imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

KMA220 Dual channel programmable angle sensor Rev. 2 — 9 April 2013

Product data sheet

Product profile 1.

1.1 General description

The KMA220 is a dual channel magnetic angle sensor module. The MagnetoResistive (MR) sensor bridges, the mixed signal Integrated Circuits (ICs) and the required capacitors are integrated into a single package. Both integrated channels are working full independently. The supply voltage has common terminals. Further explanations are referring to a single channel of the KMA220.

This angular measurement module KMA220 is pre-programmed, pre-calibrated and therefore, ready to use.

The KMA220 allows user-specific adjustments of angular range, zero angle and clamping voltages for each channel separately. The settings are stored permanently in a non-volatile memory.

1.2 Features and benefits

- High precision sensor for magnetic angular measurement
- Single package dual channel sensor module with integrated filters for improved ElectroMagnetic Compatibility (EMC)
- Automotive qualified in accordance with Overvoltage protection up to 16 V AEC-Q100 Rev-G
- Programmable user adjustments, including zero angle and angular range
- Fail-safe non-volatile memory with write Each channel includes protection using lock bit
- Independent from magnetic field strength above 35 kA/m
- Ready to use without external components
- One common supply line

- High temperature range up to 160 °C
- Dual electric independent sensor channels with analog ratiometric output voltages
- Independent programming via separated One-Wire Interfaces (OWI)
- user-programmable 32-bit identifier
- Magnet-loss and power-loss detection
- Factory calibrated

Dual channel programmable angle sensor

2. Pinning information

Table	e 1. Pinning		
Pin	Symbol	Description	Simplified outline
1	OUT1/DATA1	analog output 1 or data interface 1	
2	GND	ground	
3	V _{DD}	supply voltage	
4	OUT2/DATA2	analog output 2 or data interface 2	

3. Ordering information

Table 2. Ordering i	Ordering information							
Type number	Package							
	Name	Description	Version					
KMA220 SIL4		plastic, single in-line package	SOT1188-1					

NXP Semiconductors

4

Functional diagram

Dual channel programmable angle sensor

5. Functional description

Each channel of the KMA220 amplifies two orthogonal differential signals from MR sensor bridges and converts them into the digital domain. The angle is calculated using the COordinate Rotation DIgital Computer (CORDIC) algorithm. After a digital-to-analog conversion, the analog signal is provided to the output as a linear representation of the angular value. Zero angle, clamping voltages and angular range are programmable. In addition, two 16-bit registers are available for customer purposes, such as sample identification.

Each channel of the KMA220 comprises a Cyclic Redundancy Check (CRC) and an Error Detection and Correction (EDC), as well as magnet-loss to ensure a fail-safe operation. If either the supply voltage or the ground line of the mixed signal IC is interrupted, a power-loss detection circuit pulls the analog output to the remaining connection.

After multiplexing the two MR Wheatstone bridge signals and their successive amplification, the signal is converted into the digital domain by an Analog-to-Digital Converter (ADC). Further processing is done within an on-chip state machine. This state machine controls offset cancelation, calculation of the mechanical angle using the CORDIC algorithm, as well as zero angle and angular range adjustment. The internal Digital-to-Analog Converter (DAC) and the analog output stage are used for conversion of the angle information into an analog output voltage, which is ratiometric to the supply voltage.

The configuration parameters of each channel are stored independently in a user-programmable non-volatile memory. The OWI (accessible using pin OUTn/DATAn) is used for accessing the memory. In order to protect the memory content a lock bit can be set. After locking the non-volatile memory, its content cannot be changed anymore.

5.1 Angular measurement directions

The differential signals of the MR sensor bridges depend only on the direction of the external magnetic field strength H_{ext} , which is applied parallel to the plane of the sensor. In order to obtain a correct output signal, exceed the minimum saturation field strength.

Product data sheet

KMA220

4 of 37

Dual channel programmable angle sensor

Since the Anisotropic MR (AMR) effect is periodic over 180°, the sensor output is also 180°-periodic. The angle is calculated relative to a freely programmable zero angle. The dashed line indicates the mechanical zero degree position.

6. Analog output

The KMA220 provides two analog output signals on pin OUT1/DATA1 and on pin OUT2/DATA2. The measured angle α is converted linearly into a value, which is ratiometric to the supply voltage V_{DD}. Either a positive or a negative slope can be programmed independently for each pin by the customer for this purpose.

<u>Table 3</u> describes the analog output behavior for a positive slope. If for example, a magnetic field angle, above the programmed maximum angle α_{max} , but below the clamp switch angle $\alpha_{sw(CL)}$ is applied to the sensor, then analog output is set to the upper clamping voltage. If the magnetic field angle is larger than the clamp switch angle, the analog output switches from upper to lower clamping voltage. If there is a negative slope, the clamping voltages are changed.

Magnetic field angle	Analog output			
$\alpha_{\max} < \alpha < \alpha_{sw(CL)}$	V _{(CL)u}			
$\alpha_{sw(CL)} < \alpha < \alpha_{ref} + 180^{\circ}$	V _(CL)			

Table 3. Analog output behavior for a positive slope

The analog output voltage range encodes both angular and diagnostic information. A valid angle value is between the upper and lower clamping voltage. If the analog output is in the diagnostic range, that is below 4 $%V_{DD}$ or above 96 $%V_{DD}$, an error condition has been detected. The analog output repeats every 180°.

Dual channel programmable angle sensor

7. Diagnostic features

Each channel provides several diagnostic features:

7.1 CRC and EDC supervision

Each channel of the KMA220 includes a supervision of the programmed data. At power-on, a CRC of the non-volatile memory is performed. Furthermore the memory is protected against bit errors. Every 16-bit data word is saved internally as a 22-bit word for this purpose. The protection logic corrects any single-bit error in a data word, while the sensor continues in normal operation mode. Furthermore the logic detects double-bit error per word and switches the output into diagnostic mode.

7.2 Magnet-loss detection

If the applied magnetic field strength is not sufficient, each channel of the KMA220 can raise a diagnostic condition. In order to enter the diagnostic mode, due to magnet-loss, enable the detection first. Both channels can be programmed independently into active diagnostic mode, where the output is driven below 4 %V_{DD} or above 96 %V_{DD}.

7.3 Power-loss detection

The power-loss detection circuit enables the detection of an interrupted supply or ground line of the mixed signal IC. If there is a power-loss condition, two internal switches in the sensor are closed, connecting the pin of the analog output to the supply voltage and the ground pins.

<u>Table 4</u> describes the power-loss behavior and gives the resulting output voltage depending on the interrupted supply or ground line and the load resistance.

Table 4.	Power-loss	behavior
	1 0 10 10 3 3	Denavior

Load resistance	Interrupted supply line	Interrupted ground line
$R_{L(ext)} > 5 \ k\Omega$	$V_O \le 4 \ \% V_{DD}$	$V_O \ge 96 \ \% V_{DD}$

7.4 Low supply voltage detection and overvoltage protection

If the supply voltage is below the switch-off threshold voltage, a status bit is set in each signal conditioning integrated circuit and both channels go into diagnostic mode. If the supply voltage is above the overvoltage switch-on threshold voltage, both channel enter diagnostic mode. Table 5 describes the system behavior depending on the voltage range of the supply voltage.

Supply voltage	State	Description
0 V to \cong 1.8 V	start-up power	The output buffer drives an active LOW or is powered down, but the switches of the power-loss detection circuit are not fully opened and set the output to a level between ground and half the supply voltage.
\cong 1.8 V to V _{POR}	power-on reset	The power-loss charge pump is fully operational and turns the switches of the detection circuit off. The output buffer drives an active LOW and sets the output to the lower diagnostic level. During the reset phase, all circuits are in reset and/or Power-down mode.
V_{POR} to $V_{th(on)}$ or $V_{th(off)}$	initialization	The digital core and the oscillator are active. After reset, the content of the non-volatile memory is copied into the shadow registers. The output buffer drives an active LOW and sets the output to the lower diagnostic level.
$V_{th(on)} \text{ or } V_{th(off)} \text{ to} \\ minimum \ V_{DD}$	functional operation	All analog circuits are active and the measured angle is available at the analog output. Not all parameters are within the specified limits.
$\begin{array}{l} \mbox{Minimum } V_{DD} \mbox{ to } \\ \mbox{maximum } V_{DD} \end{array}$	normal operation	All analog circuits are active and the measured angle is available at the analog output. All parameters are within the specified limits.
$\begin{array}{l} \text{Maximum } V_{\text{DD}} \text{ to} \\ V_{\text{th}(\text{ov})} \end{array}$	functional operation	All analog circuits are active and the measured angle is available at the analog output. Not all parameters are within the specified limits.
$V_{th(ov)}$ to 16 V	overvoltage	Both digital cores and oscillators are active but all other circuits are in Power-down mode. The outputs are set to the lower diagnostic level.

Table 5. System behavior for each output

Table 6 describes the diagnostic behavior and the resulting output voltage depending on the error case. Furthermore the duration and termination condition to enter and leave the diagnostic mode are given, respectively.

Table 6. Diagn	ostic behavior		
Diagnostic condi	tion Duration	Analog output	Termination condition
Low voltage	1 μs < t < 10 μs	\leq 4 %V _{DD}	functional or normal operation
Overvoltage	1 μs < t < 10 μs	\leq 4 %V _{DD}	functional or normal operation
Checksum error	n/a	$\leq 4 \ \% V_{DD} \ or \geq 96 \ \% V_{DD} $	power-on reset ^[1]
Double-bit error	n/a	$\leq 4 \ \% V_{DD} \ or \geq 96 \ \% V_{DD} $	power-on reset ^[1]
Magnet-loss	0.5 ms < t < 6 ms	$\le 4 \ \% V_{DD} \text{ or } \ge 96 \ \% V_{DD}^{[2]}$	magnet present ^[1]
Power-loss	\leq 2 ms	$\leq 4 \ \% V_{DD} \ or \geq 96 \ \% V_{DD} \frac{[2]}{}$	power-on reset

[1] Status bit stays set in command register until power-on reset.

[2] Depending on the diagnostic level setting.

8. Limiting values

Table 7. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		-0.3	+16	V
Vo	output voltage		-0.3	+16	V
V _{O(ov)}	overvoltage output voltage	T _{amb} < 140 °C at t < 1 h	1 V _{th(ov)}	16	V
l _r	reverse current	T _{amb} < 70 °C	-	150	mA
T _{amb}	ambient temperature		-40	+160	°C
T _{amb(pr)}	programming ambient temperature		10	70	°C
T _{stg}	storage temperature		-40	+125	°C
Non-volatile	e memory				
t _{ret(D)}	data retention time	$T_{amb} = 50 \ ^{\circ}C$	17	-	year
N _{endu(W_ER)}	write or erase endurance	$T_{amb(pr)} = 70 \ ^{\circ}C$	100	-	cycle

[1] Overvoltage on analog output and supply within the specified operating voltage range.

Recommended operating conditions 9.

Table 8. **Operating conditions** 1

In	а	homogenous	magnetic	field.	
----	---	------------	----------	--------	--

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DD}	supply voltage		[1]	4.5	5.0	5.5	V
T _{amb}	ambient temperature			-40	-	+160	°C
T _{amb(pr)}	programming ambient temperature			10	-	70	°C
C _{L(ext)}	external load capacitance		[1][2]	0	-	22	nF
			[2][3]	0	-	6.8	nF
R _{L(ext)}	external load resistance		[4]	5	-	∞	kΩ
H _{ext}	external magnetic field strength			35	-	-	kA/m

[1] Normal operation mode.

Between ground and analog outputs. [2]

[3] Command mode.

[4] Power-loss detection is only possible with a load resistance within the specified range connected to the supply or ground line.

10. Thermal characteristics

Table 9.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient		100	K/W

11. Characteristics

Table 10.	Mechanical characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Flead	mechanical force to the leads	$T_{amb} = 25 \ ^{\circ}C$	-	-	10	Ν
F _{fin}	mechanical force to the fin holder	$T_{amb} = 25 \ ^{\circ}C$	-	-	15	Ν

Table 11. Supply current

Characteristics are valid for the operating conditions, as specified in Section 9.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{DD}	supply current		[1][2]	10	-	21	mA
			[3][4]	-	-	26	mA
I _{off(ov)}	overvoltage switch-off current		[5]	-	-	12	mA

Normal operation and diagnostic mode excluding overvoltage and undervoltage within the specified [1] operating supply voltage range.

- [2] Without load current at the analog output.
- Normal operation and diagnostic mode over full voltage range up to limiting supply voltage at steady state. [3]
- With minimum load resistance at the analog outputs. [4]
- Diagnostic mode for a supply voltage above the overvoltage threshold voltage up to the limiting supply [5] voltage.

Dual channel programmable angle sensor

Table 12. Power-on reset

Characteristics are valid for the operating conditions, as specified in Section 9.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
$V_{th(on)}$	switch-on threshold voltage	analog output switches on, if $V_{DD} > V_{th(on)}$	-	4.30	4.45	V
$V_{th(off)}$	switch-off threshold voltage	analog output switches off, if $V_{\text{DD}} < V_{th(off)}$	3.90	4.10	-	V
V _{hys}	hysteresis voltage	$V_{hys} = V_{th(on)} - V_{th(off)}$	0.1	0.2	-	V
V _{POR}	power-on reset voltage	IC is initialized	-	3.3	3.6	V
$V_{th(ov)}$	overvoltage threshold voltage	analog output switches off, if $V_{DD} > V_{th(ov)}$	6.5	7.5	8.0	V
V _{hys(ov)}	overvoltage hysteresis voltage		0.1	0.3	-	V

Table 13. Module performance

Characteristics are valid for the operating conditions, as specified in Section 9.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
α_{res}	angle resolution		[1]	-	-	0.04	deg
α_{max}	maximum angle	$\begin{array}{l} \mbox{programmable angular range} \\ \mbox{for } V_{(CL)u} - V_{(CL)l} \geq 80 \ \% V_{DD} \end{array}$	[2]	5	-	180	deg
α_{ref}	reference angle	programmable zero angle	[2]	0	-	180	deg
V _{O(nom)}	nominal output voltage	at full supply operating range		5	-	95	$%V_{DD}$
V _{O(udr)}	upper diagnostic range output voltage		<u>[3][4][5]</u>	96	-	100	$%V_{DD}$
V _{O(ldr)}	lower diagnostic range output voltage		<u>[3][4][5]</u>	0	-	4	$%V_{DD}$
V _{(CL)u}	upper clamping voltage		[4][5][6]	40	-	95	$%V_{DD}$
V _{(CL)I}	lower clamping voltage		[4][5][6]	5	-	30.5	$%V_{DD}$
$\Delta V_{(CL)}$	clamping voltage variation	deviation from programmed value	<u>[4][5]</u>	-0.3	-	+0.3	$%V_{DD}$
V _{n(o)(RMS)}	RMS output noise voltage	equivalent power noise	<u>[1][4]</u>	-	0.4	2.5	mV
$\Delta \phi_{\text{lin}}$	linearity error	temperature range -40 °C to +160 °C	<u>[4][7][8]</u>	-1.2	-	+1.2	deg
		temperature range -40 °C to +140 °C	<u>[4][7][8]</u>	-1	-	+1	deg
$\Delta \phi_{\text{temp}}$	temperature drift error	temperature range -40 °C to +160 °C	<u>[1][4][7]</u> [9]	-	-	0.8	deg
		temperature range -40 °C to +140 °C	<u>[1][4][7]</u> [9]	-	-	0.65	deg
$\Delta \phi_{\text{temp}} _{\text{RT}}$	temperature drift error at room temperature	temperature range -40 °C to +160 °C	<u>[7][9]</u> [10]	-	-	0.65	deg
		temperature range -40 °C to +140 °C	<u>[7][9]</u> [10]	-	-	0.55	deg
$\Delta\phi_{\text{hys}}$	hysteresis error	referred to input	[4][7]	-	-	0.09	deg
$\Delta \phi_{\mu lin}$	microlinearity error	referred to input	<u>[4][7]</u>	-0.1	-	+0.1	deg

Dual channel programmable angle sensor

Table 13. Module performance ...continued

Characteristics are valid for the operating conditions, as specified in Section 9.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\Delta \phi_{\text{ang}}$	angular error	temperature range -40 °C to +160 °C	[4][7][8] –1.35 [11]	-	+1.35	deg
		temperature range -40 °C to +140 °C	[4][7][8] −1.1 [11]	-	+1.1	deg
m _{ang}	slope of angular error		<u>[4][7]</u> - [11]	-	0.04	deg/deg
Z _{O(pl)}	power-loss output impedance	impedance to remaining supply line in case of lost supply voltage or lost ground	-	-	210	Ω

[1] At a nominal output voltage between 5 %V_{DD} and 95 %V_{DD} and a maximum angle of α_{max} = 180°.

- [2] In steps of resolution $< 0.022^{\circ}$.
- [3] Activation is dependent on the programmed diagnostic mode.
- [4] At a low-pass filtered analog output with a cut-off frequency of 0.7 kHz.
- [5] Settling to these values is limited by 0.7 kHz low-pass filtering of analog output.
- [6] In steps of 0.02 $\% V_{\text{DD}}.$
- [7] Definition of errors is given in <u>Section 12</u>.
- [8] Inhomogeneity of a 15 mm diameter disc magnet can increase the linearity error by $< 0.1^{\circ}$.
- [9] Based on a 3σ standard deviation.
- [10] Room temperature is given for an ambient temperature of 25 °C.
- [11] Graph of angular error is shown in Figure 5.

NXP Semiconductors

Dual channel programmable angle sensor

KMA220

Table 14. Dynamics

Characteristics are valid for the operating conditions, as specified in Section 9.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{on}	turn-on time	until first valid result	-	-	5	ms
f _{upd}	update frequency		2.4	3.125	-	kHz
ts	settling time	after an ideal mechanical angle step of 45°, until 90 % of the final value is reached	-	-	1.8	ms
t _{cmd(ent)}	enter command mode time	after power-on	20	-	30	ms
t _{rec(ov)}	overvoltage recovery time	after overvoltage	-	-	4	ms

Dual channel programmable angle sensor

Table 15. Digital interface

Characteristics are valid for the operating conditions, as specified in <u>Section 9</u>.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage		80	-	-	$%V_{DD}$
V _{IL}	LOW-level input voltage		-	-	20	$%V_{DD}$
V _{OH}	HIGH-level output voltage	I _O = 2 mA	80	-	-	$%V_{DD}$
V _{OL}	LOW-level output voltage	I _O = 2 mA	-	-	20	$%V_{DD}$
l _{od}	overdrive current	absolute value for overdriving the output buffer	-	-	20	mA
t _{start}	start time	LOW level before rising edge	5	-	-	μS
t _{stop}	stop time	HIGH level before falling edge	5	-	-	μS
T _{bit}	bit period	the load capacitance limits the minimum period	10	-	100	μS
ΔT_{bit}	bit period deviation	deviation between received clock and sent clock	0.8T _{bit}	1T _{bit}	1.2T _{bit}	μS
t _{w0}	pulse width 0		0.175T _{bit}	0.25T _{bit}	0.375T _{bit}	μs
t _{w1}	pulse width 1		0.625T _{bit}	0.75T _{bit}	0.825T _{bit}	μs
t _{to}	time-out time	communication reset guaranteed after maximum t _{to}	-	-	220	μS
t _{tko(slv)}	slave takeover time	duration of LOW level for slave takeover	1	-	5	μS
t _{tko(mas)}	master takeover time	duration of LOW level for master takeover	0T _{bit}	-	0.5T _{bit}	μS
t _{prog}	programming time	for a single memory address	20	-	-	ms
t _{cp}	charge pump time	waiting time after enabling the non-volatile memory charge pump clock	1	-	-	ms

Table 16. Internal capacitances

Characteristics are valid for the operating conditions, as specified in Section 9.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{block}	blocking capacitance		<u>[1]</u> 50	100	150	nF
CL	load capacitance		빈 1.1	2.2	3.3	nF

[1] Measured at 1 MHz.

12. Definition of errors

12.1 General

Angular measurement errors by the KMA220 result from linearity errors, temperature drift errors and hysteresis errors and die displacement error. Figure 6 shows the output signal of an ideal sensor, where the measured angle ϕ_{meas} corresponds ideally to the magnetic field angle α . This curve represents the angle reference line $\phi_{ref}(\alpha)$ with a slope of 0.5 %V_{DD}/degree.

The angular range is set to $\alpha_{max} = 180^{\circ}$ and the clamping voltages are programmed to $V_{(CL)I} = 5 \ \% V_{DD}$ and $V_{(CL)u} = 95 \ \% V_{DD}$ for a valid definition of errors.

12.2 Hysteresis error

The device output performs a positive (clockwise) rotation and negative (counter clockwise) rotation over an angular range of 180° at a constant temperature. The maximum difference between the angles defines the hysteresis error $\Delta \phi_{hys}$.

Equation 1 gives the mathematical description for the hysteresis value $\Delta \phi_{hys}$:

$$\Delta \phi_{hys}(\alpha) = \left| \phi_{meas}(\alpha \to 180^\circ) - \phi_{meas}(\alpha \to 0^\circ) \right| \tag{1}$$

12.3 Linearity error

The KMA220 output signal deviation from a best straight line ϕ_{BSL} , with the same slope as the reference line, is defined as linearity error. The magnetic field angle is varied at fixed temperatures for measurement of this linearity error. The output signals deviation from the best straight line at the given temperature is the linearity error $\Delta \phi_{lin}$. It is a function of the magnetic field angle α and the temperature of the device T_{amb} .

12.4 Microlinearity error

 α is the magnetic field angle. If $\Delta \alpha = 1^{\circ}$, the microlinearity error $\Delta \phi_{\mu \text{lin}}$ is the device output deviation from 1°.

12.5 Temperature drift error

The temperature drift $\Delta \phi_{temp}$ is defined as the envelope over the deviation of the angle versus the temperature range. It is considered as the pure thermal effect.

Equation 2 gives the mathematical description for temperature drift value $\Delta \phi_{\text{temp}}$:

$$\Delta \phi_{temp}(\alpha) = \left| \phi_{meas}(\alpha, T_x) - \phi_{meas}(\alpha, T_y) \right|$$
(2)

with:

 $\mathsf{T}_{\mathsf{x}}\!\!:\!\mathsf{temperature}$ for maximum ϕ_{meas} at angle α

 $\mathsf{T}_{\mathsf{y}} :$ temperature for minimum ϕ_{meas} at angle α

The deviation from the value at room temperature $\Delta \phi_{temp}|_{RT}$ describes the temperature drift of the angle, compared to the value, which the sensor provides at room temperature:

$$\Delta\phi_{temp|RT}(\alpha, T_{amb}) = \left|\phi_{meas}(\alpha, T_{amb}) - \phi_{meas}(\alpha, T_{RT})\right|$$
(3)

with:

T_{RT}: room temperature (25 °C)

12.6 Angular error

The angular error $\Delta\phi_{ang}$ is the difference between mechanical angle and sensor output during a movement from α_0 to α_1 . Here α_0 and α_1 are arbitrary angles within the angular range. The customer initially programs the angle measurement at α_0 at room temperature and zero hour upon production. The angle measurement at α_1 is made at any temperature within the ambient temperature range:

$$\Delta\phi_{ang} = (\phi_{meas}(\alpha_1, T_{amb}) - \phi_{meas}(\alpha_0, T_{RT})) - (\alpha_1 - \alpha_0)$$
(4)

with:

 α_0, α_1 : arbitrary mechanical angles within the angular range

 $\phi_{meas}(\alpha_0, T_{RT})$: programmed angle at α_0 , T_{RT} = 25 °C and zero hour upon production

 $\phi_{meas}(\alpha_1, T_{amb})$: the sensor measures angle at α_1 and any temperature within T_{amb}

Dual channel programmable angle sensor

This error comprises non-linearity and temperature drift related to the room temperature.

Figure 11 shows the envelope curve for the magnitude of angular error $|\Delta \phi_{ang}|$ versus α_1 for all angles α_0 and all temperatures T_{amb} within the ambient temperature range. If α_1 is in the range of $\pm 1^\circ$ around α_0 , $|\Delta \phi_{ang}|$ has its minimum. Here only the microlinearity error $\Delta \phi_{\mu lin}$ and the temperature drift related to the room temperature $|\Delta \phi_{temp}|_{RT}|$ occurs. If α_1 deviates from α_0 by more than 1° in either direction, $|\Delta \phi_{ang}|$ can increase. Slope m_{ang} defines the gradient.

Equation 5 to Equation 8 express the angular error:

for
$$|\alpha_1 - \alpha_0| \le 1^\circ$$

$$\left|\Delta\phi_{ang}\right| = \left|\Delta\phi_{\mu lin} + \Delta\phi_{temp|RT}\right| \tag{5}$$

for $1^{\circ} < |\alpha_1 - \alpha_0| < \alpha^*$

$$\left|\Delta\phi_{ang}\right| = \left|\Delta\phi_{\mu lin} + \Delta\phi_{temp|RT}\right| + m_{ang} \times \left(\left|\alpha_{1} - \alpha_{0}\right| - 1^{\circ}\right)$$
(6)

for $|\alpha_1 - \alpha_0| \ge \alpha^*$

$$\left|\Delta\phi_{ang}\right| = \sqrt{\left(\Delta\phi_{lin}\right)^2 + \left(\Delta\phi_{temp|RT}\right)^2} \tag{7}$$

with:

$$\alpha^* = \frac{\left|\Delta\phi_{ang(peak)}\right| - \left|\Delta\phi_{\mu lin} + \Delta\phi_{temp|RT}\right|}{m_{ang}} + \alpha_0 + 1^{\circ}$$
(8)

13. Programming

13.1 General description

Each channel of the KMA220 provides an OWI to enable programming of the device which uses pin OUT1/DATA1 and pin OUT2/DATA2 bidirectionally.

In general the device runs in analog output mode, the normal operation mode. The embedded programming data configures this mode. After a power-on reset once time t_{on} has elapsed, it starts. In this mode, the magnetic field angle is converted into the corresponding output voltage per channel.

A second mode, the command mode enables programming. In this mode, the customer can adjust all required parameters (for example zero angle and angular range) to meet the application requirements. After enabling the internal charge pump and waiting for t_{cp} , the data is stored in the non-volatile memory. After changing the contents of the memory, recalculate and write the checksum (see Section 13.4).

In order to enter the command mode, send a specific command sequence after a power-on reset and during the time slot $t_{cmd(ent)}$. The external source used to send the command sequence must overdrive the output buffers of the KMA220. In doing so, it provides current I_{od} . This signature can be sent to each channel separately or in parallel.

During communication, the channels of the KMA220 are always the slaves and the external programming hardware is always the master. Figure 12 illustrates the structure of the OWI data format.

IDLE	START	COMMAND	DATA BYTE 1	DATA BYTE	2 STOP	IDLE		
				•				
read								

Fig 12. OWI data format

The master provides the start condition, which is a rising edge after a LOW level. Then a command byte which can be either a read or a write command is sent. Depending on the command, the master or the slave has to send the data immediately after the command sequence. If there is a read command, an additional handover or takeover bit is inserted before and after the data bytes. The master must close each communication with a stop condition. If the slave does not receive a rising edge for a time longer than t_{to} , a time-out condition occurs. The bus is reset to the idle state and waits for a start condition and a new command. This behavior can be used to synchronize the device regardless of the previous state.

All communication is based on this structure (see Figure 12), even for entering the command mode. The customer can access the non-volatile memory, CTRL1, TESTCTRL0 and SIGNATURE registers (described in Section 13.5). Only a power-on reset leaves the command mode. A more detailed description of the programming is given in the next sections.

13.2 Timing characteristics

As described in the previous section, a start and stop condition is necessary for communication. The LOW-level duration before the rising edge of the start condition is defined as t_{start} . The HIGH-level duration after the rising edge of the stop condition is defined as t_{stop} . These parameters, together with all other timing characteristics are shown in Table 15.

<u>Figure 14</u> shows the coding of a single bit with a HIGH level of V_{IH} and a LOW level of V_{IL} . Here the pulse width t_{w1} or t_{w0} represents a logic 1 or a logic 0 of a full bit period T_{bit} , respectively.

13.3 Sending and receiving data

. .

_ _

The master has to control the communication during sending or receiving data. The command byte defines the region, address and type of command the master requests. Read commands need an additional handover or takeover bit. Insert this bit before and after the two data bytes (see Figure 12). However the OWI is a serial data transmission, whereas the Most Significant Byte (MSB) send at first.

Table 17.	Format of a command byte									
7	6	5	4	3	2	1	0			
CMD7	CMD6	CMD5	CMD4	CMD3	CMD2	CMD1	CMD0			
Table 18.	Command byte bit description									
Bit	Symbol	Descrip	Description							
7 to 5	CMD[7:5]	region bi	region bits							
		000 =	000 = 16-bit non-volatile memory							
		001 to	011 = reserv	ved						
	100 = 16-bit register									
		101 to	111 = reserv	ved						

KMA220

. .

Table 18.	Command by	Command byte bit descriptioncontinued					
Bit	Symbol	Description					
4 to 1	CMD[4:1]	address bits					
0	CMD0	read/write					
		0 = write					
		1 = read					

A more detailed description of all customer accessible registers is given in <u>Section 13.5</u>. Both default value and the complete command including the address and write or read request are also listed.

13.3.1 Write access

To write data to the non-volatile memory, enable the internal charge pump. Set bits CP_CLOCK_EN and WRITE_EN and wait for t_{cp} enables the internal charge pump. Perform the following procedure for write access:

- 1. Start condition: The master drives a rising edge after a LOW level
- 2. Command: The master sends a write command (CMD0 = 0)
- 3. Data: The master sends two data bytes
- 4. Stop condition: The master drives a rising edge after a LOW level

Figure 15 shows the write access of the digital interface. The signal OWI represents the data on the bus from the master or slave. The signals: master output enable and slave output enable indicate when the master or the slave output is enabled or disabled, respectively.

Note: As already mentioned in <u>Section 13.1</u>, use the write procedure to enter the command mode. If command mode is not entered, communication is not possible and the sensor operates in normal operation mode. After changing an address, the time t_{prog} must elapse before changing another address. After changing the contents of the non-volatile memory, recalculate and write the checksum (see <u>Section 13.4</u>).

13.3.2 Read access

Perform the following procedure, to read data from the sensor:

- 1. Start condition: The master drives a rising edge after a LOW level
- 2. Command: The master sends a read command (CMD0 = 1)
- 3. Handover: The master sends a handover bit, that is a logic 0 and disables the output after a three-quarter bit period
- 4. Takeover: The slave drives a LOW level after the falling edge for ttko(slv)
- 5. Data: The slave sends two data bytes
- 6. Handover: The slave sends a handover bit, that is a logic 0 and disables the output after a three-quarter bit period
- 7. Takeover: The master drives a LOW level after the falling edge for $t_{tko(mas)}$
- 8. Stop condition: The master drives a rising edge after a LOW level

Figure 16 shows the read access of the digital interface. The signal OWI represents the data on the bus from the master or slave. The signals: master output enable and slave output enable indicate when the master or the slave output is enabled or disabled, respectively.

13.3.3 Entering the command mode

After a power-on reset, the sensor provides a time slot $t_{cmd(ent)}$ for entering the command mode. Send a specific command sequence (see Figure 17). If command mode is not entered, the sensor starts in the normal operation mode. If the sensor stays in the diagnostic mode, the master can write the signature without a power-on reset.

During the command mode sequence, the analog output is enabled. The external programming hardware has to overdrive the output with current I_{od} . If command mode is activated, the analog output is disabled and pin OUT1/DATA1 and pin OUT2/DATA2 operates as a digital interface.

13.4 Cyclic redundancy check

As already mentioned in <u>Section 7</u>, there is an 8-bit checksum for the non-volatile memory data. To calculate this value, the MSB of the memory data word generates the CRC at first over all corresponding addresses in increasing order.

Read out all addresses from 8h to Fh for calculating the checksum. The Least Significant Byte (LSB) of address Fh which contains the previous checksum must be overwritten with 0h before the calculation can be started.

Setting bits CP_CLOCK_EN and WRITE_EN (see Section 13.5.1) and waiting for t_{cp} enables the internal charge pump for programming.

The generator polynomial for the calculation of the checksum is:

$$G(x) = x^8 + x^2 + x + 1$$
(9)

With a start value of FFh and the data bits are XOR at the x⁸ point.

Dual channel programmable angle sensor

13.4.1 Software example in C

```
#include <stdio.h.>
1
2
     // calc_crc accepts unsigned 16-bit data in data
3
     int calc crc(int crc, unsigned int data)
4
5
     {
           const int gpoly = 0x107; // generator polynomial
6
                                       //index variable
7
           int i;
8
           for (i = 15; i >= 0; i--)
9
           {
                crc <<= 1;
                                       //shift left
10
11
                crc |= (int) ((data & (1u<<i))>>i);
12
                // XOR of with generator polynomial when MSB(9) = HIGH
13
                if (crc & 0x100) crc ^= gpoly;
14
           }
15
           return crc;
16
     }
17
     int main(void)
18
     {
19
           int crc, crc_res, i;
20
           // 8 LSB are CRC field filled with 0 \,
           unsigned int data_seq[] = {0x0000, 0xFFC1, 0x0400, 0x0100,
21
                                       0x1300, 0x0000, 0x0000, 0x0000};
22
23
           // calculate checksum over all data
24
           crc = 0xFF;
                                       // start value of crc register
25
           printf("Address\tValue\n");
26
           for (i = 0; i <= 7; i++)</pre>
27
                 {
                printf("0x%1X\t0x%04X\n", i, data_seq[i]);
28
29
                crc = calc_crc(crc, data_seq[i]);
30
                }
                                       // crc res = 0xA9
31
           crc_res = crc;
32
           printf("\nChecksum\n0x%02X\n", crc_res);
33
           // check procedure for preceding data sequence
34
           crc = 0xFF;
35
           for (i = 0; i <= 6; i++)</pre>
36
                crc = calc_crc(crc, data_seq[i]);
37
           // last word gets crc inserted
38
           crc = calc_crc(crc, data_seq[i] | crc_res);
39
           printf("\nCheck procedure for data sequence: must be 0x00 is 0x\&02X.\n'', crc);
40
           return 1;
41
     }
```

The checksum of this data sequence is A9h.

KMA220

23 of 37

13.5 Registers

13.5.1 Command registers

To enter the command mode, write the signature given in <u>Table 19</u> into the specific register using the OWI. Do this procedure as described in <u>Section 13.3.3</u>, with a write command, the signature follows it, but after a power-on reset and not later than $t_{cmd(ent)}$.

Command write/read	Register	Bit	Access	Field	Description
82h/83h	CTRL1	15	R	IN_DIAG_MODE	shows if there is a diagnostic condition present; the setting of register field FORCE_DIAG_OFF does not affect this bit
		14	W	FORCE_DIAG_OFF	force diagnostic mode off; default: 0b
		13	-	-	reserved
		12	R	LOW_VOLTAGE_DET	low voltage condition detected
		11	R/W	CP_CLOCK_EN	charge pump clock enabled (must be set after setting write enable signal for writing to non-volatile memory); default: 0b
		10 and 9	-	-	reserved
			8	R	ERR_CORRECT
		7	R	UNCORR_ERR	double-bit error of non-volatile memory has been detected; updated every memory readout; remains set until the diagnostic condition disappears and a power-on reset is done
		6	R	MAGNET_LOSS_DET	magnet-loss detected; bit remains set until the diagnostic condition disappears and a power-on reset is done; enable magnet-loss detection for entering diagnostic mode
		5	-	-	reserved
		4	R	CRC_BAD	checksum error detected; updated every start-up
		3 to 0	-	-	reserved
94h/-	SIGNATURE	15 to 0	W	SIGNATURE	write signature 16F4h within $t_{cmd(ent)}$ to enter command mode; see Section 13.3.3 for more details
96h/97h	TESTCTRL0	15 to 12	-	-	reserved
		11	W	WRITE_EN	write enable signal; set before writing to non-volatile memory; default: 0b
		10 to 0	-	-	reserved

13.5.2 Non-volatile memory registers

The device includes several internal registers which are used for customization and identification.

The initial signature allows read access to all areas but only write access to customer registers. Write accesses to reserved areas are ignored. Since these registers are implemented as non-volatile memory cells, writing to the registers needs a specific time t_{prog} after each write access to complete.

As there is no check for the programming time, make sure that no other accesses to the non-volatile memory are made during the programming cycle. Do not address the non-volatile memory during the time t_{prog} .

Note: Before data can be stored in the non-volatile memory, switch on the internal charge pump for the programming duration by setting register CTRL1, bit 11 CP_CLOCK_EN and register TESTCTRL0, bit 11 WRITE_EN. Read out and consult register addresses 8h to Fh to calculate the checksum.

Address	Command write/read	Register	Bit	Description	Default MSB/LSE
0h	-/01h	reserved	-	addresses are reserved for calibration purposes	<u>[1]</u>
1h	-/03h				
2h	-/05h				
3h	-/07h				
4h	-/09h				
5h	-/0Bh				
6h	-/0Dh				
7h	-/0Fh				
8h	10h/11h	ZERO_ANGLE	15 to 0	mechanical zero degree position; see Table 21	00h/00h
9h	12h/13h	ANG_RNG_MULT_MSB	15 to 6	CLAMP_SW_ANGLE; when the measured angle is bigger than CLAMP_SW_ANGLE the output switches to CLAMP_LO for a positive slope; see <u>Table 26</u>	FFh/C1h
			5 to 0	ANG_RNG_MULT_MSB; most significant bits of the angular range multiplicator; see <u>Table 24</u>	
Ah	14h/15h ANG_RNG_MULT_LSB		15 and 14	DIAGNOSTIC_LEVEL; diagnostic level behavior of the analog output; see Table 25	04h/00h
				00b — active LOW (in lower diagnostic range) with driver strength of the analog output	
				01b — active HIGH (in upper diagnostic range) with driver strength of the analog output	
				10b — reserved	
				11b — reserved	
			13	SLOPE_DIR; slope of analog output	
				0b — rising (not inverted)	
				1b — falling (inverted)	
			12 to 0	ANG_RNG_MULT_LSB; least significant bits of the angular range multiplicator	
KMA220		All informati	on provided in this do	current is subject to legal disclaimers. © NXP B.V. 20	13. All rights reserve

Table 20. Non-volatile memory registers

25 of 37