mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

XMC1000 LED lighting application kit XMC[™] microcontrollers July 2016

1	Kit overview
2	Hardware overview
3	Tooling overview – boot modes
4	Tooling overview – DAVE™
5	Getting started - examples
6	General information
7	References

1	Kit overview
2	Hardware overview
3	Tooling overview – boot modes
4	Tooling overview – DAVE™
5	Getting started - examples
6	General information
7	References

Kit overview (1/3)

> XMC1200 CPU Card

Kit overview (2/3)

- Color LED card
 - Showcases color control

Kit overview (3/3)

- White LED card
 - Showcases brightness control

1	Kit overview
2	Hardware overview
3	Tooling overview – boot modes
4	Tooling overview – DAVE™
5	Getting started - examples
6	General information
7	References

Hardware overview

- > Attach color LED or white LED card to XMC1200 CPU card
- > Connect XMC1200 CPU card to PC via USB cable
- > CPU card is powered up (as indicated by LED on the card)

	Kit overview
2	Hardware overview
3	Tooling overview – boot modes
4	Tooling overview – DAVE™
5	Getting started - examples
6	General information
7	References

Tooling overview Boot modes

- > Boot modes available
 - UART bootstrap-loader mode
 - User mode (Halt after reset)
 - User mode (Debug) **Default mode of device on boot kit**
 - User mode (Productive)
- > Boot modes can be configured via:
 - DAVE[™]
 - Download DAVE[™]

http://www.infineon.com/dave/v4

- MemTool
 - Download MemTool

http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d011 2ab6b50fe07c9

 For more information on how to configure the BMI value, please refer to the XMC1000 tooling guide

1	Kit overview
2	Hardware overview
3	Tooling overview – boot modes
4	Tooling overview – DAVE™
5	Getting started - examples
6	General information
7	References

- DAVE[™] is a free development platform for code generation by Infineon
- > It can be downloaded from:
 - <u>http://www.infineon.com/dave/v4</u>
- For a guide on setting up DAVE[™], please refer to XMC1x00 boot kit getting started

1	Kit overview
2	Hardware overview
3	Tooling overview – boot modes
4	Tooling overview – DAVE™
5	Getting started - examples
6	General information
7	References

Getting started – Example 1 RGB lamp using LED_LAMP APP (1/20)

Example 1: RGB lamp using LED_LAMP APP

Getting started – Example 1 RGB lamp using LED_LAMP APP (2/20)

1. Open DAVE[™]

- In DAVE[™] workspace, create a new "DAVE[™] CE" project:
- > File->New->DAVE[™] Project
- Give the project a name e.g.
 "RGB_LAMP_EXAMPLE"
- Select "DAVE™ CE Project" as project type

3. Select the device accordingly

elect the microcontroller for which the project has to be cre	eated
Microcontrollers	
▷ XMC4000	
▲ 🖉 XMC1000	-
XMC1100 Series	
A VALCI200 Series	
XMC1200-1038x0200	-
XMC1202-0040x0052	
XMC1202-T028x0064	
XMC1202-T028x0032	
XMC1202-T028x0016	
XMC1202-Q024x0032	
Microcontroller Features	
RAM= 16 KB RAM InOut= 34 digital I/O ADC= 12 ADC Channels, 12-bit, Analog-to-Digital Conver	ter
Linker Option	
Remove unused sections	
Runtime Library	
Library Newlib-nano -	
🗖 Add floating point support for wintf	
Add mound point support for print	
Add floating point support for scanf	

Getting started – Example 1 RGB lamp using LED_LAMP APP (3/20)

- > This example demonstrates RGB lamp functionality using LED_LAMP APP
- > We will use the system timer (SysTick) as the time base for the interrupt
 - Time base of 1 s
 - In the interrupt, a new target dimming level or target color is regularly set with a 7 s transition time
- > Next, we will show you the steps to creating this project:
 - 1. Instantiate LED_LAMP APP
 - 2. Configure LED_LAMP APP
 - 3. Configure BCCU Channels
 - 4. Assign PDM_BCCU APPs to the right channels
 - 5. Configure Brightness and Color Control Unit (BCCU) global settings
 - 6. Configure Port Pins
 - 7. Configure SysTick
 - 8. Define the SYSTIMER callback function

Getting started – Example 1 RGB lamp using LED_LAMP APP (4/20)

- 1. Instantiate LED_LAMP APP
 - Click to add new APP
 - > Select the **LED_LAMP** APP

 LED_LAMP APP automatically aggregates a BCCU channel app (PDM_BCCU), a BCCU dimming engine app (DIM_BCCU) and a BCCU global app (GLOBAL_BCCU)

CLOCK_XMC1 CLOCK XMC1 0

Getting started – Example 1 RGB lamp using LED_LAMP APP (5/20)

- 2. Configure LED_LAMP APP
- Double-click LED_LAMP_0 to open UI
- > Under General Settings tab,
 - set Number of LED
 channels to 3
 - select **Dimming Engine** as
 Dimming Source

Getting started – Example 1 RGB lamp using LED_LAMP APP (6/20)

- 2. Configure LED_LAMP APP (continued)
- Under Dimming and
 Intensities Settings tab
 - set initial **Dimming Level** to **1024**
 - set initial Channel
 Intensities to 1365
 - set initial Intensity linear walk time to 0 ms
 - Set initial 0-100%
 dimming transition time to 0 ms

eneral Settings	Dimmi	ng and	Inten	sities	Settings						
Initial Dimming	and Inte Dimmi	nsity Le ing Lev	el el	x	Inte	ensity		=	Bright	tness	
LED channel 0:	1024	25	%	x	1365	33.3	%	=	341	8.3	%
LED channel 1:	1024	25	%	x	1365	33.3	%	=	341	8.3	%
LED channel 2:	1024	25	%	x	1365	33.3	%	=	341	8.3	%
LED channel 3:	1024	25	%	x	4095	100	%	=	1024	25	%
LED channel 4:	1024	25	%	x	4095	100	%	=	1024	25	%
LED channel 5:	1024	25	%	x	4095	100	%	=	1024	25	%
LED channel 6:	1024	25	%	x	4095	100	%	=	1024	25	%
LED channel 7:	1024	25	%	x	4095	100	%	=	1024	25	%
LED channel 8:	1024	25	%	x	4095	100	%	=	1024	25	%
Initial Fade Rates	5					Presc	aler		0		
ntensity linear w	valk time	[ms]:		0.	0	(LINP	RES):	05	0		
)-100% dimmin	g transiti	on time	e [ms]	: 0.	0	Presc	aler	0)	DB Divid	ler	0x0

Getting started – Example 1 RGB lamp using LED_LAMP APP (7/20)

- 2. Configure LED_LAMP APP (continued)
- > Rename Instance Label
 - Right-click LED_LAMP APP
 - Select Rename Instance Label...
 - Rename as RGB_LAMP

Please Specify Instance Label:	RGB_LAMP	

Getting started – Example 1 RGB lamp using LED_LAMP APP (8/20)

- 3. Configure BCCU Channels
- Double-click a PDM_BCCU APP

Select Flicker Watchdog
 (WD) to enable

Repeat for the other 2
 PDM_BCCU APP instances

Getting started – Example 1 RGB lamp using LED_LAMP APP (9/20)

- 4. Assign PDM_BCCU APPs to the right channels
- Hover mouse cursor over the connecting arrow to a PDM_BCCU APP
- > A label will appear momentarily e.g. LED0/LED1/LED2

Getting started – Example 1 RGB lamp using LED_LAMP APP (10/20)

- 4. Assign PDM_BCCU APPs to the right channels (continued)
- > The labels correspond to the LED channels in the UI

	💼 LED_LAMP_0 🛛	3									
	General Settings	Dimming and Ir and Intensity Lev	ntens els	ities S	Settings				Drinks		
		Dimming Level		х	Inte	nsity		=	Brighti	ness	
_ED0	LED channel 0:	4095 100	%	x	2048	50	%	=	2048	50	%
_ED1	LED channel 1:	4095 100	%	x	2048	50	%	=	2048	50	%
.ED2	LED channel 2:	4095 100	%	x	0	0.0	%	=	0	0.0	%

- > Rename the PDM_BCCU instance label according to the table below
 - Right-click PDM_BCCU APP
 - Select "Rename Instance Label"

Label	New Label
LED0	R_LED1
LED1	G_LED1
LED2	B_LED1

- Repeat the above steps with the other 2 PDM_BCCU APP instances

Getting started – Example 1 RGB lamp using LED_LAMP APP (11/20)

- 4. Assign PDM_BCCU APPs to the right channels (continued)
 - Click 🗊 to assign pins to PDM_BCCU APPs
- > Assign pins as shown:

APP Instance Name	APP Pin Name	Pin Number (Port)	
A B LED1			
-	PDM Output pin	#18 (P0.1)	-
⊿ G_LED1			
	PDM Output pin	#30 (P0.11)	*
A R_LED1		#24 (DO 4)	
	PDM Output pin	#21 (P0.4)	*

Getting started – Example 1 RGB lamp using LED_LAMP APP (12/20)

- 5. Configure BCCU global settings
- Double-click
 GLOBAL_BCCU_0 in APP
 Dependency tab

- > Under Clock Settings tab,
 - to get a bit time of 5 us
 - change the Desired Fast
 Clock Frequency to 0.8
 MHz

GLOBAL_BCCU_0 🕱	
Clock Settings Functional Setti	ngs Event Settings
Fast Clock (FCLK)	
Desired frequency [MHz]:	0.8
Actual frequency [MHz]:	0.8
Prescaler factor (FCLK_PS) [hex	<]: 0x50
Bit Clock (BCLK)	
Mode:	Normal Mode (BCLK = FCLK/4) 👻
Actual frequency [MHz]:	0.2
Actual time [us]:	5