

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

KSE5740/5741/5742

High Voltage Power Switching In Inductive Circuits

- High Voltage Power Darlington TR
- Small Engine Ignition
- · Switching Regulators
- Inverters
- · Solenold and Relay Drivers
- Motor Control

1.Base 2.Collector 3.Emitter

NPN Silicon Darlington Transistor

Absolute Maximum Ratings T_C=25°C unless otherwise noted

Symbol	Parameter	Value	Units
BV _{CEO} (sus)	Collector-Emitter Sustaining Voltage		
	: KSE5740	300	V
	: KSE5741	350	V
	: KSE5742	400	V
V _{CEV}	Collector-Emitter Voltage : KSE5740	600	V
	: KSE5741	700	V
	: KSE5742	800	V
V _{EBO}	Emitter-Base Voltage	8	V
I _C	Collector Current (DC)	8	Α
I _{CP}	*Collector Current (Pulse)	16	Α
I _B	Base Current (DC)	2.5	Α
I _{BP}	*Base Current (Pulse)	5	Α
P _C	Collector Dissipation	80	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 65 ~ 150	°C

Electrical Characteristics $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{CEO} (sus)	Collector-Emitter Sustaining Voltage : KSE5740 : KSE5741 : KSE5742	I _C = 50mA, I _B =0	300 350 400			V V V
I _{CEV}	Collector Cut-off Current	V _{CEV} =Rate Value, V _{BE(OFF)} =1.5V			1	mA
I _{EBO}	Emitter Cut-off Current	V _{EB} = 8V, I _C = 0			75	mA
h _{FE}	DC Current Gain	$V_{CE} = 5V, I_{C} = 0.5A$ $V_{CE} = 5V, I_{C} = 4A$	50 200	100 400		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =4A, I _B = 0.2A I _C =8A, I _B = 0.4A			2 3	V V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =4A, I _B = 0.2A I _C =8A, I _B = 0.4A			2.5 3.5	V V
V _F	Diode Forward Voltage	I _F =5A			2.5	V
t _D	Delay Time	$V_{CC} = 250V, I_{C}(pk) = 6A$		0.04		μs
t _R	Rise Time	$I_{B1} = I_{B2} = 0.25A$		0.5		μs
t _S	Storage Time	t _P = 25μs		8		μs
t _F	Fall Time	Duty Cycle≤1%		2		μs
t _{SV}	Voltage Storage Time	$I_{C}(pk) = 6A, V_{CE}(pk) = 250V$		4		μs
t _C	Cross-over Time	$I_B 1 = 0.06A, V_{BE} (off) = 5V$		2		μs

Typical Characteristics

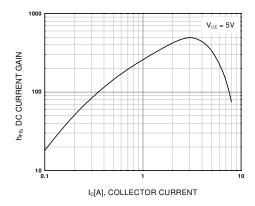


Figure 1. DC current Gain

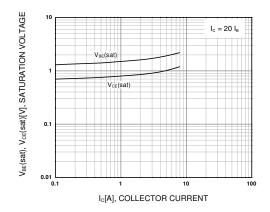


Figure 2. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

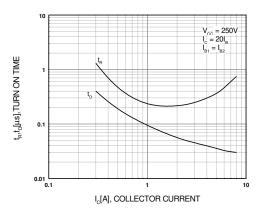


Figure 3. Turn On Time

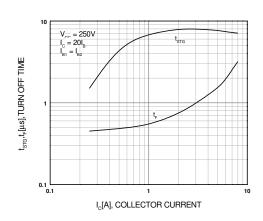


Figure 4. Turn Off Time

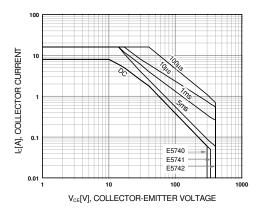


Figure 5. Safe Operating Area

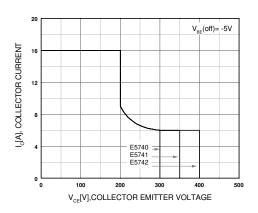


Figure 6. Reverse Bias Safe Operating Area

©2001 Fairchild Semiconductor Corporation Rev. A1, June 2001

Typical Characteristics (Continued)

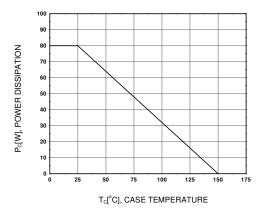
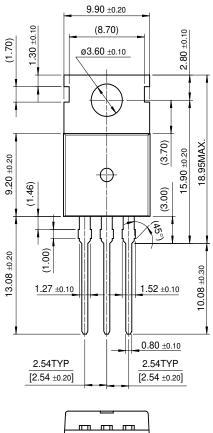
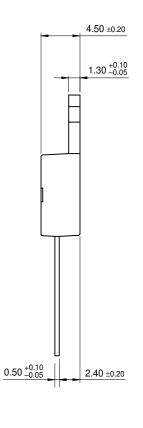




Figure 1. Power Derating

Package Demensions

TO-220

10.00 ±0.20

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	OPTOPLANAR™	STAR*POWER™
Bottomless™	FASTr™	PACMAN™	Stealth™
CoolFET™	FRFET™	POP™	SuperSOT™-3
$CROSSVOLT^{TM}$	GlobalOptoisolator™	Power247™	SuperSOT™-6
DenseTrench™	GTO™	PowerTrench [®]	SuperSOT™-8
DOME™	HiSeC™	QFET™	SyncFET™
EcoSPARK™	ISOPLANAR™	QS™	TruTranslation™
E ² CMOS™	LittleFET™	QT Optoelectronics™	TinyLogic™
EnSigna™	MicroFET™	Quiet Series™	UHC™
FACT™	MICROWIRE™	SLIENT SWITCHER®	UltraFET [®]
FACT Quiet Series™	OPTOLOGIC™	SMART START™	VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2001 Fairchild Semiconductor Corporation Rev. H3