imall

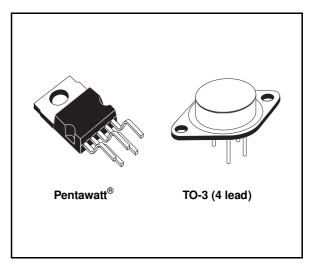
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



L200

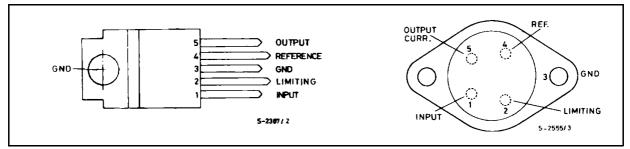
ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

- ADJUSTABLE OUTPUT CURRENT UP TO 2 A (GUARANTEED UP TO T_j = 150 °C)
- ADJUSTABLE OUTPUT VOLTAGE DOWN TO 2.85 V
- INPUT OVERVOLTAGE PROTECTION (UP TO 60 V, 10 ms)
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSISTOR S.O.A. PROTECTION
- THERMAL OVERLOAD PROTECTION
- LOW BIAS CURRENT ON REGULATION PIN
- LOW STANDBY CURRENT DRAIN

DESCRIPTION

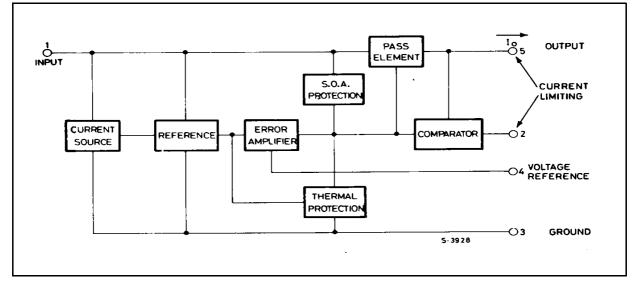
The L200 is a monolithic integrated circuit for voltage and current programmable regulation. It is available in Pentawatt[®] package or 4-lead TO-3 metal case. Current limiting, power limiting, thermal shutdown and input overvoltage protection (up to

60 V) make the L200 virtually blow-out proof. The L200 can be used to replace fixed voltage regulators when high output voltage precision is required and eliminates the need to stock a range of fixed voltage regulators.

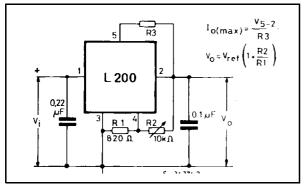

Symbol	Parameter	Value	Unit
Vi	DC Input Voltage	40	V
Vi	Peak Input Voltage (10 ms)	60	V
ΔV_{i-o}	Dropout Voltage	32	V
Ιo	Output Current	internally limited	
P _{tot}	Power Dissipation	internally limited	
T _{stg}	Storage Temperature	-55 to 150	°C
T _{op}	Operating Junction Temperature for L200C	-25 to 150	°C
	for L200	-55 to 150	°C

ABSOLUTE MAXIMUM RATINGS

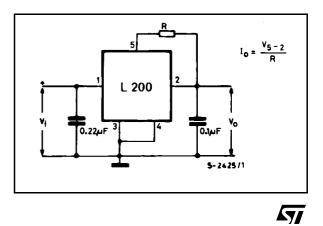
THERMAL DATA


		TO-3	Pentawatt®
Rth j-case	Thermal Resistance Junction-case Max	4 °C/W	3 °C/W
R _{th j-amb}	Thermal Resistance Junction-ambient Max	35 °C/W	50 °C/W

CONNECTION DIAGRAMS AND ORDER CODES (top views)


Туре	Pentawatt [®]	ТО-3
L200		L200 T
L200 C	L200 CH L200 CV	L200 CT

BLOCK DIAGRAM



APPLICATION CIRCUITS

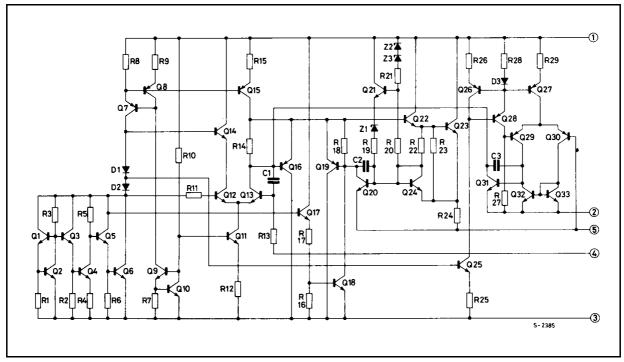

Figure 1. Programmable Voltage Regulator with Current Limiting

Figure 2. Programmable Current Regulator.

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

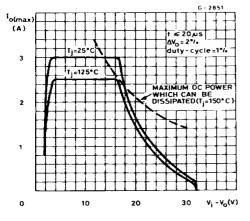
	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
--	--------	-----------	-----------------	------	------	------	------

VOLTAGE REGULATION LOOP

	Quieses at dusis Quarant (sis Q)	V 00.V			4.0	0.0	
l _d	Quiescent drain Current (pin 3)	V _i = 20 V			4.2	9.2	mA
e _N	Output Noise Voltage	Vo = Vref B = 1 MHz	l _o = 10 mA		80		μV
Vo	Output Voltage Range	l _o = 10 mA		2.85		36	V
$\frac{\Delta V_o}{V_o}$	Voltage Load Regulation (note 1)	$\Delta I_o = 2 A$ $\Delta I_o = 1.5 A$			0.15 0.1	1 0.9	% %
$\frac{\Delta V_i}{\Delta V_o}$	Line Regulation	$V_0 = 5 V$ $V_i = 8 \text{ to } 18 V$		48	60		dB
SVR	Supply Voltage Rejection	$\label{eq:V0} \begin{array}{l} V_0 = 5 \ V \\ \Delta V_i = 10 \ V_{pp} \\ f = 100 \ Hz \ (note$	l _o = 500 mA e 2)	48	60		dB
ΔV_{i-o}	Droupout Voltage between Pins 1 and 5	l _o = 1.5 A	$\Delta V_0 \leq 2\%$		2	2.5	V
V _{ref}	Reference Voltage (pin 4)	V _i = 20 V	l _o = 10 mA	2.64	2.77	2.86	V

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	neter Test Conditions			Max.	Unit
ΔV_{ref}	Average Temperature Coefficient of Reference Voltage	V _i = 20 V lo = 10mA for Tj = - 25 to 125 °C for Tj = 125 to 150 °C		-0.25 -1.5		mV/°C mV/°C
I ₄	Bias Current and Pin 4			3	10	μA
$\frac{\Delta I_4}{\Delta T \bullet I_4}$	Average Temperature Coefficient (pin 4)			-0.5		%/°C
Zo	Output Impedance			1.5		mΩ


CURRENT REGULATION LOOP

V _{SC}	Current Limit Sense Voltage between Pins 5 and 2		0.38	0.45	0.52	V
$\frac{\Delta V_{SC}}{\Delta T \bullet V_{SC}}$	Average Temperature Coefficient of V _{SC}			0.03		%/°C
$\frac{\Delta I_0}{I_0}$	Current Load Regulation	$ \begin{array}{ll} Vi = 10 \ V & \Delta Vo = 3V \\ I_{o} = 0.5 \ A \\ I_{o} = 1A \\ I_{o} = 1.5 \ A \end{array} $		1.4 1 0.9		% % %
I _{SC}	Peak Short Circuit Current	$V_i - V_0 = 14 V$ (pins 2 and 5 short circuited)			3.6	A

Note 1: A load step of 2 A can be applied provited that input-output differential voltage is lower than 20 V (see Figure 3).

Note 2: The same performance can be maintained at higher output levels if a bypassing capacitor is provited between pins 2 and 4.

Figure 3. Typical Safe Operating Area Protection.

Figure 4. Quiescent Current vs. Supply Voltage.

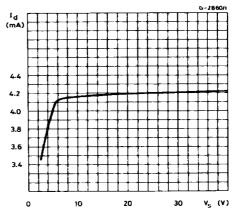


Figure 5. Quiescent Current vs. Junction Voltage.

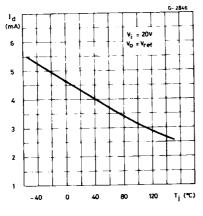


Figure 7. Output Noise Voltage vs. Output Voltage.

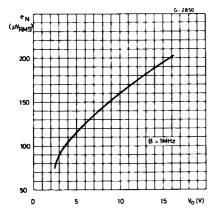
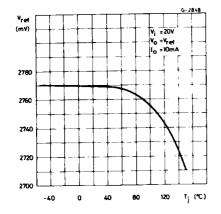



Figure 9. Reference Voltage vs. Junction Temperature.

Figure 6. Quiescent Current vs. Output Current.

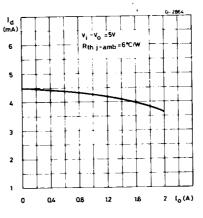


Figure 8. Output Noise Voltage vs. Frequency.

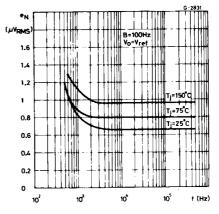


Figure 10. Voltage Load Regulation vs. Junction Temperature.

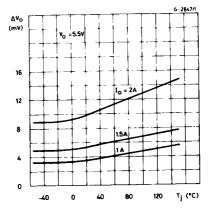


Figure 11. Supply Voltage Rejection vs. Frequency.

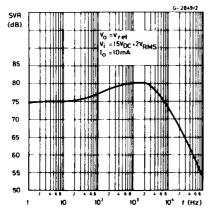


Figure 13. Output Impedance vs. Frequency.

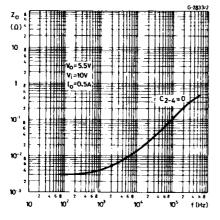


Figure 15. Voltage Transient Reponse.

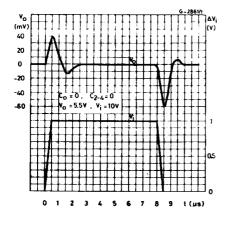


Figure 12. Dropout Voltage vs. Junction Temperature.

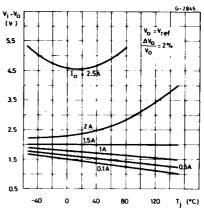


Figure 14. Output Impedance vs. Output Current.

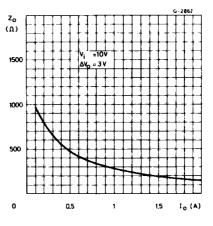
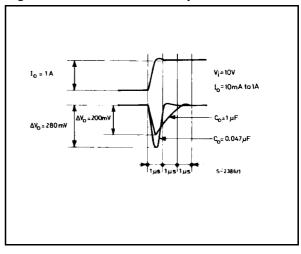
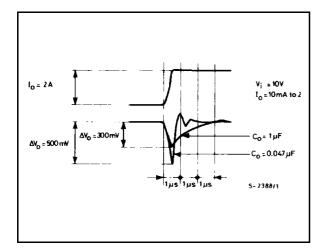
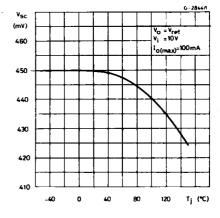


Figure 16. Load Transient Reponse.

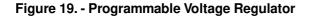

Figure 17. Load Transient Reponse

Figure 18. Current Limit Sense Voltage vs. Junction Temperature.

APPLICATIONS CIRCUITS

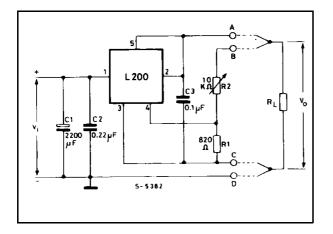


Figure 21. - High Current Voltage Regulator with Short Circuit Protection.

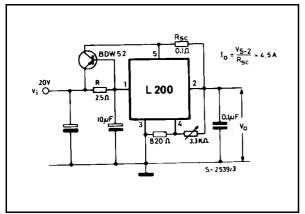
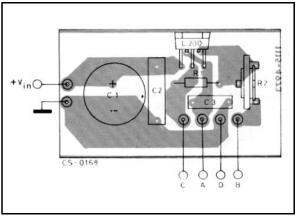
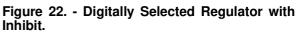
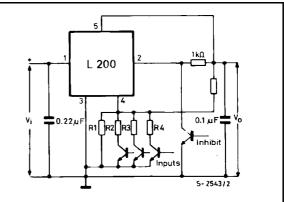





Figure 20. - P.C. Board and Components Layout of Figure 19.

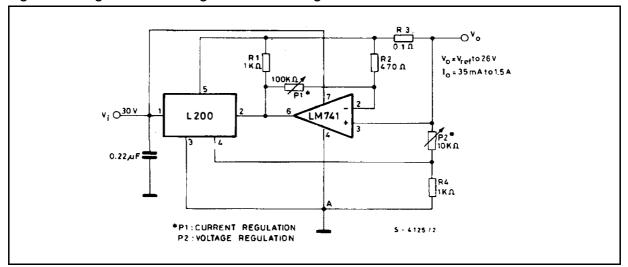
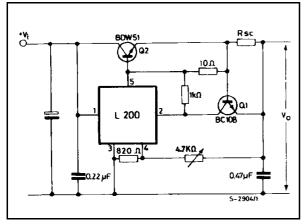
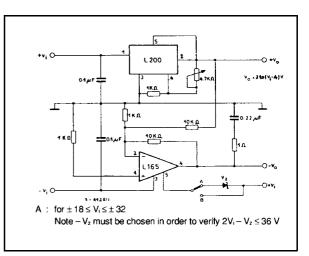
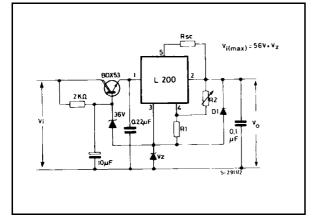
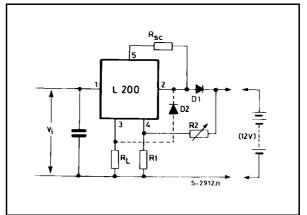




Figure 23. Programmable Voltage and Current Regulator.

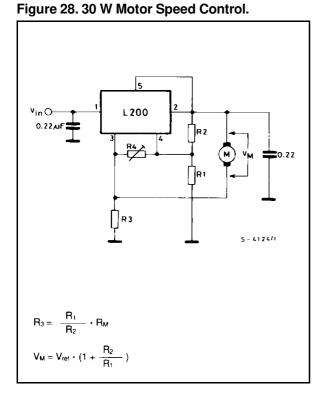
Figure 24. High Current Regulator with NPN Pass Transistor.

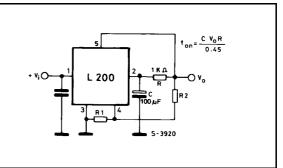




Note: Connecting point A to a negative voltage (for example - 3V/10 mA) it is possible to extend the output voltage range down to 0 V and obtain the current limiting down to this level (output short-circuit condition).

Figure 26. High Input and Output Voltage.


Figure 27. Constant Current Battery Charger.



The resistors R_1 and R_2 determine the final charging voltage and R_{SC} the initial charging current. D_1 prevents discharge of the battery throught the regulator.

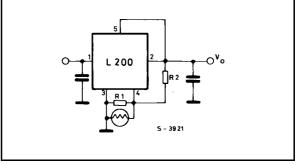
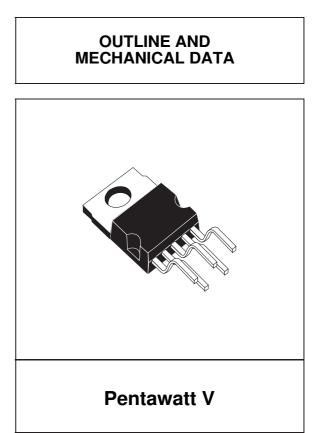

The resistor RL limits the reverse currents through ther regulator (which should be 100 mA max) when the battery is accidentally reverse connected. If R_L is in series with a bulb of 12 V/50 mA rating this will indicate incorrect connection.

Figure 29. Loww Turn on.



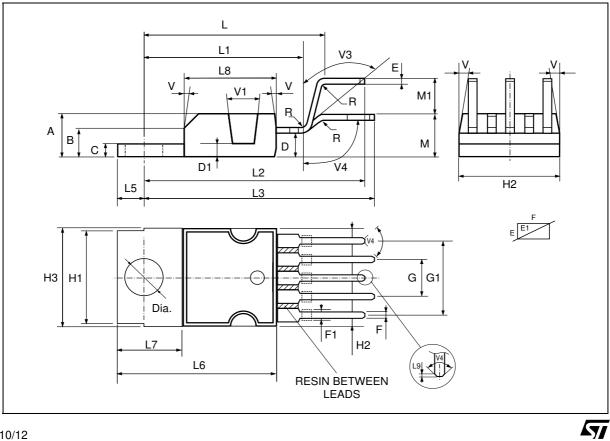
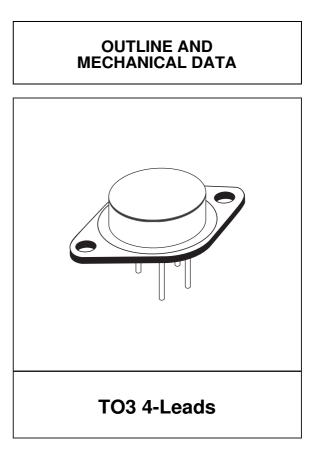
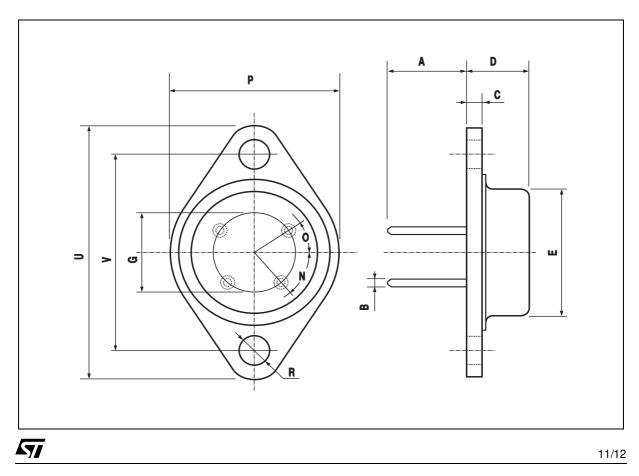


Figure 30. Light Controller.


DIM.		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
Е	0.35		0.55	0.014		0.022
E1	0.76		1.19	0.030		0.047
F	0.8		1.05	0.031		0.041
F1	1		1.4	0.039		0.055
G	3.2	3.4	3.6	0.126	0.134	0.142
G1	6.6	6.8	7	0.260	0.268	0.276
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L	17.55	17.85	18.15	0.691	0.703	0.715
L1	15.55	15.75	15.95	0.612	0.620	0.628
L2	21.2	21.4	21.6	0.831	0.843	0.850
L3	22.3	22.5	22.7	0.878	0.886	0.894
L4			1.29			0.051
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
L9		0.2			0.008	
М	4.23	4.5	4.75	0.167	0.177	0.187
M1	3.75	4	4.25	0.148	0.157	0.167
V4	40° (typ.)					



10/12

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		11.8			0.46	
B (*)		1		0.39		
С			2.5			0.098
D			9.6			0.37
E			20			0.78
G		12.7			0.50	
N			50 ° ((typ.)		
0			30 ° ((typ.)		
Р			26.2			1.03
R	3.88		4.20	0.15		0.16
U			39.5			1.55
V		30.1			1.18	

(*) Measured with Gauge

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com