
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Microcontrollers

XMC1200
Microcontroller Series
for Industrial Applications

Board Manual
V1.0 2014-11

RGB LED Light ing Shield with
XMC1202 for Arduino
 Introduction

 Board Description

 Getting Started

 I²C Master-Slave Communication

 Programming a master Arduino board
to control the RGB LED Lighting Shield

 Setting the Parameters for YOUR LED Lamp

Edition 2014-11

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2014 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.

RGB LED Lighting Shield with XMC1202 for Arduino

Revision History

Revision History

Page or Item Subjects (major changes since previous revision)

V1.0, 2014-11

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™,
HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™,
OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™,
PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by
AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum.
COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.).
EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique
Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL
ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of
MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™
Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of
Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited.
TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™,
PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated.
VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

RGB LED Lighting Shield with XMC1202 for Arduino

Table of Contents

Board Manual 4 V1.0, 2014-11

Table of Contents

Revision History ..3

Table of Contents ..4

About this document...5

1 Introduction ..7
1.1 Key Features ..7
1.2 Key Features of the XMC1200 MCU series...10
1.3 Getting started..10

2 Board Description ..12
2.1 Specifications ...12
2.2 Programming Access ...12
2.3 Schematics and Layout ..13

3 Getting Started ...16

4 I
2
C Master-Slave Communication Protocol ...18

4.1 Brief Description of I
2
C Functions ..18

2.1.1 Command Overview Table...19
4.2 Command Description..20
4.2.1 Colour Intensity (INTENSITY_RED, INTENSITY_GREEN, INTENSITY_BLUE, INTENSITY_RGB)20
4.2.2 Peak Current Reference (CURRENT_RED, CURRENT_GREEN, CURRENT_BLUE)....................22
4.2.3 Off-Time (OFFTIME_RED, OFFTIME_GREEN, OFFTIME_BLUE) ..23
4.2.4 Walk time (WALKTIME) ...25
4.2.5 Dimming (DIMMINGLEVEL) ..26
4.2.6 Fade Rate (FADERATE)..31
4.2.7 DMX512 Control Commands ...32
4.2.8 Changing the RGB LED Shield’s Address (CHANGEADDRESS)...33
4.2.9 Configuring the RGB LED Shield (SAVEPARAMETERS) ...34
4.2.10 Request for Data (I2CREAD commands) ..34
4.2.11 Directly Accessing Registers..35

5 Arduino Compatibility..38
5.1 Simple Test Program ...38
5.2 Safe Configuration (DEFAULT)..40
5.3 Configuring the RGB LED Shield ...41
5.4 Parameters optimized for Traxon Nano Liner XB-9 with 24V Input Voltage......................................42
5.5 Parameters optimized for Traxon Nano Liner XB-18 with 48V Input Voltage....................................46

6 Parameter Setup for YOUR LED Lamp...49

7 Appendix ...52
7.1 Description of the I

2
C Functions Provided ...52

7.1.1 I2CWRITE2BYTES (ADDRESS, COMMAND, DATA)...52
7.1.2 I2CWRITE6BYTES (ADDRESS, COMMAND, DATA, DATA, DATA) ...52
7.1.3 I2CWRITE12BYTES (ADDRESS, COMMAND, DATA, DATA, DATA, DATA, DATA, DATA)53
7.1.4 I2CREAD (ADDRESS, COMMAND)..54
7.1.5 I2CREAD_DIRECTACCESS (ADDRESS, REGISTER ADDRESS) ...54
7.1.6 I2CWRITE_DIRECTACCESS (ADDRESS, COMMAND, REGISTER ADDRESS, DATA)55
7.1.7 I2CCHANGEADDRESS (ADDRESS, NEW ADDRESS)...56
7.1.8 I2CDMX (ADDRESS, DMXCOMMAND)..56
7.1.9 I2CSAVEPARAM (ADDRESS) ..57

RGB LED Lighting Shield with XMC1202 for Arduino

Table of Contents

Board Manual 5 V1.0, 2014-11

About this document

Scope and purpose

This document describes how to use the RGB LED Shield with XMC1202 for Arduino.

Intended audience

Engineers, hobbyists and students who want to add flicker-free LED control to Arduino projects.

Related information

Table 1 Supplementary links and document references

Reference Description

XMC Microcontrollers 32-bit Industrial Microcontroller based on ARM®
Cortex™-M from Infineon

XMC1000 Reference Manuals Documents section contains reference information for
XMC1000 microcontrollers

XMC Development Support XMC Development Tools

Arduino Home Page All information on Arduino

Arduino Uno Product Page Arduino Uno R3 description

Infineon Arduino Page Boards offered by Infineon for Arduino

DAVE™ Development Platform All details on DAVE™ IDE

J-Link Debug Probes Product Page Contains information on J-Link Debug Probes

http://www.infineon.com/xmc
http://www.infineon.com/xmc1000
http://www.infineon.com/xmc-dev
http://www.arduino.cc/
http://arduino.cc/en/Main/ArduinoBoardUno
http://www.infineon.com/arduino
http://www.infineon.com/dave
http://www.segger.com/jlink-debug-probes.html

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 6 V1.0, 2014-11

RGB LED Lighting Shield
Introduction

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 7 V1.0, 2014-11

1 Introduction

The RGB LED Lighting Shield adds brilliant flicker-free light control to Arduino projects. The Shield
communicates with a master board via the I2C protocol as a slave. Either an Arduino Uno R3 or the
XMC1100 Boot Kit from Infineon can be used as the master.

On board the RGB LED Shield is an XMC1202 microcontroller, featuring a dimming control peripheral
for LED lighting applications, known as the Brightness and Colour Control Unit (BCCU). It contains 3
independent dimming engines and 9 independent Pulse Density Modulated (PDM) channels.
1 dimming engine and 6 channels are used in this shield.

There are 10 basic sets of I2C commands to control the shield from the master board, and so control
the connected LED Lamp with various lighting effects. There are 22 user configurable parameters
and the freedom to connect different LED Lamps.

The RGB LED Lighting Shield can be easily connected to any Arduino board or the XMC1100 boot Kit
via headers and DMX512 control is enabled as a mounting option using an interface chip.

Figure 1 RGB LED Shield photo

1.1 Key Features

The RGB LED Shield has the following features:

 Behaves as an I2C slave.

− An Arduino Uno R3, XMC1100 Boot Kit, or similar board connected to the shield can
communicate via the SDA and SCL pins as the master.

 Drives and dims up to 3 LED strings with constant current.

 Able to change the colour of a connected LED lamp(if the strings are of different colours; for
example red, green, blue).

 High speed flicker-free modulation dimming on each string with Pulse-Density Modulation (PDM).

 Very high power density due to high switching frequency, leading to a small area.

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 8 V1.0, 2014-11

 Up to 48VDC input.

− The RGB LED Shield is a DC-DC buck LED driver so the input voltage must be higher than the
forward voltage of the LED strings.

 Configurable current amplitude.

 Up to 700mA average current on each string.

 Configurable current ripple.

 I²C interface with configurable 10-bit slave address (with a default value of 0x15E)
to increases the range of devices that can be connected to the bus line.

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 9 V1.0, 2014-11

RGB LED Shield driving an LED wall washer

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 10 V1.0, 2014-11

1.2 Key Features of the XMC1200 MCU series

 32-bit ARM® Cortex™-M0, 32MHz.

 Hardware Interconnect Matrix.

 16kB ~ 200kB Flash with ECC and 16kB RAM.

 Peripherals running up to 64MHz.

 Timer/PWM: CCU4, CCU8, POSIF.

 Analog-mixed Signal: 12-bit ADCs, 12-bit DACs, ACMPs.

 Communication: I2C, SPI, Dual-/Quad-SPI, SCI, I2S, LIN.

 Application specific: LED Color Control Engine, Touch.

 AES 128-bit secure loader for SW IP protection.

 Operating: 1.8 ~ 5.5Volt and -40° ~ 105°C.

 Free DAVE™ IDP and DAVE Apps (code library) open to 3rd party tools and the wide ARM®

ecosystem.

1.3 Getting started

The RGB LED Shield uses high frequency peak-current control with fixed off-times to generate DC
LED currents. Although this is highly efficient, low cost, and is suitable for high-speed dimming, it
results in the output current being dependent on the input and output voltage ratio. The output current
can be adjusted by configuring the peak-current reference and off-time parameters.

A virgin RGB LED Shield is pre-configured with safe peak-current reference and off-time parameters.
With the safe parameters, the LED current will not be ‘too high’ at high input voltages.

The safe parameter values have been tested with LED loads that have a forward voltage of 6V at
input voltages up to 48V. At this input, the pre-configured average LED current is measured up to
300mA.

Note: LED strings that have a forward voltage lower than 6V and current capability lower than 300mA
should not be connected without re-configuring the shield first.

The safe parameters will however result in a discontinuous current with most LED strings and input
voltages. For low-ripple continuous current, the off-time and peak-current reference parameters must
be configured by the user once the LED lamp and input voltages have been selected.

Generally, the current in any of the strings should never exceed 1A, the peak-current reference
parameters should be kept below 0x80, and off-time parameters should be kept above 0x10.

Attention: Improper configuration may result in permanent damage.

RGB LED Lighting Shield with XMC1202 for Arduino

Introduction

Board Manual 11 V1.0, 2014-11

RGB LED Lighting Shield
Board Description

RGB LED Lighting Shield with XMC1202 for Arduino

Board Description

Board Manual 12 V1.0, 2014-11

2 Board Description

The RGB LED Shield can be controlled by programming a master Arduino board, such as the Arduino
Uno R3 or the XMC1100 Boot Kit.

Figure 2 RGB LED Shield Interfaces

2.1 Specifications

Dimensions 2.7 x 2.1 inches (standard Arduino footprint)

Input voltage up to 48V

Output Current per string up to 1A peak and 700mA average

Order Number KIT_LED_XMC1202_AS_01

2.2 Programming Access

The on-board XMC1202 microcontroller can be programmed over SWD via the debug interfaces
using a J-Link debug probe from Segger that supports ARM® Cortex™-M0 (Figure 3).

Flash content can be updated over SWD using the TASKING debugger integrated in DAVE™.

Figure 3 Segger J-Link debug probe connected to the RGB LED Shield

RGB LED Lighting Shield with XMC1202 for Arduino

Board Description

Board Manual 13 V1.0, 2014-11

2.3 Schematics and Layout

Figure 4 RGB LED Shield – Schematics

Figure 5 RGB LED Shield – Top and Bottom Layers

RGB LED Lighting Shield with XMC1202 for Arduino

Board Description

Board Manual 14 V1.0, 2014-11

Figure 6 RGB LED Shield – Components

Figure 7 RGB LED Shield – BOM

RGB LED Lighting Shield with XMC1202 for Arduino

Board Description

Board Manual 15 V1.0, 2014-11

Getting Started

RGB LED Lighting Shield with XMC1202 for Arduino

Getting Started

Board Manual 16 V1.0, 2014-11

3 Getting Started

You can bring YOUR LED lamp to life in seven simple steps.

STEP 1. Choose a high-power light engine

a. Maximum three channels (e.g. RGB)

b. Minimum 300mA LED current rating

NOTE: If the current rating is <300mA you can easily configure your RGB LED
Lighting Shield using the instructions in chapter 6 (Parameter Setup for YOUR LED
Lamp).

c. Maximum 48V forward voltage per LED channel

STEP 2. Choose a DC adapter

a. Input voltage to the RGB LED Lighting Shield: 12V ~ 48V DC

b. Maximum 48V forward voltage per LED channel

NOTE: DC input voltage to the RGB LED Lighting Shield should be higher than the
forward voltage of the LED channels.

STEP 3. Solder pin headers on the RGB LED Lighting Shield

STEP 4. Connect the RGB LED Lighting Shield to

a. Arduino Uno R3

b. XMC1100 Boot Kit

STEP 5. Program Arduino Uno R3 or XMC1100 Boot Kit

a. Example Sketches and projects: www.infineon.com/arduino

i. Upload RGBLED_2_SAFE.ino to Arduino Uno R3

ii. Upload RGBLED_2_Safe_XMC11.zip to XMC1100 Boot Kit

STEP 6. Connect the DC adapter to the RGB LED Lighting Shield

STEP 7. Turn on the power

http://www.infineon.com/arduino

RGB LED Lighting Shield with XMC1202 for Arduino

Getting Started

Board Manual 17 V1.0, 2014-11

I2C Master-Slave
Communication Protocol

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 18 V1.0, 2014-11

4 I2C Master-Slave Communication Protocol

Command words have been defined in software. Parameters can be changed by sending these
commands from the master to the RGB LED Lighting Shield. These commands can be sent to the
shield from the master board using pre-defined functions.

4.1 Brief Description of I2C Functions

The I2C commands together with the required data can be sent to the RGB LED Lighting Shield from
the master board using the functions provided. These functions encapsulate the data in the necessary
format for transfer via the I2C communication protocol.

The functions are provided for the Arduino Uno R3 and the XMC1100 Boot Kit.

The RGB LED Shield’s I2C address is a 10-bit address and is pre-configured to be 0x15E. To address
it, the master will send 2 bytes of address:

 The first 7 bits of the first byte are 11110XX, of which XX are the two most significant bytes of the
10-bit address. The 8th bit determines the read or write direction of the data transfer.

 The second byte is the lower 8-bits of the address.

Write functions

I2CWRITE2BYTES, I2CWRITE6BYTES, I2CWRITE9BYTES, I2CWRITE_DIRECTACCESS,
I2CCHANGEADDRESS, I2CDMX and I2CSAVEPARAM

 The I2C START condition is sent, followed by the 1st byte of the RGB LED Shield address byte, a
‘zero’ bit to indicate a transmission request and the 2nd address byte.

 The appropriate command word is then sent, followed by the data and a STOP condition to
terminate the transfer. Data is always put on the SDA line as a byte that is 8-bits long. 16-bit data
is sent as 2 bytes and 32-bit data as 4 bytes.

Read functions

I2CREAD, I2CREAD_DIRECTACCESS

 The I2C START condition is sent, followed by the 1st byte of the RGB LED Shield address byte, a
‘zero’ bit to indicate a transmission request and the 2nd address byte.

 The appropriate command word is then sent.

 A repeated START condition is then sent followed by the 1st byte of the RGB LED Shield address
byte, a ‘zero’ bit, the 2nd address byte and the 1st address byte with a ‘one’ bit to request for data.

 Acknowledge pulses are subsequently sent.

 A STOP condition is sent to terminate the transfer.

Note: A detailed description of each function can be found in the Appendix.

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 19 V1.0, 2014-11

2.1.1 Command Overview Table

The following tables provides a short description of the commands that can be sent with the functions.

Table 2 Commands and Functions

I
2
C Commands Description I

2
C Function used

INTENSITY_RED Change relative colour intensity of red channel I2CWRITE2BYTES

INTENSITY_GREEN Change relative colour intensity of green channel I2CWRITE2BYTES

INTENSITY_BLUE Change relative colour intensity of blue channel I2CWRITE2BYTES

INTENSITY_RGB Change relative colour intensity of red, green and blue
channels

I2CWRITE6BYTES

CURRENT_RED Change peak-current reference of red channel I2CWRITE2BYTES

CURRENT_GREEN Change peak-current reference of green channel I2CWRITE2BYTES

CURRENT_BLUE Change peak-current reference of blue channel I2CWRITE2BYTES

OFFTIME_RED Change off-time of red channel I2CWRITE2BYTES

OFFTIME_GREEN Change off-time of green channel I2CWRITE2BYTES

OFFTIME_BLUE Change off-time of blue channel I2CWRITE2BYTES

WALKTIME Change walktime of red, green and blue channels I2CWRITE2BYTES

DIMMINGLEVEL Change brightness level I2CWRITE2BYTES

FADERATE Change time taken to dim to 0% I2CWRITE2BYTES

CHANGEADDRESS Change address of RGB LED Shield I2CWRITE2BYTES

DMXOFF Disable DMX512 control I2CDMX

DMXON Enable DMX512 control I2CDMX

DMXSLOT Change first relevant slot of DMX512 control I2CWRITE2BYTES

DMX8BIT Read 8-bits of colour information from each DMX512 slot I2CWRITE6BYTES

DMX16BIT Read 16-bits of colour information from each DMX512 slot I2CWRITE12BYTES

READ_CONFIG Query if RGB LED Shield has been configured I2CREAD

READ_INTENSITY_RED Request for relative colour intensity of red channel I2CREAD

READ_INTENSITY_GREEN Request for relative colour intensity of green channel I2CREAD

READ_INTENSITY_BLUE Request for relative colour intensity of blue channel I2CREAD

READ_CURRENT_RED Request for peak current reference of red channel I2CREAD

READ_CURRENT_GREEN Request for peak current reference of green channel I2CREAD

READ_CURRENT_BLUE Request for peak current reference of blue channel I2CREAD

READ_OFFTIME_RED Request for off-time of red channel I2CREAD

READ_OFFTIME_GREEN Request for off-time of green channel I2CREAD

READ_OFFTIME_BLUE Request for off-time of blue channel I2CREAD

READ_WALKTIME Request for linear walk time I2CREAD

READ_DIMMINGLEVEL Request for dimming level I2CREAD

READ_FADERATE Request for rate of dimming I2CREAD

READ_DMX Query if DMX512 control is enabled I2CREAD

READ_DMXSLOT Request for first relevant slot in DMX512 control I2CREAD

READ_DMXBIT Request for number of bits of colour information expected
from DMX512 control

I2CREAD

READ_DMXREDH Request for slot which stores upper 8-bits of red colour
information

I2CREAD

READ_DMXREDL Request for slot which stores lower 8-bits of red colour
information

I2CREAD

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 20 V1.0, 2014-11

I
2
C Commands Description I

2
C Function used

READ_DMXGREENH Request for slot which stores upper 8-bits of green colour
information

I2CREAD

READ_DMXGREENL Request for slot which stores lower 8-bits of green colour
information

I2CREAD

READ_DMXBLUEH Request for slot which stores upper 8-bits of blue colour
information

I2CREAD

READ_DMXBLUEL Request for slot which stores lower 8-bits of blue colour
information

I2CREAD

DIRECTACCESS_READ Request for value contained in a specific register I2CREAD_DIRECTA
CCESS

DIRECTACCESS_MOVE Move value into a specific register I2CWRITE_DIRECT
ACCESS

DIRECTACCESS_AND Bitwise AND operation on a user specified value and the
value in a specific register

I2CWRITE_DIRECT
ACCESS

DIRECTACCESS_OR Bitwise OR operation on a user specified value and the
value in a specific register

I2CWRITE_DIRECT
ACCESS

SAVEPARAMETERS Save current parameters to Flash memory I2CSAVEPARAM

4.2 Command Description

4.2.1 Colour Intensity (INTENSITY_RED, INTENSITY_GREEN, INTENSITY_BLUE,
INTENSITY_RGB)

The colour intensities of the Red, Green and Blue colour channels on the RGB LED Lighting Shield
can be changed.

Three of the 9 available BCCU channels on the XMC1202 microcontroller on-board the RGB LED
Shield are used to control the colour intensities. A change in the relative colour intensity in any of
three channels will change the colour of the lamp attached to the shield. Colour intensities are 12-bit
values. The maximum intensity of each channel is 0xFFF.

Figure 8 PDM Channels in the microcontroller on board the RGB LED Shield

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 21 V1.0, 2014-11

INTENSITY_RED

Changes the relative colour intensity of the red channel.

To set the red channel to maximum intensity, send the following from the master:

I2CWRITE2BYTES(INTENSITY_RED, 0xFFF);

INTENSITY_GREEN

Changes the relative colour intensity of the green channel.

To set the green channel to maximum intensity, send the following from the master:

I2CWRITE2BYTES(INTENSITY_GREEN, 0xFFF);

INTENSITY_BLUE

Changes the relative colour intensity of the blue channel.

To set the blue channel to maximum intensity, send the following from the master

I2CWRITE2BYTES(INTENSITY_BLUE, 0xFFF);

INTENSITY_RGB

Changes the relative colour intensities of the red, green and blue channel.

To enable white light, send the following from the master

I2CWRITE2BYTES(INTENSITY_RGB, 0xFFF);

Recommended Colour Scheme

To ensure constant lamp brightness for different colors, keep the sum of intensities of the three
channels constant.

Table 3

Colour Channel Intensity Possible commands to be sent from the master

Red Green Blue

Red 0xFFF 0x000 0x000 I2CWRITE2BYTES(ADDRESS, INTENSITY_RED, 0xFFF);

I2CWRITE2BYTES(ADDRESS, INTENSITY_GREEN, 0x000);

I2CWRITE2BYTES(ADDRESS, INTENSITY_BLUE, 0x000);

OR

I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0xFFF,

0x000, 0x000);

Green 0x000 0xFFF 0x000 I2CWRITE2BYTES(ADDRESS, INTENSITY_RED, 0x000);

I2CWRITE2BYTES(ADDRESS, INTENSITY_GREEN, 0xFFF);

I2CWRITE2BYTES(ADDRESS, INTENSITY_BLUE, 0x000);

OR

I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x000,

0xFFF, 0x000);

Blue 0x000 0x000 0xFFF I2CWRITE2BYTES(ADDRESS, INTENSITY_RED, 0x000);

I2CWRITE2BYTES(ADDRESS, INTENSITY_GREEN, 0x000);

I2CWRITE2BYTES(ADDRESS, INTENSITY_BLUE, 0xFFF);

OR

I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x000,

0x000, 0xFFF);

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 22 V1.0, 2014-11

Colour Channel Intensity Possible commands to be sent from the master

Red Green Blue

Yellow 0x800 0x800 0x000 I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x800,

0x800, 0x000)

Cyan 0x000 0x800 0x800 I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x000,

0x800, 0x800)

Magenta 0x800 0x000 0x800 I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x800,

0x000, 0x800)

White 0x555 0x555 0x555 I2CWRITE6BYTES(ADDRESS, INTENSITY_RGB, 0x555,

0x555, 0x555)

4.2.2 Peak Current Reference (CURRENT_RED, CURRENT_GREEN,
CURRENT_BLUE)

The LED current can be controlled by the RGB LED shield. When attached to the shield, the LED
lamp is connected to a 3-channel DCDC buck LED driver.

An inductor, Schottky diode and MOSFET are used, in an inverted buck topology, to control the LED
current with high efficiency. As with every DC-DC buck driver, this design results in ripples in the LED
current. In the RGB LED shield, the ripple frequency is approximately 1-1.5 MHz to support fast
modulation dimming and achieve high power density.

Figure 9 Peak Current Control

To adjust the LED current, the potential before the shunt resistor is fed into an on-chip comparator.
The inductor in the setup causes the LED current to increase linearly and proportionately to the input
voltage. As the current increases, the potential before the shunt resistor increases. When this
potential exceeds the peak current reference value, the MOSFET is switched off by the MOSFET
control output signal which switches to 0V. Current will continue to flow through the free-wheeling
diode as the inductor’s magnetic field collapses. During this time, the current decreases linearly and
proportionately to the forward voltage of the LED string. The process restarts when the MOSFET is
switched on after a fixed off-time.

The RGB LED Shield will change the peak current reference parameter when the CURRENT_RED,
CURRENT_GREEN or CURRENT_BLUE commands and the 12-bit peak-current reference
parameter are sent from the master. A reference value of 0xFFF corresponds to 5V, and 0x000
corresponds to 0V.

To calculate the reference voltage, use:

Reference Value / 4096 * 5V

The maximum peak current reference value that can be set is 0x80, which is approximately 0.15625V.
Should a value greater than this be sent to the RGB LED Shield, the value will be ignored and peak

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 23 V1.0, 2014-11

current reference set to 0x80. This corresponds to a theoretical peak current of 781mA flowing
through the MOSFET.

CURRENT_RED

Changes the peak current reference parameter of the red channel.

To change the reference value to approximately 0.12V, send the following from the master:

I2CWRITE2BYTES(ADDRESS, CURRENT_RED, 0x64); // 0.12 = 100 / 4096 * 5

CURRENT_GREEN

Changes the peak current reference parameter of the green channel.

To change the reference value to approximately 0.12V, send the following from the master:

I2CWRITE2BYTES(ADDRESS, CURRENT_GREEN, 0x64);

CURRENT_BLUE

Changes the peak current reference parameter of the blue channel.

To change the reference value to approximately 0.12V, send the following from the master:

I2CWRITE2BYTES(ADDRESS, CURRENT_BLUE, 0x64);

4.2.3 Off-Time (OFFTIME_RED, OFFTIME_GREEN, OFFTIME_BLUE)

This parameter adjusts the ripple of the LED current.

When the comparator in the shield detects that the current in the lamp has reached the peak current
reference, the MOSFET is switched off. This off-state is extended for a fixed duration determined by
the off-time parameter value. In this off-state, the circuit is switched off and the LED current
decreases.

The smaller the off-time value, the shorter the off-state, the less the LED current decreases, leading
to a valley current which is closer in value to the peak current. As a result, the ripple in the current is
reduced.

Conversely, when the off-state is extended for a longer duration, the LED current falls more, resulting
in a smaller valley current, and a larger ripple.

Ideally, the LED current should not exceed the peak-current reference.

Figure 10 LED Current Ripple

Due to non-negligible propagation delays in the comparator and the connected on-chip circuits, the
LED current peaks invariably exceed the peak-current reference. There is a time delay between the
LED current reaching the peak-current reference value and the comparator detecting it. A short off-
state can result in the current not dropping enough before the MOSFET is switched on again. The
comparator may no longer be able to accurately detect the peak current reference, leading to

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 24 V1.0, 2014-11

exceedingly high currents. To avoid catastrophically high currents, the off-state is generated after the
LED current has dropped below the peak reference level.

Figure 11 Propagation Delay leading to LED Current Over-shooting Peak Current Reference

The MOSFET will remain off while a counter counts up to the off-time parameter value. When the off-
time value is reached, the counter resets and the MOSFET is switched on.

The counter counts at a frequency of 64MHz (resolution of 15.625ns).

The circuit will be in the generated off-state for 1μs when the off-time value is set to:

0x40 (1 / 64M * 64)

OFFTIME_RED

Changes the fixed off-time parameter of the red channel.

To change the off-time to 1μs, send the following from the master:
I2CWRITE2BYTES(ADDRESS, OFFTIME_RED, 0x40);

OFFTIME_GREEN

Changes the fixed off-time parameter of the green channel.

To change the off-time to 1μs, send the following from the master:
I2CWRITE2BYTES(ADDRESS, OFFTIME_GREEN, 0x40);

OFFTIME_BLUE

Changes the fixed off-time parameter of the blue channel.

To change the off-time to 1μs, send the following from the master:
I2CWRITE2BYTES(ADDRESS, OFFTIME_BLUE, 0x40);

RGB LED Lighting Shield with XMC1202 for Arduino

I2C Master-Slave Communication Protocol

Board Manual 25 V1.0, 2014-11

4.2.4 Walk time (WALKTIME)

A linear walk is used to smoothly change the colour intensities. The intensities change linearly over
time. The time taken for the channels to reach their target intensities is called the linear walk time.
The linear walk time can be adjusted.

The RGB LED Shield calculates the actual linear walk time with the formula:

Linear Walk Time = WALKTIME * 0.01024

A WALKTIME value of 0x10 means that the actual linear walk time is 164ms. The channels will take
164ms to reach their target intensities.

Figure 12 Walk time – Time taken for channels to reach their target intensities

WALKTIME

This command can only be used to change the WALKTIME parameter for all three channels together.

To change the linear walk time to 164ms, send the following from the master:

I2CWRITE2BYTES(ADDRESS, WALKTIME, 0x10);

	Contact us

