: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NPN Triple Diffused Planar Silicon Transistor

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Value	Units
$\mathrm{V}_{\mathrm{CBO}}$	Collector-Base Voltage	1200	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage	600	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage	12	V
I_{C}	Collector Current (DC)	4	A
I_{CP}	${ }^{*}$ Collector Current (Pulse)	8	A
I_{B}	Base Current (DC)	2	A
I_{BP}	${ }^{*}$ Base Current (Pulse)	4	A
P_{C}	Collector Dissipation $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	75	W
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature	$-65 \sim 150$	${ }^{\circ} \mathrm{C}$
E_{AS}	Avalanche Energy $\left(\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right)$	3	mJ
${ }^{\text {Pulse Test }: \text { Pulse Width }=5 \text { ms, Duty Cycle } \leq 10 \%}$			

Thermal Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristics		Rating	Unit
$\mathrm{R}_{\text {өjc }}$	Thermal Resistance	Junction to Case	1.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өja }}$		Junction to Ambient	62.5	
T_{L}	Maximun Lead Temperature for Soldering Purpose : 1/8" from Case for 5 seconds		270	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Condition		Min.	Typ.	Max.	Units
$\mathrm{BV}_{\text {CBO }}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0$		1200	1350		V
$\mathrm{BV}_{\text {CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$		600	750		V
$\mathrm{BV}_{\text {EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$		12	13.7		V
$\mathrm{I}_{\text {CES }}$	Collector Cut-off Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CES}}=1200 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{BE}}=0 \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			500	
$I_{\text {CEE }}$	Collector Cut-off Current	$\mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			500	
$\mathrm{I}_{\text {EBO }}$	Emitter Cut-off Current	$\mathrm{V}_{\mathrm{EB}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
$\mathrm{h}_{\text {FE }}$	DC Current Gain	$\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	15	20	35	
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	10	13		
		$\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	4	6		
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	3	4.1		
		$\mathrm{V}_{\mathrm{CE}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	12	18	30	
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	8	10		
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		0.28	0.6	V
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.5	1.0	V
		$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		0.18	0.5	V
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.3	0.75	V
		$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		0.5	1.5	V
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		2.0	3.0	V
V_{BE} (sat)	Base-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.8 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B}}=0.08 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		0.77	1.0	V
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.60	0.9	V
		$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		0.85	1.2	V
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.70	1.0	V
$\mathrm{C}_{\text {ib }}$	Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}=1 \mathrm{MHz}$			600	750	pF
C_{ob}	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}$			75	100	pF
f_{T}	Current Gain Bandwidth Product	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$			11		MHz
V_{F}	Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		0.83	1.3	V
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.7		V
		$I_{F}=2 A$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		0.88	1.5	V
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.8		V

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Condition		Min	Typ.	Max.	Units
t_{fr}	Diode Froward Recvery Time (di/dt=10A/ $\mu \mathrm{s}$)	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 770 \\ & 870 \\ & 1.2 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mu \mathrm{~s} \end{aligned}$
$\mathrm{V}_{\text {CE }}$ (DSAT)	Dynamic Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B} 1}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{aligned}$	@ 1 $\mu \mathrm{s}$		10		V
			@ 3 $\mu \mathrm{s}$		3		V
		$\begin{aligned} & \hline \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B} 1}=400 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \\ & \hline \end{aligned}$	@ 1 $\mu \mathrm{s}$		10		V
			@ 3 $\mu \mathrm{s}$		2		V
RESISTIVE LOAD SWITCHING (D.C $\leq 10 \%$, Pulse Width $=40 \mu \mathrm{~s}$)							
t_{ON}	Turn ON Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}_{1}}=0.4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 2}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		160	250	ns
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		170		ns
${ }_{\text {t }}$ TG	Storage Time		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		1.5	2.5	$\mu \mathrm{s}$
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		1.7		$\mu \mathrm{s}$
t_{F}	Fall Time		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		125	300	ns
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		160		ns
t_{ON}	Turn ON Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 2}=0.4 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		170	300	ns
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		175		ns
${ }_{\text {t }}$ STG	Storage Time		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		2.8	3.5	$\mu \mathrm{s}$
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		3.1		$\mu \mathrm{s}$
t_{F}	Fall Time		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		400	650	ns
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		850		ns

INDUCTIVE LOAD SWITCHING (VCC=15V)

${ }^{\text {t }}$ STG	Storage Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 2}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{Z}}=300 \mathrm{~V} \\ & \mathrm{~L}_{\mathrm{C}}=200 \mathrm{H} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	1.75	2.5	$\mu \mathrm{s}$
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	2.2		$\mu \mathrm{s}$
t_{F}	Fall Time		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	100	250	ns
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	100		ns
${ }_{\text {t }}$	Cross-over Time		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	210	400	ns
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	250		ns
$\mathrm{t}_{\text {STG }}$	Storage Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 2}=0.4 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \\ & \mathrm{~L}_{\mathrm{C}}=200 \mathrm{H} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	3.6	4.5	$\mu \mathrm{s}$
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	4.2		$\mu \mathrm{s}$
t_{F}	Fall Time		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	170	350	ns
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	320		ns
t_{C}	Cross-over Time		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	540	800	ns
			$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	1.1		ns

Typical Characteristics

Figure 1. Static Characteristic

Figure 3. Collector-Emitter Saturation Voltage

Figure 5. Typical Collector Saturation Voltage

Figure 2. DC current Gain

Figure 4. Collector-Emitter Saturation Voltage

Figure 6. Base-Emitter Saturation Voltage

Typical Characteristics (Continued)

Figure 7. Base-Emitter Saturation Voltage

Figure 9. Collector Output Capacitance

Figure 11. Inductive Switching Time, t_{fi}

Figure 8. Diode Forward Voltage

Figure 10. Inductive Switching Time, t_{si}

Figure 12. Inductive Switching Time, t_{c}

Typical Characteristics (Continued)

Figure 13. Inductive Switching Time, t_{si}

Figure 15. Inductive Switching Time, t_{c}

Figure 17. Resistive Switching Time, t_{si}

Figure 14. Inductive Switching Time, \mathbf{t}_{fi}

Figure 16. Resistive Switching Time, t_{on}

Figure 18. Resistive Switching Time, t_{fi}

Typical Characteristics (Continued)

Figure 21. Resistive Switching Time, t_{fi}

Figure 23. Inductive Switching Time, \mathbf{t}_{fi}

Figure 20. Resistive Switching Time, $\mathbf{t}_{\text {si }}$

Figure 22. Inductive Switching Time, t_{si}

Figure 24. Inductive Switching Time, $\mathbf{t}_{\mathbf{c}}$

Typical Characteristics (Continued)

Figure 25. Forward Bias Safe Operating Area

Figure 26. Power Derating

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	FAST $^{\circledR}$	OPTOPLANAR	
Bottomless $^{\text {TM }}$	FASTr $^{\text {TM }}$	PACMAN	STAR $^{\text {™ }}$ POWER

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

