

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

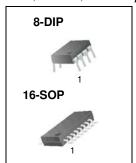
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

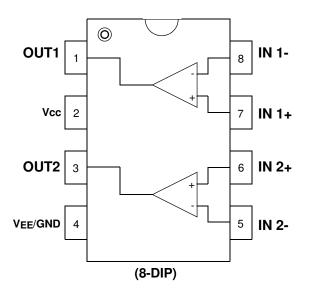
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

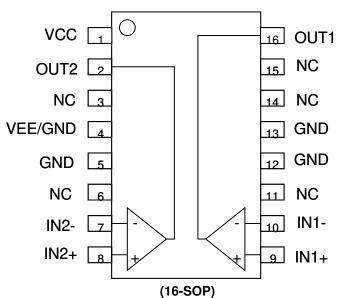
L272/L272A Dual Power Operational Amplifier

Features


- Output Current up to 0.7A
- Operates at Low Voltage $(V_{S(MIN)} = 4V)$
- Low Saturation Voltage (Ip = 0.5A, $V_O = 1.5V$)
- Thermal Shutdown (TSD = 160° C)
- Ground Compatible Inputs
- Large Common Mode & Differential Mode Range

Applications


- · Servo Amplifier
- Power Supply
- Compact Disc
- VCR
- Monitor


Description

The L272 and L272A are high-power dual operational amplifier provided as a 8-DIP and 16-SOP package. The operational amplifier is designed for low impedance loads and will deliver output current up to 0.7A. The L272A offers tighter specifications for input bias current, input offset voltage and input offset currents. The L272 and L272A can be used in a wide range of applications including power supply, VCR, monitor, servo amplifier, compact disc, etc.

Internal Block Diagram

Pin Definitions

Pin Number		Pin Name	Pin Function Description	
8-DIP	16-SOP	Fill Name	Fin Function Description	
1	16	OUTPUT1	Amp Output 1	
2	1	VCC	Positive Supply Voltage	
3	2	OUTPUT2	Amp Output 2	
4	4/5/12/13	VEE/GND	Negative Supply Voltage (GND)	
5	7	INPUT-2	Amp Negative Input 2	
6	8	INPUT+2	Amp Positive Input 2	
7	9	INPUT+1	Amp Positive Input 1	
8	10	INPUT-1	Amp Negative Input 1	

Absolute Maximum Ratings (Note1)

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	40	V
Input Voltage	VI	Vs	V
Differential Input Voltage	V _I (DIFF)	±Vs	V
DC Output Current	Io	0.7	A
Peak Output Current (Non Repetitive)	lp	1	A
Power Dissipation At: Tamb = 50°C	P _{tot}	1	W
Operating Temperature Range	Top	-25 to 85	°C
Storage and Junction Temperature	T _{stg} , Tj	-40 to 150	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings.

Thermal Data

Parameter	Symbol	Value	Unit
Thermal Resistance Junction-Ambient Max. 8-DIP 16-SOP	Rθja	100 190	°C/W

Electrical Characteristics (L272)

(V_{CC} = +12V, V_{EE} = -12V, T_A = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage (VCC - VEE)	Vs	-	4	-	28	V
Supply Current	Is	VO = VCC/2 VCC = 24V, VEE = 0V VCC = 12V, VEE = 0V	-	8 7.5	12 11	mA mA
Input Bias Current	IBIAS	-	-	0.3	2.5	μΑ
Input Offset Voltage	VIO	-	-	15	60	mV
Input Offset Current	lio	-	-	50	250	nA
Slew Rate	SR	Vin = 1Vpp, Unit Gain	-	1	-	V/μs
Gain-Bandwidth Product	GBW	-	-	350	-	kHz
Input Resistance	Rı	-	500	-	-	kΩ
Large-Signal Voltage Gain	Gγ	$V_{O(pp)} = \pm 10V$	65	75	-	dB
Input Noise Voltage	en	B = 20kHz	-	10	-	μV
Input Noise Current	ΙN	B = 20kHz	-	200	-	рА
Common Mode Rejection Ratio	CMRR	-	60	75	-	dB
Supply Voltage Rejection Ratio	PSRR	VCC = +15V, VEE = -15V VCC = +5V, VEE = -5V	54	62	-	dB
Output Voltage Swing	Vo	VCC = 24V, VEE = 0V lp = 0.1A lp = 0.5A	21 21	23 22.5		V V
Channel Separation	Cs	$f = 1 \text{kHz}, R_L = 10 \Omega, \\ \text{GV} = 30 \text{dB}$	-	60	-	dB
Total Harmonic Distortion	THD	$f = 1kHz$, $GV = 1dB$, $RL = \infty$	-	0.5	-	%
Thermal stutdown Temperature (Note2)	TSD	-	-	160	-	°C

Note 2: Guaranteed by design. Not 100% tested in production.

Electrical Characteristics (L272A)

(V_{CC} = +12V, V_{EE} = -12V, T_A = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage (VCC - VEE)	Vs	-	4	-	28	V
Supply Current	Is	VO = VCC/2 VCC = 24V, VEE = 0V VCC = 12V, VEE = 0V	-	8 7.5	12 11	mA mA
Input Bias Current	IBIAS	-	-	0.1	1	μΑ
Input Offset Voltage	VIO	-	-	7	30	mV
Input Offset Current	lio	-	-	20	100	nA
Slew Rate	SR	Vin = 1Vpp, Unit Gain	-	1	-	V/μs
Gain-Bandwidth Product	GBW	-	-	350	-	kHz
Input Resistance	Rı	-	500	-	-	kΩ
Large-Signal Voltage Gain	Gγ	$V_{O(pp)} = \pm 10V$	65	75	-	dB
Input Noise Voltage	en	B = 20kHz	-	10	-	μV
Input Noise Current	ΙN	B = 20kHz	-	200	-	pА
Common Mode Rejection Ratio	CMRR	-	60	75	-	dB
Supply Voltage Rejection Ratio	PSRR	VCC = +15V, VEE = -15V VCC = +5V, VEE = -5V	54	62	-	dB
Output Voltage Swing	Vo	VCC = 24V, VEE = 0V Ip = 0.1A Ip = 0.5A	21 21	23 22.5	-	V
Channel Separation	Cs	$ f = 1 \text{kHz}, \ R_L = 10 \Omega, \\ \text{GV} = 30 \text{dB} $	-	60	-	dB
Total Harmonic Distortion	THD	$f = 1kHz$, $GV = 1dB$, $RL = \infty$	-	0.5	-	%
Thermal stutdown Temperature (Note3)	TSD	-	-	160	-	°C

Note 3 : Guaranteed by design. Not 100% tested in production.

Typical Performance Characteristics

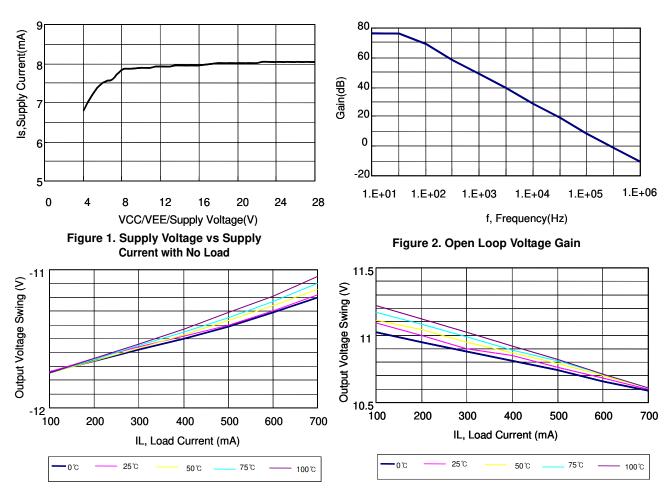


Figure 3-1. Output Voltage Swing vs Load Current

Figure 3-2. Output Voltage Swing vs Load Current

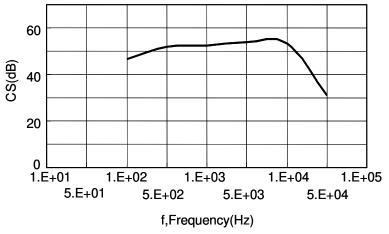
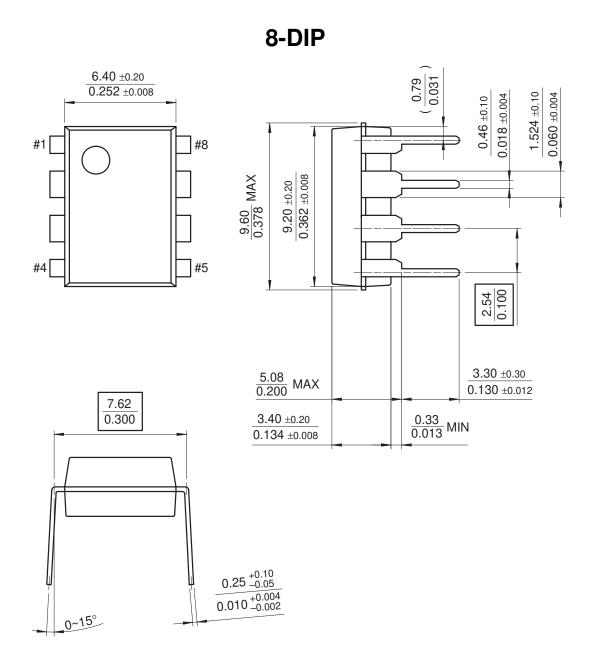


Figure 4. Channel Separation vs Frequency

Applications

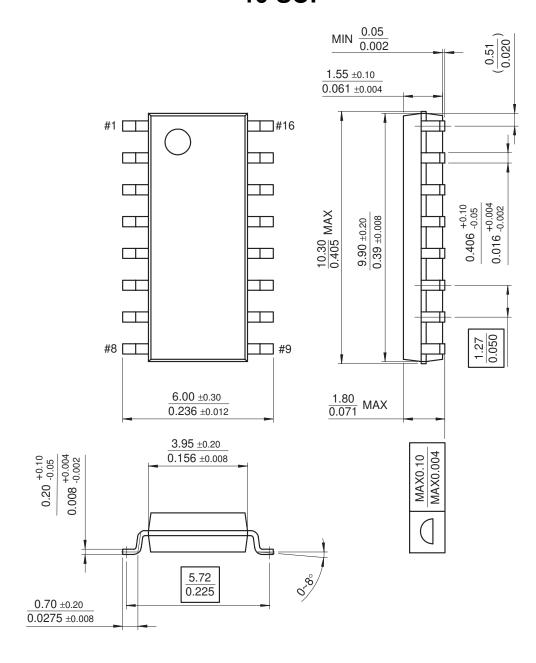


< Tilt Coil Current Control Circuit in Monitor, 8-DIP Package>

Mechanical Dimensions

Package

Dimensions in millimeters



Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

16-SOP

Ordering Information

Product Number	Package	Packing	Operating Temperature
L272M	8-DIP	Tube	
L272D2	16-SOP	Tube	
L272D2TF	16-SOP	Tape and Reel	-25°C ~ +85°C
L272AM	8-DIP	Tube	-23 0 4 +65 0
L272AD2	16-SOP	Tube	
L272AD2TF	16-SOP	Tape and Reel	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com