
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

© Freescale Semiconductor, Inc., 2006. All rights reserved.

AN1950
Rev 4, 11/2006

Freescale Semiconductor
Application Note

Water Level Monitoring
by: Michelle Clifford, Applications Engineer

Sensor Products, Tempe, AZ

INTRODUCTION

Many washing machines currently in production use a
mechanical sensor for water level detection. Mechanical
sensors work with discrete trip points enabling water level
detection only at those points. The purpose for this reference
design is to allow the user to evaluate a pressure sensor for
not only water level sensing to replace a mechanical switch,
but also for water flow measurement, leak detection, and other
solutions for smart appliances. This system continuously
monitors water level and water flow using the temperature
compensated MPXM2010GS pressure sensor in the low cost
MPAK package, a dual op-amp, and the MC68HC908QT4,
eight-pin microcontroller.

SYSTEM DESIGN

Pressure Sensor

The pressure sensor family has three levels of integration
� Uncompensated, Compensated and
Integrated. For this design, the MPXM2010GS compensated
pressure sensor was selected because it has both
temperature compensation and calibration circuitry on the
silicon, allowing a simpler, yet more robust, system circuit
design. An integrated pressure sensor, such as the
MPXV5004G, is also a good choice for the design eliminating
the need for the amplification circuitry.

Figure 1. Water Level Reference Design Featuring a

Pressure Sensor

The height of most washing machine tubs is 40 cm,
therefore the water height range that this system will be

measuring is between 0�40 cm. This corresponds to a
pressure range of 0�4 kPa. Therefore, the MPXM2010GS
was selected for this system. The sensor sensitivity is
2.5 mV/kPa, with a full-scale span of 25 mV at the supply
voltage of 10 VDC. The full-scale output of the sensor changes
linearly with supply voltage, so a supply voltage of 5 V will
return a full-scale span of 12.5 mV.

(VS actual / VS spec) * VOUT full-scale spec = VOUT full-scale

(5.0 V/ 10 V) x 25 mV = 12.5 mV

Since this application will only be utilizing 40 percent of the
pressure range, 0�4kPa, our maximum output voltage will be
40 percent of the full-scale span.

VOUT FS * (Percent FS Range) = VOUT max

12.5 mV * 40% = 5.0 mV

The package of the pressure sensor is a ported MPAK
package. This allows a tube to be connected to the sensor and
the tube is connected to the bottom of the tub. This isolates the
sensor from direct contact with the water. The small size and
low cost are additional features making this package a perfect
fit for this application.

Figure 2. A Ported Pressure Sensor

AN1950

Sensors
2 Freescale Semiconductor

Amplifier Induced Errors

The sensor output needs to be amplified before being
inputted directly to the microcontroller through an eight-bit A/D
input pin. To determine the amplification requirements, the
pressure sensor output characteristics and the 0-5 V input
range for the A/D converter had to be considered.

The amplification circuit uses three op-amps to add an
offset and convert the differential output of the MPXM2010GS
sensor to a ground-referenced, single-ended voltage in the
range of 0�5.0 V.

The pressure sensor has a possible offset of ±1 mV at the
minimum rated pressure. To avoid a nonlinear response when
a pressure sensor chosen for the system has a negative offset
(VOFF), we added a 5.0 mV offset to the positive sensor output
signal. This offset will remain the same regardless of the
sensor output. Any additional offset the sensor or op-amp
introduces is compensated for by software routines invoked
when the initial system calibration is done.

To determine the gain required for the system, the
maximum output voltage from the sensor for this application
had to be determined. The maximum output voltage from the
sensor is approximately 12.5 mV with a 5.0 V supply since the
full-scale output of the sensor changes linearly with supply
voltage. This system will have a maximum pressure of 4 kPa
at 40 cm of water. At a 5.0 V supply, we will have a maximum
sensor output of 5 mV at 4 kPa of pressure. To amplify the
maximum sensor output to 5.0 V, the following gain is needed:

Gain = (Max Output needed) / (Max Sensor Output
and Initial Offset) = 5.0 V / (0.005 V + 0.005) = 500

The gain for the system was set for 500 to avoid railing from
possible offsets from the pressure sensor or the op-amp.

The Voltage Outputs from the sensor are each connected
to a non-inverting input of an op-amp. Each op-amp circuit has
the same resistor ratio. The amplified voltage signal from the
negative sensor lead is VA. The resulting voltage is calculated
as follows:

VA = (1+R8/R6) * V4

= (1+10/1000) * V4

= (1.001) * V4

The amplified voltage signal from the positive sensor lead
is VB. This amplification adds a small gain to ensure that the
positive lead, V2, is always greater than the voltage output
from the negative sensor lead, V4. This ensures the linearity
of the differential voltage signal.

VB = (1+R7/R5) * V2 � (R7/R5) * VCC

= (1+10/1000) * V2 + (10/1000)*(5.0 V)

= (1.001) * V2 + 0.005 V

The difference between the positive sensor voltage, VB,
and the negative sensor voltage, VA is calculated and
amplified with a resulting gain of 500.

VC = (R12/R11) * (VB � VA)

= (500 K/1K) * (VB � VA)

= 500 * (VB � VA)

The output voltage, VC, is connected to a voltage follower.
Therefore, the resulting voltage, VC, is passed to an A/D pin of
the microcontroller.

The range of the A/D converter is 0 to 255 counts. However,
the A/D Values that the system can achieve are dependent on
the maximum and minimum system output values:

Count = (VOUT � VRL) / (VRH � VRL) x 255

where VXdcr = Transducer Output Voltage

VRH = Maximum A/D voltage

VLH = Minimum A/D voltage

Count (0 mm H20) = (2.5 � 0) / (5.0 � 0) * 255 = 127

Count (40 mm H20) = (5.0 � 0) / (5.0 � 0) * 255 = 255

Total # counts = 255 � 127 = 127 counts.

The resolution of the system is determined by the mm of
water represented by each A/D count. As calculated above,
the system has a span of 226 counts to represent water level
up to and including 40 cm. Therefore, the resolution is:

Resolution = mm of water / Total # counts

= 400mm/127 counts = 3.1 mm per A/D count

Table 1. MPXM2010D OPERATING CHARACTERISTICS (VS = 10 VDC, TA = 25°C unless otherwise noted, P1 > P2)

Characteristic Symbol Min Typ Max Unit

Pressure Range POP 0 � 10 kPa

Supply Voltage VS � 10 16 Vdc

Supply Current IO � 6.0 � mAdc

Full Scale Span VFSS 24 25 26 mV

Offset Voff -1.0 � 1.0 mV

Sensitivity DV/DP � 2.5 � mV/kPa

Linearity � -1.0 � 1.0 %VFSS

AN1950

Sensors
Freescale Semiconductor 3

Figure 3. Amplification Scheme

Microprocessor

To provide the signal processing for pressure values, a
microprocessor is needed. The MCU chosen for this
application is the MC68HC908QT4. This MCU is perfect for
appliance applications due to its low cost, small eight-pin
package, and other on-chip resources. The MC68HC908QT4
provides: a four-channel, eight-bit A/D, a 16-bit timer, a
trimmable internal timer, and in-system FLASH programming.

The central processing unit is based on the high
performance M68HC08 CPU core and it can address 64
Kbytes of memory space. The MC68HC908QT4 provides
4096 bytes of user FLASH and 128 bytes of random access
memory (RAM) for ease of software development and
maintenance. There are five bi-directional input/output lines
and one input line shared with other pin features.

The MCU is available in eight-pin as well as 16-pin
packages in both PDIP and SOIC. For this application, the
eight-pin PDIP was selected. The eight-pin PDIP was chosen
for a small package, eventually to be designed into
applications as the eight-pin SOIC. The PDIP enables the
customer to reprogram the software on a programming board
and retest.

Display

Depending on the quality of the display required, water
level and water flow can be shown with two LEDs. If a higher
quality, digital output is needed, an optional LCD interface is
provided on the reference board. Using a shift register to hold
display data, the LCD is driven with only three lines outputted
from the microcontroller: an enable line, a data line, and a
clock signal. The two LEDs are multiplexed with the data line
and clock signal

Figure 4. Multiplexed LCD Circuit

Multiplexing of the microcontroller output pins allows
communication of the LCD to be accomplished with three pins
instead of eight or 11 pins of I/O lines usually needed. With an
eight-bit shift register, we are able to manually clock in eight
bits of data. The enable line (EN) is manually accepted when
eight bytes have been shifted in, telling the LCD the data on
the data bus is available to execute.

The LEDs are used to show pressure output data by
displaying binary values corresponding to a pressure range.
Leak detection, or water-flow speed, is displayed by blinking a
green LED at a speed relating to the speed of water flow. The
red LED displays the direction of water flow. Turning the red
LED off signifies water flowing into the tub. Turning the red
LED on signifies water flowing out of the tub, or alternatively,
there is a leak.

Digital values for water height, rate of water flow, and
calibration values are displayed if an LCD is connected to the
board

R5

10K

R7

10Ω

R8

10Ω
R6

10K

R11

1K

R9

1K R10

500K

R12

500K

V2sensor

V4sensor

VOUT

VCC

C5

0.1µF

6

5

7

2

3

1

9

10

813

12

14

11

4

VCC

VA

VC

VB

+

-

+

-

+

-

+

-

HC908QT4 HC164

 LCD

EN
RS
RW

DB0
DB1

DB2

DB3

DB4

DB5

DB6

DB7

A

B

CLK

PTA4

PTA3

PTA5

R3R2
1K1K

AN1950

Sensors
4 Freescale Semiconductor

OTHER

This system is designed to run on a 9.0 V battery. It
contains a 5.0 V regulator to provide 5.0 V to the pressure

sensor, microcontroller, and LCD. The battery is mounted on
the back of the board using a space saving spring battery clip.

Smart Washer Software

This application note describes the first software version
available. However, updated software versions may be
available with further functionality and menu selections.

Software User Instructions

When the system is turned on or reset, the microcontroller
will flash the selected LED and display the program title on the
LCD for five seconds, or until the select (SEL) button is
pushed. Then the menu screen is displayed. Using the select
(SEL) pushbutton, it is easy to scroll through the menu options
for a software program. To run the water level program, use
the select button to highlight the Water Level option, then
press the enter (ENT) pushbutton. The Water Level program
will display current water level, the rate of flow, a message if
the container is Filling, Emptying, Full, or Empty, and a
scrolling graphical history displaying data points representing
the past forty level readings.

The Water Level is displayed by retrieving the digital
voltage from the internal A/D Converter. This voltage is
converted to pressure in millimeters of water and then
displayed on the LCD.

Calibration and Calibration Software

To calibrate the system, a two-point calibration is
performed. The sensor will take a calibration point at 0 mm
and at 40 mm of water. Depressing both the SEL and ENT

buttons on system power-up enters the calibration mode. At
this point, the calibration menu is displayed with the previously
sampled offset voltage. To recalibrate the system, expose the
sensor to atmospheric pressure and press the SEL button
(PB1). At this point, the zero offset voltage will be sampled and
saved to a location in the microcontroller memory. To obtain
the second calibration point, place the end of the plastic tube
from the pressure sensor to the bottom of a container holding
40 mm of water. Then press the ENT button (PB2). The
voltage output will be sampled, averaged and saved to a
location in memory. To exit the calibration mode, press the
SEL (PB1) button.

Figure 5. Water Level System Set-Up

for Demonstration

Table 2. Parts List

Ref. Qty Description Value Vendor Part No.

U2 1 Pressure Sensor 1 Freescale MPXM2010GS

C1 1 Vcc Cap 0.1µf Generic �

C2 1 Op-Amp Cap 0.1µf Generic �

C3 1 Shift Register Cap 0.1µf Generic �

D1 1 Red LED � Generic �

D2 1 Green LED � Generic �

S2, S3 2 Pushbuttons � Generic �

U1 1 Quad Op-Amp � ADI AD8544

U3 1 Voltage Regulator 5.0 V Fairchild LM78L05ACH

U4 1 Microcontroller 8-pin Freescale MC68HC908QT4

R1 1 ¼ W Resistor 22 K Generic �

R2 1 ¼ W Resistor 2.4 K Generic �

R3, R6 2 ¼ W Resistor 1.2 M Generic �

R4, R5 2 ¼ W Resistor 1.5 K Generic �

R7, R8 2 ¼ W Resistor 10 K Generic �

R9, R10 2 ¼ W Resistor 1.0 K Generic �

U6 1 LCD (Optional) 16 x 2 Seiko L168200J000

U5 1 Shift Registor � Texas Instruments 74HC164

AN1950

Sensors
Freescale Semiconductor 5

Converting Pressure to Water Level

Hydrostatic pressure being measured is the pressure at the
bottom of a column of fluid caused by the weight of the fluid
and the pressure of the air above the fluid. Therefore, the
hydrostatic pressure depends on the air pressure, the fluid
density and the height of the column of fluid.

P= Pa + ρ g ∆h

where P = pressure

Pa = pressure

ρ = mass density of fluid

g = 9.8066 m/s^2

h = height of fluid column

To calculate the water height, we can use the measured
pressure with the following equation, assuming the
atmospheric pressure is already compensated for by the
selection of the pressure sensor being gauge:

∆h = P \ ρ g

Software Function Descriptions

Main Function

The main function calls an initialization function Allinit calls
a warm-up function, Warmup, to allow extra time for the LCD
to initialize, then checks if buttons PB1 and PB2 are
depressed. If they are depressed concurrently, it calls a
calibration function Calib. If they are not both pressed, it
enters the main function loop. The main loop displays the
menu, moves the cursor when the PB1 is pressed and
enters the function corresponding to the highlighted menu
option when PB2 is depressed.

Calibration Function

The calibration function is used to obtain two calibration
points. The first calibration point is taken when the head tube
is not placed in water to obtain the pressure for 0 mm of water.
The second calibration point is obtained when the head tube
is placed at the bottom of a container with a height of 160 mm.
When the calibration function starts, a message appears
displaying the A/D values for the corresponding calibration
points currently stored in the flash. To program new calibration
points, press PB1 to take 256 A/D readings at 0 mm of water.
The average is calculated and stored in a page of flash. Then
the user has the option to press PB1 to exit the calibration
function or obtain the second calibration point. To obtain the
second calibration point, the head tube should be placed in
160 mm of water, before depressing PB2 to take 256 A/D
readings. The average is taken and stored in a page of flash.
Once the two readings are taken, averaged, and stored in the
flash, a message displays the two A/D values stored.

Level Function

The Level function initializes the graphics characters. Once
this is complete, it continues looping to obtain an average A/D
reading, displaying the Water Level, the Water Flow, and a
Graphical History until simultaneously depressing both PB1
and PB2 to return to the main function.

The function first clears the 40 pressure readings it updates
for the Graphical History. The history then enters the loop first
displaying eight special characters, each containing five data
points of water level history. The function adcbyta is called to
obtain the current averaged A/D value. The function LfNx is
called to convert the A/D value to a water level. It is then
compared to the calibration points, the maximum and
minimum points, to determine if the container is full or empty.
If true, then it displays the corresponding message. The
current water level is compared to the previous read and
displays the message filling if it has increased, emptying if it
has decreased, and steady if it has not changed.

The water level calculation has to be converted to decimal
in order to display it in the LCD. To convert the water level
calculation to decimal, the value is continually divided with the
remainder displayed to the screen for each decimal place. To
display the Rate of Water Flow, the sign of the value is first
determined. If the value is negative, the one's complement is
taken, a negative sign is displayed, and then the value is
continually divided to display each decimal place. If the
number is positive, a plus sign.

Level Function

The Level function initializes the graphics characters. Once
this is complete, it continues looping to obtain an
average A/D reading, displaying the Water Level, the Water
Flow, and a Graphical History until simultaneously depressing
both PB1 and PB2 to return to the main function.

The function first clears the 40 pressure readings it updates
for the Graphical History. The history then enters the loop first
displaying eight special characters, each containing five data
points of water level history. The function adcbyta is called to
obtain the current averaged A/D value. The function LfNx is
called to convert the A/D value to a water level. It is then
compared to the calibration points, the maximum and
minimum points, to determine if the container is full or empty.
If true, then it displays the corresponding message. The
current water level is compared to the previous read and
displays the message filling if it has increased, emptying if it
has decreased, and steady if it has not changed.

The water level calculation has to be converted to decimal
in order to display it in the LCD. To convert the water level
calculation to decimal, the value is continually divided with the
remainder displayed to the screen for each decimal place. To
display the Rate of Water Flow, the sign of the value is first
determined. If the value is negative, the one's complement is
taken, a negative sign is displayed, and then the value is
continually divided to display each decimal place. If the
number is positive, a plus sign is displayed to maintain the
display alignment and the value is continually divided to
display each decimal place.

The most complicated part of this function is updating the
graphics history display. The characters for the 16x2 LCD
chosen for this reference design are 8x5 pixels by default.
Therefore, each special character that is created will be able
to display five water level readings. Since the height of the
special character is eight pixels, each vertical pixel position
will represent a water level in increments of 20 mm.

Resolution = (H1 � H0) / D

AN1950

Sensors
6 Freescale Semiconductor

where H1 and H2 are the maximum and minimum water levels
respectively and D is the possible datapoints available per
character.

Resolution = (160mm� 0mm) / 8.0 = 20 mm / data point.

The graphical history is displayed using the eight special
characters. To update the graphics, all the characters have to
be updated. The characters are updated by first positioning a
pixel for the most recent water level reading in the first column
of the first character. Then the four right columns of the first
character are shifted to the right. The pixel in the last column
of that character is carried to the first column of the next
character. This column shifting is continued until all 40 data
points have been updated in the eight special characters.

LfNx Function

The LfNx function calculates the water level from the
current A/D pressure reading. The A/D Pressure value is
stored in Register A before this function is called. Using the
A/D value and the calibration values stored in the flash, the
water level is calculated from the following function:

RBRA: = (NX �N1) * 160 / (N2 � N1),

where NX is the current A/D Value

N1 is the A/D Value at 0 mm H20

N2 is the A/D Value at 160 mm H20

To simplify the calculation, the multiplication is done first.
Then the function NdivD is called to divide the values.

NdivD Function

The NdivD function performs a division by counting
successive subtractions of the denominator from the
numerator to determine the quotient. The denominator is
subtracted from the numerator until the result is zero. If there
is an overflow, the remainder from the last subtraction is the
remainder of the division.

wrflash and ersflsh Functions

The wrflash and ersflsh functions are used to write to and
erase values from the flash. For more information regarding
flash functionality, refer to Section Four, Flash Memory from
the MC68HC908QY4/D Databook.

ALLINIT Function

The Allinit function disables the COP for this version of
software, sets the data direction bits, and disables the data to
the LCD and turns off the LCD enable line. It also sets up the
microcontroller's internal clock to half the speed of the bus
clock. See Section 15, Computer Operating Properly, of the
MC68908QT4 datasheet for information on utilizing the COP
module to help software recover from runaway code.

WARMUP Function

The Warmup function alternates the blinking of the two
LEDs ten times. This gives the LCD some time to warm up.
Then the function warmup calls the LCD initialization function,
lcdinit.

bintasc Function

The binasc function converts a binary value to its ascii
representation.

A/D Functions

The A/D functions are used to input the amplified voltage
from the pressure sensor from channel 0 of the A/D converter.
The function adcbyti will set the A/D control register, wait for
the A/D reading and load the data from the A/D data register
into the accumulator. The function adcbyta is used to obtain an
averaged A/D reading by calling adcbyti 256 times and
returning the resulting average in the accumulator.

LCD Functions

The LCD hardware is set up for multiplexing three pins from
the microcontroller using an eight-bit shift register. Channels
three, four, and five are used on port A for the LCD enable (E),
the LCD reset (RS), and the shift register clock bit,
respectively. The clock bit is used to manually clock data from
channel four into the eight-bit shift register. This is the same
line as the LCD RS bit because the MSB of the data is low for
a command and high for data. The RS bit prepares the LCD
for instructions or data with the same bit convention. When the
eight bits of data are available on the output pins of the shift
register, the LCD enable (E) is toggled to receive the data.

The LCD functions consist of an initialization function lcdinit
which is used once when the system is started and five output
functions. The functions lcdcmdo and lcdchro both send a
byte of data. The function shiftA is called by both lcdcmdo and
lcdchro to manually shift eight bits of data into the shift register.
The function lcdnibo converts the data to binary before
displaying. The lcdnibo displays a byte of data by calling
lcdnibo for each nibble of data. The function lcdnibo enables
strings to be easily added to the software for display. The
function accepts a comma- delimited string of data consisting
of 1�2 commands for clearing the screen and positioning the
cursor. It then continues to output characters from the string
until the @ symbol is found, signally the end of the string.

CONCLUSION

The water level reference design uses a MPXM2010GS
pressure sensor in the low cost MPAK package, the low cost,
eight-pin microcontroller, and a quad op-amp to amplify the
sensor output voltage. This system uses very few
components, reducing the overall system cost. This allows for
a solution to compete with a mechanical switch for water level
detection but also offer additional applications such as
monitoring water flow for leak detection, and the other
applications for smart washing machines.

AN1950

Sensors
Freescale Semiconductor 7

SOFTWARE LISTING
;NitroWater 2.0 24Jan03
;--------------
;
;Water Level Reference Design
;****************************
; - uses 908QT4 (MC68HC908QT4) and MPAK (MPXM2010GS)
; CALIB: 2-point pressure calibration (0mm and 160mm)
; LEVEL: displays water level, flow, and graphics
; UNITS: allows user to select between cm and inches
;
;__
ram equ $0080 ;memory pointers
rom equ $EE00
vectors equ $FFDE
;__
porta equ $00 ;registers
ddra equ $04
config2 equ $1E
config1 equ $1F
tsc equ $20
tmodh equ $23
icgcr equ $36
adscr equ $3C
adr equ $3E
adiclk equ $3F
flcr equ $FE08
flbpr equ $FFBE
;__
 org $FD00 ;flash variables
N1 db $96 ;1st calibration pt. = 0mm
 org $FD40
N2 db $F6 ;2nd calibration pt. = 160mm
 org $FD80
;__
 org vectors
 dw cold ;ADC
 dw cold ;Keyboard
 dw cold ;not used
 dw cold ;not used
 dw cold ;not used
 dw cold ;not used
 dw cold ;not used
 dw cold ;not used
 dw cold ;not used
 dw cold ;not used
 dw cold ;TIM Overflow
 dw cold ;TIM Channel 1
 dw cold ;TIM Channel 0
 dw cold ;not used
 dw cold ;IRQ
 dw cold ;SWI
 dw cold ;RESET ($FFFE)
;__
 org ram
BB ds 1 ;variables
flshadr ds 2
flshbyt ds 1
memSP ds 2
mem03 ds 2

AN1950

Sensors
8 Freescale Semiconductor

CNT ds 1
Lgfx ds 1
weath ds 1
UnitType ds 1
UnitDiv ds 1
UnitEmpt ds 1
UnitFull ds 1
ram0 ds 1
NC ds 1
NB ds 1
NA ds 1
DC ds 1
DB ds 1
DA ds 1
MB ds 1
MA ds 1
OB ds 1
OA ds 1
RB ds 1
RA ds 1
P0C ds 1
P0B ds 1
P0A ds 1
NPTR ds 1
ramfree ds 80 ;used both for running RAM version of wrflash & storing 40 readings
;__
;__
;__
 org rom
cold: rsp ;reset SP if any issues (all interrupt vectors point here)
 jsr ALLINIT ;general initialization
 jsr WARMUP ;give LCD extra time to initialize

 brset 1,porta,nocalib
 brset 2,porta,nocalib
 jmp CALIB ;only do calibration if SEL & ENT at reset

nocalib: ldhx #msg01 ;otherwise skip and show welcome messages
 jsr lcdstro ;"Reference Design" msg
 jsr del1s ;wait 1s
 ldhx #msg01a ;"Water Level" msg
 jsr lcdstro
 jsr del1s ;wait 1s

initCM: ldhx #$A014 ;initialize default units to cm ($A0=cm, $3F=in)
 sthx UnitType ;UnitType set to $A0; UnitDiv set to $14
 ldhx #$039E
 sthx UnitEmpt ;UnitEmpt set to $03; UnitFull set to $9E

MENU: ldhx #msg01b
 jsr lcdstro ;Menu msg
 clr RA ;menu choice=0 to begin with
 lda #$0D
 jsr lcdcmdo ;blink cursor on menu choice

luke: ldx RA ;get current menu choice
 clrh
 lda menupos,x ;and look up corresponding LCD address
 jsr lcdcmdo ;reposition cursor

AN1950

Sensors
Freescale Semiconductor 9

warm: brclr 1,porta,PB1 ;check for SEL
 brclr 2,porta,PB2 ;or for ENT
 bclr 4,porta ;otherwise
 bset 5,porta ;turn on "SEL" LED
 jsr del100ms ;delay
 bset 4,porta ;toggle LEDs
 bclr 5,porta ;"ENT" now on: means choice is SEL ***or*** ENT
 jsr del100ms ;delay and repeat until SEL or ENT
 bra warm

PB1: inc RA ;***SEL*** toggles menu choices
 lda RA
 cmp #$02 ;menu choices are $00 and $01
 bne PB1ok
 clr RA ;back to $00 when all others have been offered
PB1ok: bclr 4,porta
 bclr 5,porta ;LEDs off
 jsr del100ms ;wait a little bit
 brclr 1,porta,PB1ok ;make sure they let go of SEL
 bra luke

PB2: bclr 4,porta ;***ENT*** confirms menu choice
 bclr 5,porta ;LEDs off
 lda RA ;get menu choice
 bne skip00
 jmp LEVEL ;do ===LEVEL=== if choice=$01
skip00: jmp UNITS ;do ===UNITS=== if choice=$00
;__
;__
CALIB: lda #$01
 jsr lcdcmdo
 clr ram0

 ldhx #msg05 ;===CALIB=== 2-point calibration
 jsr lcdstro ;Calibration current values
 lda N1 ;0mm
 jsr lcdbyto
 lda #'/'
 jsr lcdchro
 lda N2 ;160mm
 jsr lcdbyto
 bset 4,porta
 bset 5,porta ;LEDs on
lego1: brclr 1,porta,lego1
lego2: brclr 2,porta,lego2
 bclr 4,porta
 bclr 5,porta ;LEDs off when both SEL & ENT are released
 jsr del1s
 jsr del1s ;wait 2s
 ldhx #msg05a
 jsr lcdstro ;show instructions
waitPB1: brset 2,porta,no2 ;if ENT is not pressed, skip
 jmp nocalib ;if ENT is pressed then cancel calibration
no2: brclr 1,porta,do1st ;if SEL is pressed then do 1st point cal
 bra waitPB1 ;otherwise wait for SEL or ENT
do1st: ldhx #msg05b ;1st point cal: show values
 jsr lcdstro
 clr CNT ;CNT will count 256 A/D readings
 clr RB
 clr RA ;RB:RA will contain 16-bit add-up of those 256 values

AN1950

Sensors
10 Freescale Semiconductor

do256: lda #$C9
 jsr lcdcmdo ;position LCD cursor at the right spot
 lda CNT
 deca
 jsr lcdbyto ;display current iteration $FF downto $00
 lda #':'
 jsr lcdchro
 jsr adcbyti ;get reading
 add RA
 sta RA
 lda RB
 adc #$00
 sta RB ;add into RB:RA (16 bit add)
 jsr lcdbyto ;show RB
 lda RA
 jsr lcdbyto ;then RA
 dbnz CNT,do256 ;and do 256x
 lsl RA ;get bit7 into carry
 bcc nochg ;if C=0 then no need to round up
 inc RB ;otherwise round up
nochg: lda RB ;we can discard RA: average value is in RB
 ldhx #N1 ;point to flash location
 jsr wrflash ;burn it in!
 ldhx #msg05c ;ask for 160mm
 jsr lcdstro
waitPB2: brset 2,porta,waitPB2 ;wait for ENT
 ldhx #msg05d ;2nd point cal: show values
 jsr lcdstro
 clr CNT ;ditto as 1st point cal
 clr RB
 clr RA
do256b: lda #$C9
 jsr lcdcmdo
 lda CNT
 deca
 jsr lcdbyto
 lda #':'
 jsr lcdchro
 jsr adcbyti
 add RA
 sta RA
 lda RB
 adc #$00
 sta RB
 jsr lcdbyto
 lda RA
 jsr lcdbyto
 dbnz CNT,do256b
 lsl RA
 bcc nochg2
 inc RB
nochg2: lda RB
 cmp N1 ;compare N2 to N1
 bne validcal ;if different, we are OK
 ldhx #msg05e ;otherwise warn of INVALID CAL!
 jsr lcdstro
 jsr del1s
 jsr del1s
 jsr del1s ;wait 2s
 jmp CALIB ;try cal again

AN1950

Sensors
Freescale Semiconductor 11

validcal: ldhx #N2
 jsr wrflash ;burn N2 into flash
 ldhx #msg05 ;and display new current cal values from flash
 jsr lcdstro
 lda N1 ;0mm value
 jsr lcdbyto
 lda #'/'
 jsr lcdchro
 lda N2 ;160mm value
 jsr lcdbyto
 jsr del1s
 jsr del1s
 jmp nocalib ;done!
;__
;__
LEVEL: lda #$01 ;===LEVEL=== main routine: displays level, flow & graphics
 jsr lcdcmdo ;clear screen
 lda #$0C
 jsr lcdcmdo ;cursor off

 lda #$88 ;position cursor at LCD graphics portion
 jsr lcdcmdo ;(2nd half of first line)
 clra ;and write ascii $00 through $07
fillgfx: jsr lcdchro ;which contain the graphics related to
 inca ;40 different readings
 cmp #$08 ;do all 8
 bne fillgfx

LVL: ldhx #ramfree ;point to 40 pressure readings
 lda #$28 ;count down from 40
purge: clr 0,x ;clear all those locations
 incx ;next (H cannot change: we are in page0 RAM)
 dbnza purge
 jsr adcbyta ;get averaged A/D reading (i.e. NX)
 jsr LfNx ;convert to level and
 sta Lgfx ;store in "Level graphics"

LVLwarm: bset 4,porta
 bset 5,porta ;LEDs on during this cycle

 ldhx #ramfree ;point to 40 pressure readings
 mov #$27,RA ;count down from 39
shiftgfx: lda 1,x ;take location+1
 sta 0,x ;and move to location+0, i.e. shift graphics left
 incx ;next X (once again: we are in page 0, no need to worry about H)
 dbnz RA,shiftgfx ;do this 39x

 jsr adcbyta ;get averaged A/D reading (i.e. NX)
 jsr LfNx ;LX:=(NX-N1)*ConversionValue/(N2-N1)
 mov RA,OA ;store result in OA

 clr RB ;RB will contain graphic pixels (default=$00)
 cmp UnitEmpt ;if <UnitEmpty (preset value = empty or almost)
 bcs Lzero ;then "empty" (no pixels)
 cmp UnitFull ;if >=UnitFull (preset value = full or almost)
 bcc Lsat ;then "full" (pixel $80=bit 7)
 clrh ;otherwise determine one of 8 graphic values
 ldx UnitDiv ;UnitDiv is roughly full range/8
 div ;in order to give 8 values
 mov #$01,RB ;but now value has to be converted to pixel

AN1950

Sensors
12 Freescale Semiconductor

 cmp #$01 ;if result is $01
 beq Lzero ;then display it directly
makeRB lsl RB ;otherwise shift 1 pixel bit to the right place
 dbnza makeRB ;by counting down result of division
 bra Lzero
Lsat: mov #$80,RB ;if full then position highest pixel
Lzero: lda RB
 ldhx #ramfree+$27 ;last of the 40
 sta 0,x ;put it at then end of the 40 bytes (new value), all others were shifted left

 clr weath ;weath will contain dynamic change based also on value of RB
 lda RB
 beq donew ;if RB=$00 then weath=$00: "empty"
 cmp #$80
 bne notfull ;
 mov #$01,weath ;if $80 then weath=$01: "full"
 bra donew
notfull mov #$02,weath ;prepare for "steady" if L(i)=L(i-1)
 lda OA ;get current level value L(i)
 cmp Lgfx ;compare to previous level value L(i-1)
 beq donew
 mov #$03,weath ;"filling" if L(i)>L(i-1)
 bcc donew
 mov #$04,weath ;"emptying" otherwise

donew: lda OA ;current level L(i)
 sub Lgfx ;minus previous level L(i-1)
 sta MA ;establishes rate: L(i)-L(i-1)
 mov RA,Lgfx ;update L(i-1)
;- -
golevel: lda #$80 ;******** now let's display the level in decimal ********
 jsr lcdcmdo ;start on 1st character of 1st line

 lda OA ;get current level value
 clrh
 ldx #$64 ;and divide by 100
 div
 bne over100 ;if result is >0 then handle "hundreds"
 lda #$20 ;otherwise display space (remove leading 0)
 jsr lcdchro
 bra lnext
over100: jsr lcdnibo ;display "hundreds" digit
lnext: pshh
 pula ;move remainder into A
 clrh
 ldx #$0A ;divide by 10
 div
 jsr lcdnibo ;display "tens" digit
 lda #'.'
 jsr lcdchro ;display decimal point
 pshh
 pula
 jsr lcdnibo ;and first decimal
 lda UnitType ;check for cm ($A0) vs. in (#3F)
 cmp #$3F
 beq dsplIN

dsplCM: lda #'c'
 jsr lcdchro
 lda #'m'

AN1950

Sensors
Freescale Semiconductor 13

 jsr lcdchro ;display "cm" for centimeters
 bra goflow

dsplIN: lda #'i'
 jsr lcdchro
 lda #'n'
 jsr lcdchro ;display "in" for inches
;- -
goflow: lda #$C0 ;******** now let's display the flow in decimal ********
 jsr lcdcmdo ;position cursor on 1st character 2nd line
 lda MA ;get flow
 lsla ;test sign of rate (in MA)
 bcc positiv ;if positive, then it's easy

 lda MA ;otherwise 1's complement of MB
 coma
 inca
 sta MA
 cmp #$64 ;check to see if >100
 bcs not2lo ;if not we are OK
 lda #'<' ;otherwise display that we exceeded min rate
 jsr lcdchro ;that LCD can display (<9.9)
 lda #$63 ;force value to 99
 sta MA
 bra goconv

not2lo: lda #'-'
 jsr lcdchro ;display that minus sign
 bra goconv

positiv: lda MA
 cmp #$64 ;check to see if >100
 bcs not2hi ;if not we are OK
 lda #'>' ;otherwise display that we exceeded max rate
 jsr lcdchro ;that LCD can display (>9.9)
 lda #$63 ;force value to 99
 sta MA
 bra goconv

not2hi: lda #'+'
 jsr lcdchro ;display the plus sign (to keep alignment)

goconv: lda MA ;get flow
 clrh
 ldx #$0A ;and divide by 10
 div
 jsr lcdnibo ;display "tens" digit
 lda #'.'
 jsr lcdchro ;display decimal point
 pshh
 pula
 jsr lcdnibo ;and first decimal
 lda UnitType ;check for cm ($A0) vs. in (#3F)
 cmp #$3F
 beq dsplINf

dsplCMf: lda #'c'
 jsr lcdchro
 lda #'m'
 bra reusef

AN1950

Sensors
14 Freescale Semiconductor

dsplINf: lda #'i'
 jsr lcdchro
 lda #'n'
reusef: jsr lcdchro
 lda #'/'
 jsr lcdchro
 lda #'s'
 jsr lcdchro
;- -
gfxupdt: lda #$40 ;======== Graphics Update: tough stuff ===========
 jsr lcdcmdo ;prepare to write 8 bytes into CGRAM starting at @ $40
ldhx#ramfree;point to 40 pressure readings (this reuses wrflash RAM)
 mov #$08,DA ;DA will count those 8 CGRAM addresses
cg8: lda 0,x
 sta NC
 lda 1,x
 sta NB
 lda 2,x
 sta NA
 lda 3,x
 sta DC
 lda 4,x
staDB;readings 0-4 go into NC,NB,NA,DC,DB and will form 1 LCD special
character
 mov #$08,RA ;RA will count the 8 bits
fill:clrRB;start with RB=0, this will eventually contain the data for CGRAM
 rol NC
 rolRB
 rol NB
 rolRB
 rol NA
 rolRB
 rol DC
 rolRB
 rol DB
rolRB;rotate left those 5 values and use carry bits to form RB (tough part)
 lda RB
jsrlcdchro;and put it into CGRAM
dec RA ;do this 8 times to cover all 8 bits
 bne fill
 incx
 incx
 incx
 incx
 incx ;now point to next 5 values for next CGRAM address (5 values per
 character)
 dec DA ;do this for all 8 CGRAM characters
 bne cg8

ldaweath;get weather variable and decide which message to display
 cmp #$04
 bne try3210
 ldhx #msg02e ;if $04
 bra showit
try3210: cmp #$03
 bne try210
 ldhx #msg02d ;if $03
 bra showit
try210: cmp #$02

AN1950

Sensors
Freescale Semiconductor 15

 bne try10
 ldhx #msg02c ;if $02
 bra showit
try10: cmp #$01
 bne try0
 ldhx #msg02b ;if $01
 bra showit
try0: ldhx #msg02a ;otherwise this one
showit: jsr lcdstro
 jsr del1s ;1s between pressure/altitude readings
 brset 1,porta,contin ;exit only if SEL
 brset 2,porta,contin ;and ENT pressed together
 jmp MENU
contin: jmp LVLwarm
;__
LfNx: sub N1 ;*** PX=f(NX,N2,N1) ***
 ldx UnitType ;$A0=160 for cm, $3F=63 for in
 mul
 sta NA
 stx NB
 clr NC ;NCNBNA:=(NX-N1)* (conversion value: 160 or 63)

 lda N2
 sub N1
 sta DA
 clr DB
 clr DC
 jsr NdivD ;RBRA:=(NX-N1)*(conversion value)/(N2-N1)

 lda RA
 cmp #$C8 ;check to see if result is negative
 bcs noovflw ;if <$C8 we are OK
ovflw: clr RA ;otherwise force level to 0!
noovflw: lda RA
 rts
;__
NdivD: clr RA ;RBRA:=NCNBNA/DCDBDA
 clr RB ;destroys NCNBNA and DCDBDA
keepatit: lda RA
 add #$01
 sta RA
 lda RB
 adc #$00
 sta RB ;increment RB:RA
 lda NA
 sub DA
 sta NA
 lda NB
 sbc DB
 sta NB
 lda NC
 sbc DC
 sta NC ;NC:NB:NA:=NC:NB:NA-DC:DB:DA
 bcc keepatit ;keep counting how many times until overflow
 lda RA
 sub #$01
 sta RA
 lda RB
 sbc #$00
 sta RB ;we counted once too many, so undo that

AN1950

Sensors
16 Freescale Semiconductor

 lsr DC
 ror DB
 ror DA ;divide DC:DB:DA by 2
 lda NA
 add DA
 sta NA
 lda NB
 adc DB
 sta NB
 lda NC
 adc DC
 sta NC ;and add into NC:NB:NA
 lsla
 bcs nornd ;if carry=1 then remainder<1/2 of dividend
 lda RA
 add #$01
 sta RA
 lda RB
 adc #$00
 sta RB ;otherwise add 1 to result
nornd: rts
;__
;__
UNITS: brclr 2,porta,UNITS ;let go of ENT first
 lda #$01 ;===UNITS=== Allows user to select units: inches or cm
 jsr lcdcmdo ;clear screen

 ldhx #msg03
 jsr lcdstro ;Unit Choice menu
 jsr del100ms
 clr RA ;menu choice=0 to begin with
 lda #$0D
 jsr lcdcmdo ;blink cursor on menu choice

uluke: ldx RA ;get current menu choice
 clrh
 lda menupos,x ;and look up corresponding LCD address
 jsr lcdcmdo ;reposition cursor

uwarm: brclr 1,porta,uPB1 ;check for SEL
 brclr 2,porta,uPB2 ;or for ENT
 bclr 4,porta ;otherwise
 bset 5,porta ;turn on "SEL" LED
 jsr del100ms ;delay
 bset 4,porta ;toggle LEDs
 bclr 5,porta ;"ENT" now on: means choice is SEL ***or*** ENT
 jsr del100ms ;delay and repeat until SEL or ENT
 bra uwarm

uPB1: inc RA ;***SEL*** toggles menu choices
 lda RA
 cmp #$02 ;menu choices are $00 and $01
 bne uPB1ok
 clr RA ;back to $00 when all others have been offered
uPB1ok: bclr 4,porta
 bclr 5,porta ;LEDs off
 jsr del100ms ;wait a little bit
 brclr 1,porta,uPB1ok ;make sure they let go of SEL
 bra uluke

AN1950

Sensors
Freescale Semiconductor 17

uPB2: bclr 4,porta ;***ENT*** confirms menu choice
 bclr 5,porta ;LEDs off
 lda RA ;get menu choice
 bne SelIN

SelCM: ldhx #$A014 ;initialize default units to cm ($A0=cm, $3F=in)
 sthx UnitType ;UnitType set to $A0; UnitDiv set to $14
 ldhx #$039E
 sthx UnitEmpt ;UnitEmpt set to $03; UnitFull set to $9E
 lda #$01
 jsr lcdcmdo ;clear LCD
 ldhx #msg03a
 jsr lcdstro ;and show choice selection to be cm
 jsr del1s ;wait 1s
 jmp LEVEL ;let's do LEVEL now...

SelIN: ldhx #$3F08 ;initialize default units to in ($A0=cm, $3F=in)
 sthx UnitType ;UnitType set to $3F; UnitDiv set to $08
 ldhx #$033D
 sthx UnitEmpt ;UnitEmpt set to $03; UnitFull set to $3D
 lda #$01
 jsr lcdcmdo ;clear LCD
 ldhx #msg03b
 jsr lcdstro ;and show choice selection to be in
 jsr del1s ;wait 1s
 jmp LEVEL ;let's do LEVEL now...
;__
;__
;__

;**
;**
;******** GENERAL Routines **
;**
;**

;-------- INITIALIZATION Routines -----------------------------------
; ALLINIT: initializes HC08, sets I/O, resets LCD and LEDs
; -------
ALLINIT: bset 0,config1 ;disable COP
 mov #$38,ddra ;PTA0=MPAK,PTA1=SEL,PTA2=ENT,PTA3=E,PTA4=RS,PTA5=clk
 mov #$30,adiclk ;ADC clock /2
 bclr 3,porta ;E=0
 bclr 4,porta ;grn=OFF; RS=0
 bclr 5,porta ;red=OFF; CLK=0
 rts
;- -
; WARMUP: waits half a second while it flashes LEDs, and allows LCD to get ready
; ------
WARMUP: bclr 4,porta
 bclr 5,porta ;LEDs off
 lda #$0A ;prepare to do this 10x
tenx: jsr del25ms ;delay
 bclr 4,porta
 bset 5,porta ;alternate on/off
 jsr del25ms
 bset 4,porta
 bclr 5,porta ;and off/on
 dbnza tenx ;10 times so the LCD can get ready (slow startup)
 jsr lcdinit ;now initialize it

AN1950

Sensors
18 Freescale Semiconductor

 bclr 4,porta
 bclr 5,porta ;LEDs off
 rts
;-------- WRITE TO EEPROM Routines ----------------------------------
; wrflash: burns A into flash at location pointed by H:X
; -------
wrflash: sthx flshadr ;this is the address in the flash
 sta flshbyt ;and the byte we want to put there
 tsx
 sthx memSP ;store SP in memSP, so it can be temporarily used as a 2nd index register
 ldhx #ramfree+1 ;SP now points to RAM (remember to add 1 to the address!!!, HC08 quirk)
 txs ;SP changed (careful not to push or call subroutines)
 ldhx #ersflsh ;H:X points to beginning of flash programming code
doall: lda 0,x ;get 1st byte from flash
 sta 0,sp ;copy it into RAM
 aix #$0001 ;HX:=HX+1
 ais #$0001 ;SP:=SP+1
 cphx #lastbyt ;and continue until we reach the last byte
 bne doall
 ldhx memSP ;once done, restore the SP
 txs
 jsr ramfree ;and run the subroutine from RAM, you cannot write the flash while
 rts ;running a code in it, so the RAM has to take over for that piece
;- -
;*************** THE FOLLOWING CODE WILL BE COPIED INTO AND WILL RUN FROM RAM ******
ersflsh: lda #$02 ;textbook way to erase flash
 sta flcr
 lda flbpr
 clra
 ldhx flshadr
 sta 0,x
 bsr delayf
 lda #$0A
 sta flcr
 bsr delayf
 lda #$08
 sta flcr
 bsr delayf
 clra
 sta flcr
 bsr delayf
pgmflsh: lda #$01 ;textbook way to program flash
 sta flcr
 lda flbpr
 clra
 ldhx flshadr
 sta 0,x
 bsr delayf
 lda #$09
 sta flcr
 bsr delayf
 lda flshbyt
 ldhx flshadr
 sta 0,x
 bsr delayf
 lda #$08
 sta flcr
 bsr delayf
 clra
 sta flcr

AN1950

Sensors
Freescale Semiconductor 19

 bsr delayf
 rts
delayf: ldhx #$0005 ;wait 5x20us
 mov #$36,tsc ;stop TIM & / 64
 sthx tmodh ;count H:X x 20us
 bclr 5,tsc ;start clock
delayfls: brclr 7,tsc,delayfls
 rts ;this RTS will move from RAM back into EEPROM
lastbyt: nop
;*************** END OF CODE THAT WILL BE COPIED INTO AND WILL RUN FROM RAM ******
;-------- DELAY Routines --
; del1s: generates a 1s delay
; -----
del1s: pshh
 pshx
 ldhx #$C350 ;1 second delay=$C350=50000 x 20us
 bra delmain
;- -
; del100ms: generates a 100ms delay
; --------
del100ms: pshh
 pshx
 ldhx #$1388
 bra delmain
;- -
; del50ms: generates a 50ms delay
; -------
del50ms: pshh
 pshx
 ldhx #$09C4
 bra delmain
;- -
; del25ms: generates a 25ms delay
; -------
del25ms: pshh
 pshx
 ldhx #$04E2
 bra delmain
;- -
; del5ms: generates a 5ms delay
; ------
del5ms: pshh
 pshx
 ldhx #$00FA
 bra delmain
;- -
; del1ms: generates a 1ms delay
; ------
del1ms: pshh
 pshx
 ldhx #$0032
 bra delmain
;- -
; del100us: generates a 100us delay
; -----
del100us: pshh
 pshx
 ldhx #$0005
 bra delmain
;- -

AN1950

Sensors
20 Freescale Semiconductor

; delmain: main delay routine; generates delay equal to H:X x 20us
; -------
delmain: mov #$36,tsc ;stop TIM & / 64
 sthx tmodh ;count H:X x 20us
 bclr 5,tsc ;start clock
delwait: brclr 7,tsc,delwait ;wait for end of countdown
 pulx
 pulh
 rts ;this RTS serves for all delay routines!
;-------- A/D Routines --
; adcbyti: gets single A/D reading from PTA0 and returns it in A
; -------
adcbyti: mov #$00,adscr ;ADC set to PTA0
 brclr 7,adscr,* ;wait for ADC reading
 lda adr ;result in adr
 rts
;- -
; adcbyta: gets averaged A/D reading from PTA0 and returns it in A
; -------
adcbyta: clr CNT ;average 256 readings
 clr RB ;will be addint them up
 clr RA ;in RB:RA
do256a: bsr adcbyti
 add RA
 sta RA
 lda RB
 adc #$00
 sta RB ;16-bit add into RB:RA
 dbnz CNT,do256a ;do all 256
 lsl RA ;if RA<$80
 bcc nochga ;then RB result is correctly rounded
 inc RB ;otherwise round off to next value
nochga: lda RB
 rts
;-------- LCD Routines --
; lcdinit: initializes LCD
; -------
lcdinit: lda #$3C ;set 8-bit interface, 1/16 duty, 5x10 dots
 bsr lcdcmdo
 lda #$0C ;display on, cursor off, blink off
 bsr lcdcmdo
 lda #$06 ;increment cursor position, no display shift
 bsr lcdcmdo
 lda #$01 ;clear display
 bsr lcdcmdo
 rts
;- -
; lcdcmdo: sends a command to LCD
; -------
lcdcmdo: bsr shiftA
 bclr 4,porta ;RS=0 for command
 bset 3,porta
 bclr 3,porta ;toggle E
 bsr del5ms ;some commands require 2ms for LCD to execute
 rts ;so let's play it safe
;- -
; lcdchro: sends a character (data) to LCD
; -------
lcdchro: bsr shiftA
 bset 4,porta ;RS=1 for data

AN1950

Sensors
Freescale Semiconductor 21

 bset 3,porta
 bclr 3,porta ;toggle E
 bsr del100us ;data only requires 40us for LCD to execute
 rts
;- -
; shiftA: shifts A into shift register and provides 8-bits to LCD
; ------
shiftA: psha
 mov #$08,BB ;will be shifting 8 bits
all8: lsla ;get bit
 bcc shift0 ;if bit=0 then shift a 0
shift1: bset 4,porta ;otherwise shift a 1
 bra shift
shift0: bclr 4,porta ;bit 4 is data to shift register
shift: bclr 5,porta ;bit 5 is shift register clock
 bset 5,porta
 bclr 5,porta ;toggle CLK
 dbnz BB,all8 ;do all 8 bits
 pula
 rts
;- -
; lcdnibo: displays 1 character (0-9,A-F) based on low-nibble value in A
; -------
lcdnibo: psha ;convert 4 bits from binary to ascii
 add #$30 ;add $30 (0-9 offset)
 cmp #$39 ;is it a number (0-9) ?
 bls d0to9b ;if so skip
 add #$07 ;else add $07 = total of $37 (A-F offset)
d0to9b: bsr lcdchro
 pula
 rts
;- -
; lcdbyto: displays 2 characters based on hex value in A
; -------
lcdbyto: psha
 psha ;remember A (for low nibble)
 lsra ;shift right 4 times
 lsra
 lsra
 lsra
 bsr lcdnibo ;high nibble
 pula
 and #$0F
 bsr lcdnibo ;low nibble
 pula
 rts
;- -
; lcdstro: displays message ending in '@', but also sends commands to LCD
; -------
lcdstro: psha
 lda 0,x
lcon: cmp #$80 ;if ASCII >=$80
 bhs iscmd
 cmp #$1F ;or <=$1F then
 bls iscmd ;assume it is a command to LCD
isdta: bsr lcdchro ;otherwise it is data to LCD
reuse1: aix #$0001 ;next character
 lda 0,x ;indexed by x
 cmp #$40 ;continue until
 bne lcon ;character = '@'

AN1950

Sensors
22 Freescale Semiconductor

 pula ;we are done
 bclr 4,porta ;so
 bclr 5,porta ;turn off LEDs
 rts
iscmd: bsr lcdcmdo
 bra reuse1
;-------- ROM DATA: contains all LCD messages -----------------------
msg01 db $01,$80,'*MPAK & 908QT4* '
 db $C0,'Reference Design','@'
msg01a db $01,$80,'Water Level & '
 db $C0,'Flow v2.0','@'
msg01b db $01,$80,'1:Level/Flow '
 db $C0,'2:Set Units ','@'
msg05 db $01,$80,'* Calibration! *'
 db $C0,'Curr lo/hi:','@'
msg05a db $01,$80,'1st point: 0mm'
 db $C0,'SEL:cal ENT:quit','@'
msg05b db $01,$80,'Calibrating... '
 db $C0,' 0mm: ','@'
msg05c db $01,$80,'2nd point: 160mm'
 db $C0,'ENT:continue ','@'
msg05d db $01,$80,'Calibrating... '
 db $C0,' 160mm: ','@'
msg05e db $01,$80,'INVALID '
 db $C0,'CALIBRATION! ','@'
msg02a db $C8,' EMPTY','@'
msg02b db $C8,' FULL','@'
msg02c db $C8,' steady','@'
msg02d db $C8,' H20 in','@'
msg02e db $C8,' H20 out','@'
msg03 db $01,$80,'1: unit=cm H20 '
 db $C0,'2: unit=in H20 ','@'
msg03a db $80,'Unit is now: cm','@'
msg03b db $80,'Unit is now: in','@'
menupos db $80,$C0

 end

REFERENCES

Baum, Jeff, �Frequency Output Conversion for MPX2000
Series Pressure Sensors,� Application Note AN1316/D.

Hamelain, JC, �Liquid Level Control Using a Pressure
Sensor,� Application Note AN1516/D.

AN1950

Sensors
Freescale Semiconductor 23

NOTES

AN1950
Rev. 4
11/2006

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. �Typical� parameters that may be

provided in Freescale Semiconductor data sheets and/or specifications can and do vary

in different applications and actual performance may vary over time. All operating

parameters, including �Typicals�, must be validated for each customer application by

customer�s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and

its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

Freescale� and the Freescale logo are trademarks of Freescale Semiconductor, Inc.

All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

	Contact us
	Water Level Monitoring
	Introduction
	System Design
	Amplifier Induced Errors
	Microprocessor
	Display

	Other
	Smart Washer Software
	Software User Instructions
	Calibration and Calibration Software
	Converting Pressure to Water Level
	Software Function Descriptions

	Conclusion
	Software Listing
	References
	How to Reach Us

