

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor

Data Sheet: Technical Data

Document Number: MPC8314EEC

Rev. 2, 11/2011

MPC8314E PowerQUICC II Pro Processor Hardware Specifications

This document provides an overview of the MPC8314E PowerQUICCTM II Pro processor features, including a block diagram showing the major functional components. The MPC8314E contains a core built on Power ArchitectureTM technology. It is a cost-effective, low-power, highly integrated host processor that addresses the requirements of several storage, consumer, and industrial applications, including main CPUs and I/O processors in network attached storage (NAS), voice over IP (VoIP) router/gateway, intelligent wireless LAN (WLAN), set top boxes, industrial controllers, and wireless access points. The MPC8314E extends the PowerQUICC II Pro family, adding higher CPU performance, new functionality, and faster interfaces while addressing the requirements related to time-to-market, price, power consumption, and package size. Note that while the MPC8314E supports a security engine, the MPC8314 does not.

Contents

1 Overview

٠.	0.01.10.00.00.00.00.00.00.00.00.00.00.00
2.	MPC8314E Features
3.	Electrical Characteristics
4.	Power Characteristics
5.	Clock Input Timing
6.	RESET Initialization
7.	DDR and DDR2 SDRAM 16
8.	DUART
9.	Ethernet: Three-Speed Ethernet, MII Management . 22
10.	USB
11.	Local Bus
12.	JTAG 42
13.	I ² C
14.	PCI
15.	High-Speed Serial Interfaces (HSSI)
16.	PCI Express
17.	Timers
18.	GPIO 67
19.	IPIC
20.	SPI 68
21.	TDM 70
22.	Package and Pin Listings 72
23.	Clocking 85
24.	Thermal
25.	System Design Information 95
26.	Ordering Information
27.	Revision History

Overview

1 Overview

The MPC8314E incorporates the e300c3 (MPC603e-based) core, which includes 16 Kbytes of L1 instruction and data caches, on-chip memory management units (MMUs), and floating-point support. In addition to the e300 core, the SoC platform includes features such as dual enhanced three-speed 10, 100, 1000 Mbps Ethernet controllers (eTSECs) with SGMII support, a 32- or 16-bit DDR1/DDR2 SDRAM memory controller, a security engine to accelerate control and data plane security protocols, and a high degree of software compatibility with previous-generation PowerQUICC processor-based designs for backward compatibility and easier software migration. The MPC8314E also offers peripheral interfaces such as a 32-bit PCI interface with up to 66 MHz operation, 16-bit enhanced local bus interface with up to 66 MHz operation, TDM interface, and USB 2.0 with an on-chip USB 2.0 PHY.

8314E offers additional high-speed interconnect support with dual single-lane PCI Express interfaces. When not used for PCI Express, the SerDes interface may be configured to support SGMII. The MPC8314E security engine (SEC 3.3) allows CPU-intensive cryptographic operations to be offloaded from the main CPU core. This figure shows a block diagram of the MPC8314E.

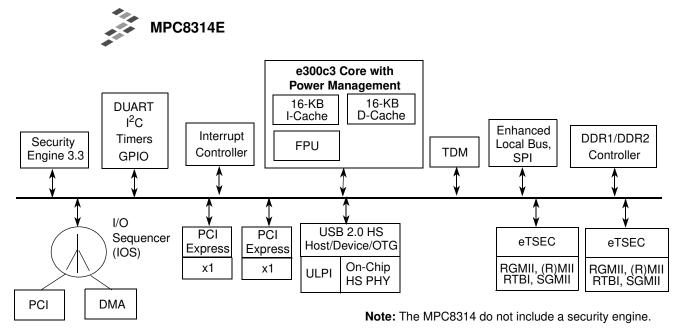


Figure 1. MPC8314E Block Diagram

2 MPC8314E Features

The following features are supported in the MPC8314E.

2.1 e300 Core

The e300 core has the following features:

- Operates at up to 400 MHz
- 16-Kbyte instruction cache, 16-Kbyte data cache

MPC8314E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2

- One floating point unit and two integer units
- Software-compatible with the Freescale processor families implementing the PowerPC Architecture
- Performance monitor

2.2 Serial Interfaces

The following interfaces are supported in the MPC8314E.

- Two enhanced TSECs (eTSECs)
- Two Ethernet interfaces using one RGMII/MII/RMII/RTBI or SGMII (no GMII)
- Dual UART, one I²C, and one SPI interface

2.3 Security Engine

The security engine is optimized to handle all the algorithms associated with IPSec, 802.11i, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution units (EUs). The execution units are:

- Public key execution unit (PKEU)
 - RSA and Diffie-Hellman (to 4096 bits)
 - Programmable field size up to 2048 bits
 - Elliptic curve cryptography (1023 bits)
 - F2m and F(p) modes
 - Programmable field size up to 511 bits
- Data encryption standard execution unit (DEU)
 - DES, 3DES
 - Two key (K1, K2) or three key (K1, K2, K3)
 - ECB, CBC, CFB-64 and OFB-64 modes for both DES and 3DES
- Advanced encryption standard unit (AESU)
 - Implements the Rinjdael symmetric key cipher
 - Key lengths of 128, 192, and 256 bits
 - ECB, CBC, CCM, CTR, GCM, CMAC, OFB, CFB, XCBC-MAC and LRW modes
 - XOR acceleration
- Message digest execution unit (MDEU)
 - SHA with 160-bit, 256-bit, 384-bit and 512-bit message digest
 - SHA-384/512
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- Random number generator (RNG)

MPC8314E Features

- Combines a True Random Number Generator (TRNG) and a NIST-approved Pseudo-Random Number Generator (PRNG) (as described in Annex C of FIPS140-2 and ANSI X9.62).
- Cyclical Redundancy Check Hardware Accelerator (CRCA)
 - Implements CRC32C as required for iSCSI header and payload checksums, CRC32 as required for IEEE 802 packets, as well as for programmable 32 bit CRC polynomials

2.4 DDR Memory Controller

The DDR1/DDR2 memory controller includes the following features:

- Single 16- or 32-bit interface supporting both DDR1 and DDR2 SDRAM
- Support for up to 266 MHz data rate
- Support for two physical banks (chip selects), each bank independently addressable
- 64-Mbit to 2-Gbit (for DDR1) and to 4-Gbit (for DDR2) devices with x8/x16 data ports (no direct x4 support)
- Support for one 16-bit device or two 8-bit devices on a 16-bit bus or two 16-bit devices on a 32-bit bus
- Support for up to 16 simultaneous open pages
- Supports auto refresh
- On-the-fly power management using CKE
- 1.8-/2.5-V SSTL2 compatible I/O

2.5 PCI Controller

The PCI controller includes the following features:

- Designed to comply with PCI Local Bus Specification Revision 2.3
- Single 32-bit data PCI interface operates at up to 66 MHz
- PCI 3.3-V compatible (not 5-V compatible)
- Support for host and agent modes
- On-chip arbitration, supporting three external masters on PCI
- Selectable hardware-enforced coherency

2.6 TDM Interface

The TDM interface includes the following features:

- Independent receive and transmit with dedicated data, clock and frame sync line
- Separate or shared RCK and TCK whose source can be either internal or external
- Glueless interface to E1/T1 frames and MVIP, SCAS, and H.110 buses
- Up to 128 time slots, where each slot can be programmed to be active or inactive
- 8- or 16-bit word widths
- The TDM Transmitter Sync Signal (TFS), Transmitter Clock Signal (TCK) and Receiver Clock

- Signal (RCK) can be configured as either input or output
- Frame sync and data signals can be programmed to be sampled either on the rising edge or on the falling edge of the clock
- Frame sync can be programmed as active low or active high
- Selectable delay (0–3 bits) between the Frame Sync signal and the beginning of the frame
- MSB or LSB first support

2.7 USB Dual-Role Controller

The USB controller includes the following features:

- Designed to comply with USB Specification, Rev. 2.0
- Supports operation as a stand-alone USB device
 - Supports one upstream facing port
 - Supports three programmable USB endpoints
- Supports operation as a stand-alone USB host controller
 - Supports USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
- Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation. Low-speed operation is supported only in host mode.
- Supports UTMI+ low pin interface (ULPI) or on-chip USB-2.0 full-speed/high-speed PHY
- Supports USB on-the-go mode, which includes both device and host functionality, when using an external ULPI PHY

2.8 Dual PCI Express Interfaces

The PCI Express interfaces have the following features:

- PCI Express 1.0a compatible
- x1 link width
- Selectable operation as root complex or endpoint
- Both 32- and 64-bit addressing
- 128-byte maximum payload size
- Support for MSI and INTx interrupt messages
- Virtual channel 0 only
- Selectable Traffic Class
- Full 64-bit decode with 32-bit wide windows
- Dedicated descriptor based DMA engine per interface with separate read and write channels

2.9 Dual Enhanced Three-Speed Ethernet Controllers (eTSECs)

The eTSECs include the following features:

- Two SGMII/RGMII/MII/RMII/RTBI interfaces
- Two controllers designed to comply with IEEE Std 802.3TM, IEEE 802.3uTM, IEEE 802.3xTM, IEEE 802.3auTM, IEEE 802.3abTM, and IEEE Std 1588TM
- Support for Wake-on-Magic PacketTM, a method to bring the device from standby to full operating mode
- MII management interface for external PHY control and status.

2.10 Integrated Programmable Interrupt Controller (IPIC)

The integrated programmable interrupt controller (IPIC) provides a flexible solution for general-purpose interrupt control. The IPIC programming model is compatible with the MPC8260 interrupt controller and supports external and internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.

2.11 Power Management Controller (PMC)

The MPC8314E supports a range of power management states that significantly lower power consumption under the control of the power management controller. The PMC includes the following features:

- Provides power management when the device is used in both PCI host and agent modes
- PCI Power Management 1.2 D0, D1, D2, D3hot, and D3cold states
- PME generation in PCI agent mode, PME detection in PCI host mode
- Wake-up from Ethernet (magic packet), USB, GPIO, and PCI (PME input as host) while in the D1,
 D2 and D3hot states
- A new low-power standby power management state called D3warm
 - The PMC, one Ethernet port, and the GTM block remain powered via a split power supply controlled through an external power switch
 - Wake-up events include Ethernet (magic packet), GTM, GPIO, or IRQ inputs and cause the device to transition back to normal operation
 - PCI agent mode is not be supported in D3warm state
- PCI Express-based PME events are not supported

2.12 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) allows the MPC8314E to exchange data between other PowerQUICC family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time clocks, A/D converters, and ISDN devices.

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an independent baud-rate generator, and a control unit.

2.13 DMA Controller, I²C, DUART, Enhanced Local Bus Controller (eLBC), and Timers

The integrated four-channel DMA controller includes the following features:

- Allows chaining (both extended and direct) through local memory-mapped chain descriptors (accessible by local masters)
- Misaligned transfer capability for source/destination address
- Supports external DREQ, DACK and DONE signals

There is one I^2C controller. This synchronous, multi-master buses can be connected to additional devices for expansion and system development.

The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550 programming models. 16-byte FIFOs are supported for both the transmitter and the receiver.

The eLBC port allows connections with a wide variety of external DSPs and ASICs. Three separate state machines share the same external pins and can be programmed separately to access different types of devices. The general-purpose chip select machine (GPCM) controls accesses to asynchronous devices using a simple handshake protocol. The three user programmable machines (UPMs) can be programmed to interface to synchronous devices or custom ASIC interfaces. Each chip select can be configured so that the associated chip interface can be controlled by the GPCM or UPM controller. Both may exist in the same system. The local bus can operate at up to 66 MHz.

The system timers include the following features: periodic interrupt timer, real time clock, software watchdog timer, and two general-purpose timer blocks.

3 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8314E, which is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but they are included for complete reference. These are not purely I/O buffer design specifications.

3.1 Overall DC Electrical Characteristics

This section covers the ratings, conditions, and other characteristics.

3.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings 1

Characteristic	Symbol	Max Value	Unit	Note
Core supply voltage	VDD	-0.3 to 1.26	V	_
PLL supply voltage	AVDD	-0.3 to 1.26	V	_
DDR1 DRAM I/O supply voltage	GVDD	-0.3 to 2.7	V	_

MPC8314E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2

Electrical Characteristics

Table 1. Absolute Maximum Ratings ¹ (continued)

	Characteristic	Symbol	Max Value	Unit	Note
DDR2 DRAM I/O	supply voltage	GVDD	-0.3 to 1.9	V	_
	I, local bus, DUART, system control and power nagement, I ² C, Ethernet management, 1588 timer and AG I/O voltage		-0.3 to 3.6	V	7
USB, and eTSEC	I/O voltage	LVDD	-0.3 to 2.75 or -0.3 to 3.6	V	6, 8
PHY voltage	USB PHY	USB_PLL_PWR1	-0.3 to 1.26	V	_
		USB_PLL_PWR3, USB_VDDA_BIAS, VDDA	-0.3 to 3.6	V	_
	SERDES PHY	XCOREVDD, XPADVDD, SDAVDD	-0.3 to 1.26	V	_
Input voltage	DDR DRAM signals	MV _{IN}	-0.3 to (GVDD + 0.3)	٧	2, 4
	DDR DRAM reference	MVREF	-0.3 to (GVDD + 0.3)	٧	2, 4
	eTSEC signals	LV _{IN}	-0.3 to (LVDD + 0.3)	٧	3, 4
	Local bus, DUART, SYS_CLK_IN, system control and power management, I ² C, and JTAG signals	NV _{IN}	-0.3 to (NVDD + 0.3)	V	3, 4
	PCI	NV _{IN}	-0.3 to (NVDD + 0.3)	٧	5
Storage temperate	ure range	T _{STG}	-55 to150	°C	_

Note:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. **Caution:** MV_{IN} must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. **Caution:** $(N,L)V_{IN}$ must not exceed (N,L)VDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. (M,N,L)V_{IN} and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 5. NV_{IN} on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 2.
- 6. The max value of supply voltage should be selected based on the RGMII mode.
- 7. NVDD means NVDD1 OFF, NVDD1 ON, NVDD2 OFF, NVDD2 ON, NVDD3 OFF, NVDD4 OFF
- 8. LVDD means LVDD1_OFF and LVDD2_ON

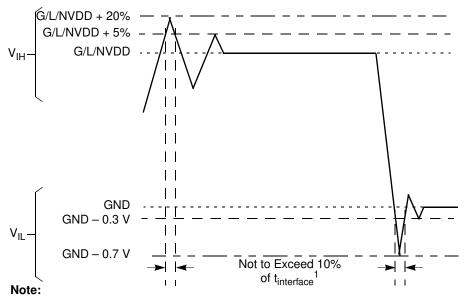
3.1.2 Power Supply Voltage Specification

This table provides the recommended operating conditions for the MPC 8314E. Note that the values in this table are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Table 2. Recommended Operating Conditions

Characteristic	Symbol	Recommended Value ¹	Unit	Status in D3 Warm mode	Note
SerDes internal digital power	XCOREVDD	1.0 ± 50 mv	V	Switched Off	_
SerDes internal digital power	XCOREVSS	0.0	V	_	_
SerDes I/O digital power	XPADVDD	1.0 ± 50 mv	V	Switched Off	_
SerDes I/O digital power	XPADVSS	0.0	V	_	_
SerDes analog power for PLL	SDAVDD	1.0 ± 50 mv	V	Switched Off	_
SerDes analog power for PLL	SDAVSS	0.0	V	_	_
Dedicated 3.3 V analog power for USB PLL	USB_PLL_PWR3	3.3 ± 165mv	V	Switched Off	_
Dedicated 1.0 Vanalog power for USB PLL	USB_PLL_PWR1	1.0 ± 50 mv	V	Switched Off	_
Dedicated analog ground for USB PLL	USB_PLL_GND	0.0	V	_	_
Dedicated USB power for USB bias circuit	USB_VDDA_BIAS	3.3 ± 300 mv	V	Switched Off	_
Dedicated USB ground for USB bias circuit	USB_VSSA_BIAS	0.0	V	_	_
Dedicated power for USB transceiver	USB_VDDA	3.3 ± 300 mv	V	Switched Off	_
Dedicated ground for USB transceiver	USB_VSSA	0.0	V	_	_
Core supply voltage	VDD	1.0 ± 50 mv	V	Switched Off	_
Core supply voltage	VDDC	1.0 ± 50 mv	V	Switched On	_
Analog power for e300 core APLL	AVDD1	1.0 ± 50 mv	V	Switched Off	6
Analog power for system APLL	AVDD2	1.0 ± 50 mv	V	Switched On	6
DDR and DDR2 DRAM I/O voltage	GVDD	2.5 ± 200 mv 1.8 ± 100 mv	V	Switched Off	_
Differential reference voltage for DDR and DDR2 controller	MVREF	GVDD /2	V	Switched Off	_
Standard I/O voltage	NVDD1_ON	3.3 ± 300 mv	V	Switched On	1
Standard I/O voltage	NVDD2_ON	3.3 ± 300 mv	V	Switched On	1
Standard I/O voltage	NVDD1_OFF	3.3 ± 300 mv	V	Switched Off	2
Standard I/O voltage	NVDD2_OFF	3.3 ± 300 mv	V	Switched Off	2
Standard I/O voltage	NVDD3_OFF	3.3 ± 300 mv	V	Switched Off	2
Standard I/O voltage	NVDD4_OFF	3.3 ± 300 mv	V	Switched Off	2
eTSEC/USBdr I/O supply	LVDD1_OFF	2.5 ± 125 mv 3.3 ± 300 mv	V	Switched Off	_
eTSEC I/O supply	LVDD2_ON	2.5 ± 125 mv 3.3 ± 300 mv	V	Switched On	_
Analog and digital ground	VSS	0.0	V	_	_
Junction temperature range	T_A/T_J	0 to105	°C	_	3

Electrical Characteristics


Table 2. Recommended Operating Conditions (continued)

Characteristic	Symbol	Recommended Value ¹	Unit	Status in D3 Warm mode	Note	
----------------	--------	-----------------------------------	------	---------------------------	------	--

Note:

- 1. The NVDDx_ON are static power supplies and can be connected together.
- 2. The NVDDx_OFF are switchable power supplies and can be connected together.
- 3. Minimum Temperature is specified with T_A;maximum temperature is specified with T_A
- 4. All Power rails must be connected and power applied to the MPC8314 even if the IP interfaces are not used.
- 5. All I/O pins should be interfaced with peripherals operating at same voltage level.
- 6. This voltage is the input to the filter discussed in Section 25.2, "PLL Power Supply Filtering" and not necessarily the voltage at the AVDD pin.
- 7. All 1V power supplies should be derived from the same source.

This figure shows the undershoot and overshoot voltages at the interfaces of the MPC8314E.

^{1.} t_{interface} refers to the clock period associated with the bus clock interface.

Figure 2. Overshoot/Undershoot Voltage for GVDD/NVDD/LVDD

3.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Table 3. Output Drive Capability

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	NVDD = 3.3 V
PCI signals	25	
DDR signal ¹	18	GVDD = 2.5 V
DDR2 signal 1	18	GVDD = 1.8 V

MPC8314E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2

Driver Type	Output Impedance (Ω)	Supply Voltage		
DUART, system control, I ² C, JTAG,SPI	42	NVDD = 3.3 V		
GPIO signals	42	NVDD = 3.3 V		
eTSEC	42	LVDD = 3.3 V / 2.5 V		

Table 3. Output Drive Capability (continued)

3.2 Power Sequencing

The MPC8314E does not require the core supply voltage (VDD and VDDC) and I/O supply voltages (GVDD, LVDDx_ON, LVDDx_OFF, NVDDx_ON and NVDDx_OFF) to be applied in any particular order. During the power ramp up, before the power supplies are stable, if the I/O voltages are supplied before the core voltage, there may be a period of time when all input and output pins be actively driven and cause contention and/or excessive current. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the continuous core voltage (VDDC) before the continuous I/O voltages (LVDDx_ON and NVDDx_ON) and switchable core voltage (VDD) before the switchable I/O voltages (GVDD, LVDDx_OFF, and NVDDx_OFF). PORESET should be asserted before the continuous power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V, see Figure 3. Once all the power supplies are stable, wait for a minimum of 32 clock cycles before negating PORESET.

The I/O power supply ramp-up slew rate should be slower than $4V/100~\mu s$, this requirement is for ESD circuit.

This figure shows the power-up sequencing for switchable and continuous supplies.

Figure 3. Power-Up Sequencing

When switching from normal mode to D3 warm (standby) mode, first turn off the switchable I/O voltage supply and then turn off the switchable core voltage supply. Similarly, when switching from D3 warm (standby) mode to normal mode, first turn on the switchable core voltage supply and then turn on the switchable I/O voltage supply.

MPC8314E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2

Output Impedance can also be adjusted through configurable options in DDR Control Driver Register (DDRCDR). See the MPC8315E PowerQUICC II Pro Integrated Host Processor Family Reference Manual.

Power Characteristics

CAUTION

When the device is in D3 warm (standby) mode, all external voltage supplies applied to any I/O pins, with the exception of wake-up pins, must be turned off. Applying supplied external voltage to any I/O pins, except the wake up pins, while the device is in D3 warm standby mode may cause permanent damage to the device.

An example of the power-up sequence is shown in Figure 4 when implemented along with low power D3 warm mode.

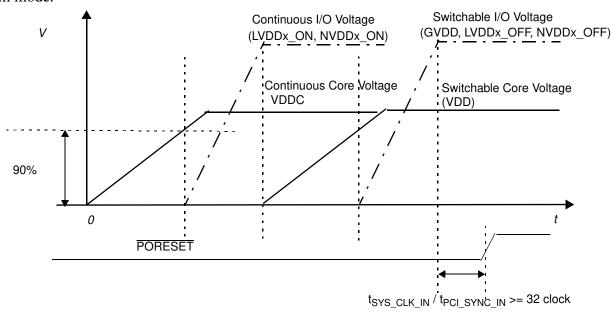


Figure 4. Power Up Sequencing Example with Low power D3 Warm Mode

4 Power Characteristics

This table shows the estimated typical power dissipation for this family of devices.

Table 4. MPC8314E Power Dissipation

(Does not include I/O power dissipation)

Core Frequency (MHz)	CSB Frequency (MHz)	Typical ^{1,3}	Maximum ^{1,2}	Unit
266	133	1.116	1.646	W
333	133	1.142	1.665	W
400	133	1.167	1.690	W

Note:

- 1. The values do not include I/O supply power, but do include core, AVDD, USB PLL, and digital SerDes power.
- 2. Maximum power is based on a voltage of $V_{dd} = 1.05V$, a junction temperature of $T_j = 105$ °C, and an artificial smoker test.
- 3. Typical power is based on a voltage of $V_{dd} = 1.05V$, and an artificial smoker test running at room temperature.

This table shows the estimated typical I/O power dissipation for this family of devices.

Table 5. MPC8314E Power Dissipation

Interface	Frequency	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	NV _{DD} (3.3 V)	LVDD1_OFF/ LVDD2_ON (3.3V)	LVDD2 _ON (3.3V)	VDD33PLL, VDD33ANA (3.3V)	SATA_VDD, VDD1IO, VDD1ANA (1.0V)	XCOREVDD, XPADVDD, SDAVDD (1.0V)	Unit
DDR 1 Rs = 22Ω	266MHz, 32 bits	_	0.323	_	_	_	_	_	_	W
Rt = 50Ω	200MHz, 32 bits	_	0.291	_	_	_	_	_	_	W
DDR 2 Rs = 22Ω	266MHz, 32 bits	0.246	_	_	_	_	_	_	_	W
$Rt = 75\Omega$	200MHz, 32bits	0.225	_	_	_	_	_	_	_	W
PCI I/O	33 MHz	_	_	0.120	_	_	_	_	_	W
load = 50pF	66 MHz	_	_	0.249	_	_	_	_	_	W
Local bus I/O	66 MHz	_	_	_	_	0.056	_	_	_	W
load = 20pF	50 MHz	_	_	_	_	0.040	_	_	_	W
eTSEC I/O	MII, 25MHz	_	_	_	0.008	_	_	_	_	W
load = 20pF Multiple by number of interface	RGMII, 125MHz (3.3V)			_	0.078	_	_		_	W
used	RGMII, 125MHz (2.5V)	_	_	_	0.044	_	_	_	_	W
USBDR Controller (ULPI mode) load =20pF	60 MHz	_	_	_	0.078	_	_	_	_	W
USBDR+ Internal PHY (UTMI mode)	480 MHz	_	_	_	0.274	_	_	_	_	W
PCI Express two x1lane	2.5 GHz	_	_	_	_	_	_	_	0.190	W
Other I/O	_	_	_	0.015	_	_	_	_	_	W

5 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8314E.

Clock Input Timing

5.1 DC Electrical Characteristics

This table provides the clock input (SYS_CLK_IN/PCI_SYNC_IN) DC timing specifications for the MPC8314E.

Table 6. SYS_CLK_IN DC Electrical Characteristics

Parameter	Condition	Symbol	Min	Max	Unit
Input high voltage	_	V _{IH}	2.4	NVDD + 0.3	V
Input low voltage	_	V _{IL}	-0.3	0.4	V
SYS_CLK_IN input current	$0\ V \leq V_{IN} \leq NVDD$	I _{IN}	_	±10	μΑ
SYS_XTAL_IN input current	$0\ V \leq V_{IN} \leq NVDD$	I _{IN}	_	±40	μΑ
PCI_SYNC_IN input current	$0\ V \leq V_{IN} \leq NVDD$	I _{IN}	_	±10	μΑ
RTC_CLK input current	0 V ≤V _{IN} ≤ NVDD	I _{IN}	_	±10	μΑ
USB_CLK_IN input current	$0 \text{ V} \leq V_{IN} \leq NVDD$	I _{IN}	_	±10	μΑ
USB_XTAL_IN input current	0 V ≤V _{IN} ≤ NVDD	I _{IN}	_	±40	μΑ

5.2 AC Electrical Characteristics

The primary clock source for the MPC8314E can be one of two inputs, SYS_CLK_IN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. This table provides the clock input (SYS_CLK_IN/PCI_CLK) AC timing specifications for the MPC8314E.

Table 7. SYS CLK IN AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Note
SYS_CLK_IN/PCI_CLK frequency	f _{SYS_CLK_IN}	24	_	66.67	MHz	1, 6, 7
SYS_CLK_IN/PCI_CLK cycle time	tsys_clk_in	15	_	41.6	ns	6
SYS_CLK_IN rise and fall time	t _{KH} , t _{KL}	0.6	_	4	ns	2, 6
PCI_CLK rise and fall time	t _{PCH} , t _{PCL}	0.6	0.8	1.2	ns	2
SYS_CLK_IN/PCI_CLK duty cycle	t _{KHK} /t _{SYS_CLK_IN}	40	_	60	%	3, 6
SYS_CLK_IN/PCI_CLK jitter	_	_	_	±150	ps	4, 5, 6

Note:

- 1. **Caution:** The system, core, and security block must not exceed their respective maximum or minimum operating frequencies.
- 2. Rise and fall times for SYS CLK IN/PCI CLK are specified at 20% to 80% of signal swing.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter—short term and long term—and is guaranteed by design.
- 5. The SYS_CLK_IN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.
- 6. The parameter names PCI_CLK and PCI_SYNC_IN are used interchangeably in this document.
- 7. Spread spectrum is allowed up to 1% down-spread at 33kHz.(max. rate).

6 RESET Initialization

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8314E.

6.1 RESET DC Electrical Characteristics

This table provides the DC electrical characteristics for the RESET pins of the MPC8314E.

Table 8. RESET Pins DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}	_	2.0	NVDD + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	$0 \text{ V} \leq \text{ V}_{\text{IN}} \leq \text{ NVDD}$	_	±5	μА
Output high voltage	V _{OH}	$I_{OH} = -8.0 \text{ mA}$	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

6.2 RESET AC Electrical Characteristics

This table provides the reset initialization AC timing specifications of the MPC8314E.

Table 9. RESET Initialization Timing Specifications

Parameter/Condition	Min	Max	Unit	Note
Required assertion time of HRESET to activate reset flow	32		t _{PCI_SYNC_IN}	1
Required assertion time of PORESET with stable clock applied to SYS_CLK_IN when the device is in PCI host mode	32	_	tsys_clk_in	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the device is in PCI agent mode	32	_	t _{PCI_SYNC_IN}	1
HRESET assertion (output)	512		t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3] and CFG_SYS_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI host mode	4	_	tsys_clk_in	2, 4
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3] and CFG_SYS_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI agent mode	4	_	t _{PCI_SYNC_IN}	1
Input hold time for POR configuration signals with respect to negation of HRESET	0		ns	_
Time for the device to turn off POR configuration signals with respect to the assertion of HRESET	_	4	ns	3
Time for the device to turn on POR config signals with respect to the negation of HRESET	1	_	t _{PCI_SYNC_IN}	1, 3

DDR and DDR2 SDRAM

Table 9. RESET Initialization Timing Specifications (continued)

Note:

- 1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the primary clock is applied to the SYS_CLK_IN input, and PCI_SYNC_IN period depends on the value of CFG_SYS_CLKIN_DIV.
- 2. t_{SYS_CLK_IN} is the clock period of the input clock applied to SYS_CLK_IN. It is only valid when the device is in PCI host mode.
- 3. POR configuration signals consists of CFG RESET SOURCE[0:3] and CFG SYS CLKIN DIV.
- 4. The parameter names CFG SYS CLKIN DIV and CFG CLKIN DIV are used interchangeably in this document.

This table provides the PLL lock times.

Table 10. PLL Lock Times

Parameter/Condition	Min	Max	Unit	Note
System PLL lock times	_	100	μS	_
e300 core PLL lock times	_	100	μS	_
SerDes (SGMII/PCI Exp Phy) PLL lock times	_	100	μS	_
USB phy PLL lock times	_	100	μS	_

7 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8314E. Note that DDR SDRAM is GVDD(typ) = 2.5 V and DDR2 SDRAM is GVDD(typ) = 1.8 V.

7.1 DDR and DDR2 SDRAM DC Electrical Characteristics

This table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8314E when GVDD(typ) = 1.8 V.

Table 11. DDR2 SDRAM DC Electrical Characteristics for GVDD(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
I/O supply voltage	GVDD	1.7	1.9	V	1
I/O reference voltage	MVREF	0.49 × GVDD	0.51 × GVDD	V	2
I/O termination voltage	V _{TT}	MVREF - 0.04	MVREF + 0.04	V	3
Input high voltage	V _{IH}	MVREF+ 0.125	GVDD + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MVREF - 0.125	V	
Output leakage current	I _{OZ}	-9.9	9.9	μΑ	4
Output high current (V _{OUT} = 1.420 V, GVDD= 1.7V)	I _{OH}	-13.4	_	mA	_
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	

Note:

- 1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.
- 2. MVREF is expected to be equal to $0.5 \times \text{GVDD}$, and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed $\pm 2\%$ of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF. This rail should track variations in the DC level of MVREF.
- 4. Output leakage is measured with all outputs disabled, $0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{GVDD}$.

MPC8314E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2

This table provides the DDR2 capacitance when GVDD(typ) = 1.8 V.

Table 12. DDR2 SDRAM Capacitance for GVDD(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

This table provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8314E when GVDD(typ) = 2.5 V.

Table 13. DDR SDRAM DC Electrical Characteristics for GVDD(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
I/O supply voltage	GVDD	2.3	2.7	V	1
I/O reference voltage	MVREF	0.49 × GVDD	0.51 × GVDD	V	2
I/O termination voltage	V _{TT}	MVREF - 0.04	MVREF + 0.04	V	3
Input high voltage	V _{IH}	MVREF + 0.15	GVDD + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MVREF - 0.15	V	_
Output leakage current	I _{OZ}	-9.9	-9.9	μΑ	4
Output high current (V _{OUT} = 1.95 V, GVDD = 2.3V)	Гон	-16.2	_	mA	_
Output low current (V _{OUT} = 0.35 V)	l _{OL}	16.2	_	mA	_

Note:

- 1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.
- 2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF. This rail should track variations in the DC level of MVREF.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GVDD.

This table provides the DDR capacitance when GVDD(typ) = 2.5 V.

Table 14. DDR SDRAM Capacitance for GVDD(typ) = 2.5 V Interface

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output capacitance: DQ,DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. GVDD = $2.5 \text{ V} \pm 0.125 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ}\text{C}$, $V_{OUT} = GVDD/2$, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the current draw characteristics for MV_{REF}

Table 15. Current Draw Characteristics for MV_{REF}

Parameter / Condition	Symbol	Min	Max	Unit	Note
Current draw for MV _{REF}	I _{MVREF}	_	500	μА	1

MPC8314E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2

^{1.} This parameter is sampled. $GVDD = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ}\text{C}$, $V_{OUT} = GVDD/2$, V_{OUT} (peak-to-peak) = 0.2 V.

DDR and DDR2 SDRAM

Table 15. Current Draw Characteristics for MV_{REF}

Parameter / Condition	Symbol	Min	Max	Unit	Note	
-----------------------	--------	-----	-----	------	------	--

Note:

1. The voltage regulator for MV_{REF} must be able to supply up to 500 μ A current.

7.2 DDR and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR and DDR2 SDRAM interface.

7.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications

This table lists the input AC timing specifications for the DDR2 SDRAM (GVDD(typ) = 1.8 V).

Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with GVDD of 1.8V ± 100 mV

Parameter	Symbol	Min	Мах	Unit	Note
AC input low voltage	V _{IL}	_	MVREF - 0.45	V	_
AC input high voltage	V _{IH}	MVREF + 0.45	_	V	_

This table lists the input AC timing specifications for the DDR SDRAM when GVDD(typ)=2.5 V.

Table 17. DDR SDRAM Input AC Timing Specifications for 2.5 V Interface

At recommended operating conditions with GVDD of 2.5V ± 200 mV

Parameter	Symbol	Min	Max	Unit	Note
AC input low voltage	V _{IL}	_	MVREF - 0.51	V	
AC input high voltage	V _{IH}	MVREF + 0.51	_	V	

The following two tables list the input AC timing specifications for the DDR SDRAM interface.

Table 18. DDR2 SDRAM Input AC Timing Specifications

At recommended operating conditions with GVDD of (1.8 V± 100 mV)

Parameter	Symbol	Min	Max	Unit	Note
Controller Skew for MDQS—MDQ 266 MHz 200 MHz		-875 -1250	875 1250	ps	1, 2, 3

Note:

- 1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit to be captured with MDQS[n]. This should be subtracted from the total timing budget.
- 2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: tDISKEW =+/-(T/4 abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.
- 3. Memory controller ODT value of 150 Ω is recommended.

Table 19. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GVDD of (2.5V ± 200 mV)

Parameter	Symbol	Min	Max	Unit	Note	
-----------	--------	-----	-----	------	------	--

MPC8314E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2

Table 19. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GVDD of (2.5V ± 200 mV)

Controller Skew for MDQS—MDQ	t _{CISKEW}	,		ps	1, 2
	266 MHz	-750	750		
	200 MHz	-1250	1250		

Note:

- 1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit to be captured with MDQS[n]. This should be subtracted from the total timing budget.
- The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} =+/-(T/4 – abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.

This figure shows the DDR SDRAM input AC timing for the tolerated MDQS to MDQ skew (t_{DISKEW})

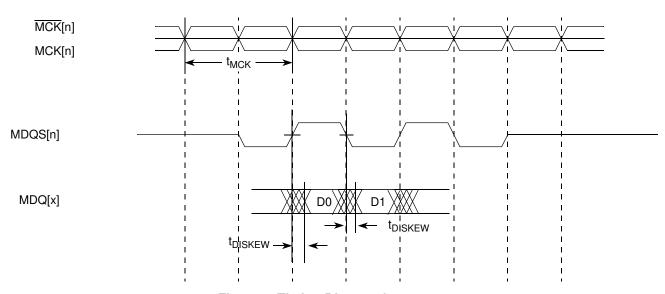


Figure 5. Timing Diagram for t_{DISKEW}

7.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications

At recommended operating conditions

Parameter	Symbol ¹	Min	Max	Unit	Note
MCK[n] cycle time at MCK[n]/MCK[n] crossing	t _{MCK}	7.5	10	ns	2
ADDR/CMD output setup with respect to MCK 266 MHz 200 MHz		2.9 3.5		ns	3
ADDR/CMD output hold with respect to MCK 266 MHz 200 MHz		3.15 4.20	_ _	ns	3
MCS[n] output setup with respect to MCK 266 MHz 200 MHz		3.15 4.20	_ _	ns	3

DDR and DDR2 SDRAM

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions

Parameter	Symbol ¹	Min	Max	Unit	Note
MCS[n] output hold with respect to MCK 266 MHz 200 MHz		3.15 4.20		ns	3
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ//MDM output setup with respect to MDQS 266 MHz 200 MHz	DUNLUG	900 1000		ps	5
MDQ//MDM output hold with respect to MDQS 266 MHz 200 MHz	DUNLUX	1100 1200		ps	5
MDQS preamble start	t _{DDKHMP}	$-0.5 \times t_{MCK} - 0.6$	$-0.5 \times t_{MCK} + 0.6$	ns	6
MDQS epilogue end	t _{DDKHME}	-0.6	0.6	ns	6

Note:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8315E PowerQUICC II Pro Integrated Host Processor Family Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

This figure shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}) .

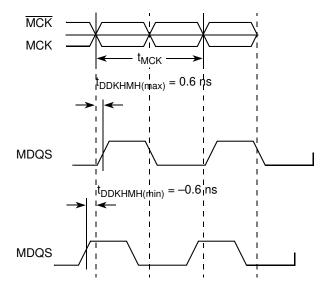


Figure 6. Timing Diagram for t_{DDKHMH}

This figure shows the DDR and DDR2 SDRAM output timing diagram.

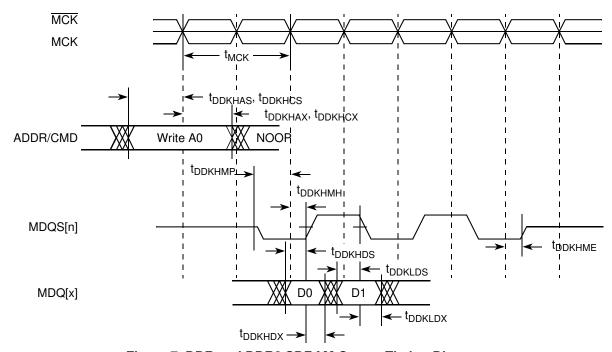


Figure 7. DDR and DDR2 SDRAM Output Timing Diagram

DUART

This figure provides the AC test load for the DDR bus.

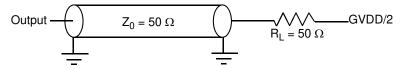


Figure 8. DDR AC Test Load

8 DUART

This section describes the DC and AC electrical specifications for the DUART interface.

8.1 DUART DC Electrical Characteristics

This table lists the DC electrical characteristics for the DUART interface.

Table 21. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2.1	NVDD + 0.3	V
Low-level input voltage NVDD	V _{IL}	-0.3	0.8	V
High-level output voltage, $I_{OH} = -100 \mu A$	V _{OH}	NVDD - 0.2	_	V
Low-level output voltage, $I_{OL} = 100 \mu A$	V _{OL}	_	0.2	V
Input current (0 V \leq V _{IN} \leq NVDD)	I _{IN}	_	± 5	μА

8.2 DUART AC Electrical Specifications

This table lists the AC timing parameters for the DUART interface.

Table 22. DUART AC Timing Specifications

Parameter	Value	Unit	Note
Minimum baud rate	256	baud	_
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16	_	2

Note:

- 1. Actual attainable baud rate is limited by the latency of interrupt processing.
- 2. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each sixteenth sample.

9 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

9.1 eTSEC (10/100/1000 Mbps)—MII/RMII/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all the media-independent interface (MII), reduced gigabit MII (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII and RMII is defined for 3.3 V, while the RGMII, and RTBI can operate at 2.5 V. The RGMII and RTBI follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 9.3, "Ethernet Management Interface Electrical Characteristics."

9.1.1 MII, RMII, RGMII, and RTBI DC Electrical Characteristics

All MII, RMII drivers and receivers comply with the DC parametric attributes specified in Table 23 for 3.3-V operation and RGMII, RTBI drivers and receivers comply with the DC parametric attributes specified in Table 24. The RGMII and RTBI signals are based on a 2.5 V CMOS interface voltage as defined by JEDEC EIA/JESD8–5.

NOTE

eTSEC should be interfaced with peripheral operating at same voltage level.

Table 23. MII/RMII (When Operating at 3.3 V) DC Electrical Cr	naracteristics

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage 3.3 V	LVDD	_	_	3.0	3.6	V
Output high voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$	LVDD = Min	2.40	LVDD + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LVDD = Min	V _{SS}	0.50	V
Input high voltage	V _{IH}	_	_	2.1	LVDD + 0.3	V
Input low voltage	V _{IL}	_		-0.3	0.90	V
Input high current	I _{IH}	V _{IN} ¹ = LVDD		_	40	μА
Input low current	I _{IL}	V _{IN} ¹ = VSS		-600	_	μА

Note:

Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LVDD	_	_	2.37	2.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$	LVDD = Min	2.00	LVDD + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LVDD = Min	$V_{SS} - 0.3$	0.40	V
Input high voltage	V _{IH}	_	LVDD = Min	1.7	LVDD + 0.3	V
Input low voltage	V _{IL}	_	LVDD =Min	-0.3	0.70	V
Input high current	I _{IH}	V _{IN} ¹ = LVDD		_	15	μΑ
Input low current	I _{IL}	V _{IN} ¹ = VSS		– 15	_	μА

MPC8314E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2

^{1.} The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Ethernet: Three-Speed Ethernet, MII Management

Table 24. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics (continued)

Note:

1. The symbol V_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

9.2 MII, RMII, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for MII, RMII, RGMII, and RTBI are presented in this section.

9.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

9.2.1.1 MII Transmit AC Timing Specifications

This table provides the MII transmit AC timing specifications.

Table 25. MII Transmit AC Timing Specifications

At recommended operating conditions with LVDD of 3.3 V ± 300 mv.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	_	400	_	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	_	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	_	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall V _{IH} (max) to V _{IL} (min)	t _{MTXF}	1.0	_	4.0	ns

Note:

This figure shows the MII transmit AC timing diagram.

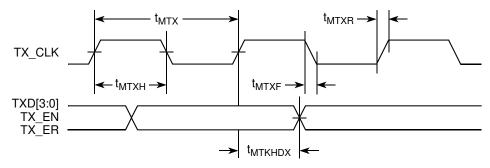


Figure 9. MII Transmit AC Timing Diagram

MPC8314E PowerQUICC II Pro Processor Hardware Specifications, Rev. 2

^{1.} The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

9.2.1.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.

Table 26. MII Receive AC Timing Specifications

At recommended operating conditions with LVDD of 3.3 V \pm 300 mv

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	_	ns
RX_CLK clock period 100 Mbps	t _{MRX}	_	40	_	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	_	_	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	_	_	ns
RX_CLK clock rise V _{IL} (min) to V _{IH} (max)	t _{MRXR}	1.0	_	4.0	ns
RX_CLK clock fall time V _{IH} (max) to V _{IL} (min)	t _{MRXF}	1.0	_	4.0	ns

Note:

- 1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)}(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. The frequency of RX_CLK should not exceed the TX_CLK by more than 300 ppm

This figure provides the AC test load for eTSEC.

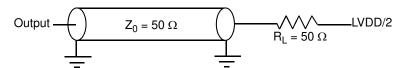


Figure 10. eTSEC AC Test Load

This figure shows the MII receive AC timing diagram.

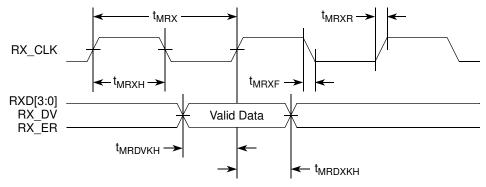


Figure 11. MII Receive AC Timing Diagram RMII AC Timing Specifications