms in one second.

delay(dly);

Troubleshooting

LED Remains Dark or Shows Incorrect Color

With the four pins of the LED so close together, it’s sometimes easy to

misplace one. Double check each pin is where it should be.

Seeing Red

The red diode within the RGB LED may be a bit brighter than the other two.

To make your colors more balanced, use a higher Ohm resistor. Or adjust

in code. Change

Page 17 of 38

analogWrite(RED,i);

to

analogWrite(RED,i/3);

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as

soon as we can: TechSupport@sparkfun.com

Pulse-Width Modulation

We’ve seen that the Arduino can read analog voltages (voltages between 0

and 5 volts) using the analogRead() function. Is there a way for the

MicroView to output analog voltages as well?

The answer is no… and yes. The MicroView does not have a true analog

voltage output. But, because the MicroView is so fast, it can fake it using

something called PWM (“Pulse-Width Modulation”).

Pins named 3, 5, and 6 within the Arduino code, map to the MicoView

physical pins of 12, 13, and 14. Each of these pins are PWM/analogWrite

out compatible.

PWM varies the amount of time that a blinking pin spends HIGH vs. the

time it spends LOW. If the pin spends most of its time HIGH, a LED

connected to that pin will appear bright. If it spends most of its time LOW,

the LED will look dim. Because the pin is blinking much faster than your eye

can detect, the MicroView creates the illusion of a “true” analog output.

Experiment 4: Push Buttons

In this circuit, we’ll be looking at one of the most common and simple inputs

– a push button. The way a push button works with this MicroView tutorial is

that when the button is pushed, the contacts in the button connects to the

ground, MicroView reads this and reacts accordingly.

Parts Needed

You will need the following parts:

� 1x Push Button

� 2x Jumper Wire

Breadboard Setup

Hook up your circuit as pictured below:

Page 18 of 38

MicroView Arduino Code

#include <MicroView.h> // include MicroView library

int buttonPin = A0; // push button pin

int buttonState = 0; // variable to store the pushbutto

n status

void setup() {

 uView.begin(); // start MicroView

 uView.clear(PAGE); // clear page

pinMode(buttonPin, INPUT); // initialize the pushbutt

on pin as an input

digitalWrite(buttonPin,HIGH); // set Internal pullup
}

void loop() {

 buttonState = digitalRead(buttonPin); // read the state

of the pushbutton value

// check if the pushbutton is pressed.

// if it is not pressed, the buttonState is HIGH:

if (buttonState == HIGH) {

 uView.setCursor(0,0); // set cursor at 0,0

 uView.print("OFF"); // print OFF

 uView.display();

 }

else {

 uView.setCursor(0,0);

 uView.print("ON ");

 uView.display();

 }

}

What You Should See

You should see your MicroView print “ON” if you push the button, and

“OFF” if you let go. (See the code to find out why!) If it isn’t working, make

sure you have assembled the circuit correctly and verified and uploaded the

code to your MicroView or see the troubleshooting tips below.

Code to Note

The digital pins can be used as inputs as well as outputs. Before you do

either, you need to tell the MicroView which direction you’re going.

pinMode(buttonPin, INPUT);

To read a digital input, you use the digitalRead() function. It will return HIGH

if there’s 5V present at the pin, or LOW if there’s 0V present at the pin.

Page 19 of 38

buttonState = digitalRead(buttonPin);

Because we’ve connected the button to GND, it will read LOW when it’s

being pressed. Here we’re using the “equivalence” operator (“==”) to see if

the button is being pressed.

if (buttonState == LOW)

Troubleshooting

Light Not Turning On

The pushbutton is square, and because of this it is easy to put it in the

wrong way. Rotate the button by 90 degrees and see if it starts working.

Underwhelmed

No worries, these circuits are all super stripped down to make playing with

the components easy, but once you throw them together the sky is the limit.

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as

soon as we can: TechSupport@sparkfun.com

Getting Logical

One of the things that makes the MicroView so useful is that it can make

complex decisions based on the input it’s getting. For example, you could

make a thermostat that turns on a heater if it gets too cold, a fan if it gets

too hot, waters your plants if they get too dry, etc.

You can combine these functions to build complex if() statements.

if ((mode == heat) && ((temperature < threshold) || (override

== true))) {

 digitalWrite(HEATER, HIGH);

}

…will turn on a heater if you’re in heating mode AND the temperature is

low, OR if you turn on a manual override. Using these logic operators, you

can program your MicroView to make intelligent decisions and take control

of the world around it! To learn more about logic, check out our tutorial on

digital logic.

To learn more about the different types of buttons and switches you can

use in your projects, visit the Switch Basics tutorial.

Experiment 5: Photoresistors

You’ve already played with a potentiometer, which varies resistance based

on the twisting of a knob. In this circuit, you’ll be using a photoresistor (also

known as a photocell), which changes resistance based on how much light

the sensor receives.

Parts Needed

Page 20 of 38

You will need the following parts:

� 1x Photoresistor

Breadboard Setup

Hook up your circuit as pictured below:

MicroView Arduino Code

#include <MicroView.h> // include MicroView library

MicroViewWidget *widget; // declare widget pointer

int sensorPin = A2; // select the input pin for the photor

esistor

int sensorValue = 0; // variable to store the value coming

from the sensor

void setup() {

pinMode(sensorPin,INPUT); // set sensor pin as INPUT

digitalWrite(sensorPin,HIGH); // set Internal pullup
 uView.begin(); // start MicrView

 uView.clear(PAGE); // clear page

 widget = new MicroViewGauge(32,24,0,1023,WIDGETSTYLE

1); // set widget as gauge STYLE1

}

void loop() {

 sensorValue= analogRead(sensorPin); // read value fro

m sensorPin

 widget>setValue(sensorValue); // set the sensorV
alue to the gauge widget

 uView.display(); // display the wid

get

}

What You Should See

You should see the potentiometer value being displayed on the MicroView’s

display.

Code to Note

A “variable” is a stored value you’ve given a name to. You must introduce,

or “declare” variables before you use them; here we’re declaring a variable

called sensorValue, of type “int” (integer). Don’t forget that variable names

are case-sensitive!

int sensorValue;

Page 21 of 38

We use the analogRead() function to read the value on an analog pin.

analogRead() takes one parameter, the analog pin you want to use

(“sensorPin”), and returns a number (“sensorValue”) between 0 (0 volts)

and 1023 (5 volts).

sensorValue = analogRead(sensorPin);

Troubleshooting

Sporadically Working

This is most likely due to a slightly dodgy connection with the

photoresistor’s pins. This can usually be conquered by pushing the

photoresistor down into the breadboard.

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as

soon as we can: TechSupport@sparkfun.com

Pull-up Resistors

Many of the sensors you’ll use (potentiometers, photoresistors, etc.) are

resistors in disguise. Their resistance changes in proportion to whatever

they’re sensing (light level, temperature, sound, etc.).

The MicroView’s analog input pins measure voltage, not resistance. But we

can easily read voltage by using the MicroView’s internal pull-up resistors.

Visit our pull-up resistors tutorial for more info. To get the most out of your

photoresistor, we recommend replacing one of the resistors in a voltage

divider circuit with a photoresistor.

Experiment 6: Temperature Sensor

A temperature sensor is exactly what it sounds like – a sensor used to

measure ambient temperature. This particular sensor has three pins – a

positive, a ground, and a signal. This is a linear temperature sensor. A

change in temperature of one degree centigrade is equal to a change of 10

millivolts at the sensor output. The TMP36 sensor has a nominal 750 mV at

25°C (about room temperature). In this circuit, you’ll learn how to integrate

the temperature sensor with your MicroView, and use the serial monitor to

display the temperature.

Heads up! When you’re building the circuit be careful not to mix up

the transistor and the temperature sensor, they’re almost identical.

Look for “TMP” on the body of the temperature sensor.

Page 22 of 38

Parts Needed

You will need the following parts:

� 1x TMP36 Temperature Sensor

� 2x Jumper Wire

Breadboard Setup

Hook up your circuit as pictured below:

Be sure to insert the TMP36 in the correct orientation. It is polarized and will

not work if inserted incorrectly.

Once you are sure orientation is correct, you can place the remaining

jumper wires.

Page 23 of 38

MicroView Arduino Code

#include <MicroView.h> // include MicroView library

MicroViewWidget *widget; // declare widget pointer

int sensorPin = A0; // select the input pin for the temper

ature sensor

int sensorValue = 0; // variable to store the value coming

from the sensor

void setup() {

pinMode(sensorPin,INPUT); // set sensor pin as INPUT

 uView.begin(); // start MicroView

 uView.clear(PAGE); // clear page

 widget = new MicroViewGauge(32,24,0,255,WIDGETSTYLE

1); // declare as gauge widget

 uView.drawChar(47,33,67); // Character C is ASCII code 6

7

}

void loop() {

 sensorValue= analogRead(sensorPin); // read se

nsor pin value

float voltage = sensorValue * 5.0; // voltag

e at pin in volt

 voltage /= 1024.0; // voltag

e = sensorValue x (5/1024)

float temperatureC = (voltage 0.5) * 100 ; // C = (vo

ltage 0.5) x 100
 widget>setValue(temperatureC); // set tem
perature value to the gauge

 uView.display(); // displa

y gauge tick

}

What You Should See

As you warm and cool your temperature sensor, you should be able to see

the gauge on your MicroView’s display go up or down.

Troubleshooting

Temperature Value is Unchanging

Try pinching the sensor with your fingers to heat it up or pressing a bag of

ice against it to cool it down.

Still No Success?

A broken circuit is no fun, send us an e-mail and we will get back to you as

soon as we can: TechSupport@sparkfun.com

Experiment 7: Servo Motors

Servos are ideal for embedded electronics applications because they do

one thing very well that motors cannot – they can move to a position

accurately. By varying the pulse width of the output voltage to a servo, you

can move a servo to a specific position. For example, a pulse of 1.5

milliseconds will move the servo 90 degrees. In this circuit, you’ll learn how

to use PWM (pulse width modulation) to control and rotate a servo. To learn

more about PWM, visit our tutorial.

Parts Needed

Page 24 of 38

You will need the following parts:

� 1x Servo Motor

� 3x Jumper Wire

Breadboard Setup

Hook up your circuit as pictured below:

MicroView Arduino Code

#include <MicroView.h> // include MicroView library

#include <Servo.h> // include Servo library

Servo servo; // declare servo object

void setup()

{

 uView.begin(); // start MicroView

 uView.clear(PAGE); // clear page

 servo.attach(6); // servo control pin at D6

}

void loop()

{

 uView.setCursor(0,0); // set cursor to 0,0

 uView.print("Mid "); // display Mid

 uView.display();

 servo.write(90); // about 90 degree

delay(2000); // delay 2 seconds

 uView.setCursor(0,0);

 uView.print("Left ");

 uView.display();

 servo.write(20); // about 20 degree

delay(2000);

 uView.setCursor(0,0);

 uView.print("Mid ");

 uView.display();

 servo.write(90); // about 90 degree

delay(2000);

 uView.setCursor(0,0);

 uView.print("Right");

 uView.display();

 servo.write(160); // about 160 degree

delay(2000);

}

What You Should See

Page 25 of 38

	Contact us

