

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

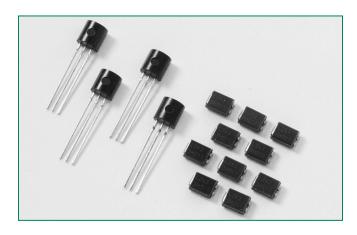
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

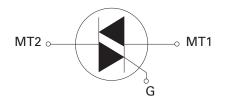
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China




ROHS LxX8Ex & LxXx & QxX8E & QxXx Series

Main Features

Symbol	Value	Unit
I _{T(RMS)}	0.8	А
V _{DRM} /V _{RRM}	400 to 600	V
I _{GT (Q1)}	3 to 25	mA

Schematic Symbol

Description

0.8 Amp bi-directional solid state switch series is designed for AC switching and phase control applications such as motor speed and temperature modulation controls, lighting controls, and static switching relays.

Sensitive type devices guarantee gate control in Quadrants I & IV needed for digital control circuitry.

Standard type devices normally operate in Quadrants I & III triggered from AC line.

Features

- RoHS Compliant
- Glass passivated junctions
- Voltage capability up to 600 V
- Surge capability up to 10 A

Applications

Excellent for lower current heating controls, water valves, and solenoids.

Typical applications are AC solid-state switches, home/brown goods and white goods appliances.

Sensitive gate Triacs can be directly driven by microprocessor or popular opto-couplers/isolators.

Absolute Maximum Ratings — Sensitive Triacs (4 Quadrants)

Symbol	Paramete	Parameter				
I _{T(RMS)}	RMS on-state current (full sine wave)	LxX8y/LxXy	$T_{\rm C} = 50^{\circ}{\rm C}$	0.8	А	
	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	8.3	A	
TSM	(full cycle, T_J initial = 25°C) $f = 60 \text{ Hz}$	t = 16.7 ms	10	A		
l²t	I²t Value for fusing	$t_{p} = 8.3$	3 ms	0.41	A ² s	
di/dt	Critical rate of rise of on-state current ($I_g = 50$ mA with ≤ 0.1 µs rise time)	f = 120 Hz	T _J = 110°C	20	A/µs	
I _{GTM}	Peak gate trigger current	t _p = 10 μs	T _J = 110°C	1	А	
P _{G(AV)}	Average gate power dissipation		T _J = 110°C	0.2	W	
	Ctorogo topoporaturo rongo		LxX8Ey	-65 to 150	°C	
T _{stg}	Storage temperature range		LxXy	-40 to 150		
			LxX8Ey	-65 to 110	90	
T,	Operating junction temperature range		LxXy	-40 to 110	°C	

Note: x = voltage, y = sensitivity

Teccor® brand Thyristors 0.8 Amp Sensitive & Standard Triacs

Absolute Maximum Ratings — Standard Triac

Symbol	Paramete	Parameter				
I _{T(RMS)}	RMS on-state current (full sine wave)	QxXE8y/ QxXy	T _c = 60°C	0.8	А	
	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	8.3		
TSM	(full cycle, T _J initial = 25°C) f = 60 Hz	f = 60 Hz	t = 16.7 ms	10	A	
l²t	I²t Value for fusing	$t_{p} = 8.3$	3 ms	0.41	A ² s	
di/dt	Critical rate of rise of on-state current ($I_G = 200 \text{mA}$ with $\leq 0.1 \mu \text{s}$ rise time)	f = 120 Hz	T _J = 125°C	20	A/µs	
I _{GTM}	Peak gate trigger current $ \begin{matrix} t_{_{D}} = 10 \; \mu s; \\ l_{_{GT}} \leq l_{_{GTM}} \end{matrix} $		T _J = 125°C	1	А	
P _{G(AV)}	Average gate power dissipation		T _J = 125°C	0.2	W	
т			L/QxX8Ey	-65 to 150	°C	
T _{stg}	Storage junction temperature range		L/QxXy	-40 to 150		
т	Operating junction temperature range		L/QxX8Ey	-65 to 125	°C	
l _J	Operating junction temperature range		L/QxXy	-40 to 125		

Note: x = voltage, y = sensitivity

Electrical Characteristics (T_J = 25°C, unless otherwise specified) — Sensitive Triac (4 Quadrants)

Symbol	Test Conditions	Quad	lrant	LxX8E3 LxX3	LxX8E5 LxX5	LxX8E6 LxX6	LxX8E8 LxX8	Unit
		1 – 11 – 111	MAX.	3	5	5	10	A
I _{GT}	$V_D = 12V R_L = 30 \Omega$	IV	IVIAA.	3	5	10	20	mA
V _{GT}	ALL		MAX.		1.	.3		V
V_{GD}	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 110^{\circ}\text{C}$	ALL	MIN.	0.2				V
I _H	$I_{T} = 100 \text{mA}$		MAX.	5	10	10	15	mA
dv/dt	V V Coto Open T 100°C	400V	TYP.	15	15	25	30	\//
αν/αι	$V_D = V_{DRM}$ Gate Open $T_J = 100$ °C	600V	ITF.	10	10	20	25	V/µs
(dv/dt)c	$(di/dt)c = 0.43 \text{ A/ms } T_J = 110^{\circ}\text{C}$		TYP.	0.5	1	1	2	V/µs
t _{gt}	$I_{G} = 2 \times I_{GT} \text{ PW} = 15 \mu \text{s} I_{T} = 1.13 \text{ A(p)}$	k)	TYP.	2.8	3.0	3.0	3.2	μs

Electrical Characteristics ($T_1 = 25$ °C, unless otherwise specified) — Standard Triac

Symbol	Test Conditions	Quadrant		QxX8E3 QxX3	QxX8E4 QxX4	Unit
		1 – 11 – 111	MAX.	10	25	mA
I _{GT}	$V_D = 12V R_L = 60 \Omega$	IV	TYP.	25	50	mA
V _{GT}		1 – 11 – 111	MAX.	1.3	1.3	V
V _{GD}	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 125^{\circ}\text{C}$	ALL	MIN.	0.2	0.2	V
I _H	$I_{T} = 200 \text{mA}$		MAX.	15	25	mA
dv/dt	V V Coto Open T 125°C	400V	MIN.	25	35	\//
av/at	$V_D = V_{DRM}$ Gate Open $T_J = 125$ °C	600V	IVIIIN.	15	25	V/µs
(dv/dt)c	$(di/dt)c = 0.43 \text{ A/ms } T_J = 125^{\circ}\text{C}$		TYP.	1	1	V/µs
t _{gt}	$I_{G} = 2 \times I_{GT} \text{ PW} = 15 \mu s I_{T} = 1.13 \text{ A(p)}$	k)	TYP.	2.5	3.0	μs

Note: x = voltage

Static Characteristics (T_j = 25°C, unless otherwise specified)

Symbol	Test Conditions					Value	Unit
V _{TM}	$I_{TM} = 1.13A t_p = 380 \mu s$	MAX.				1.60	V
	$V_{\text{DRM}} = V_{\text{RRM}}$	MAX.	LxX8Ey / LxXy	T _J = 25°C	400-600V	2	μΑ
IDRM				T _J = 110°C	400-600V	0.1	mA
			0 705 10 7	T _J = 25°C	400-600V	5	μΑ
			QxX8Ey / QxXy	T _J = 125°C	400-600V	1	mA

Thermal Resistances

Symbol	Parameter		Value	Unit
D	lunction to cook (AC)	L/QxX8Ey	60	°C A A /
$R_{\theta(J-C)}$	Junction to case (AC)	L/QxXy	60*	°C/W
R _{e(J-A)}	Junction to ambient	L/QxX8Ey	135	°C/W

Note: * = Mounted on 1 cm²1 copper (two-ounce) foil surface

Figure 1: Definition of Quadrants

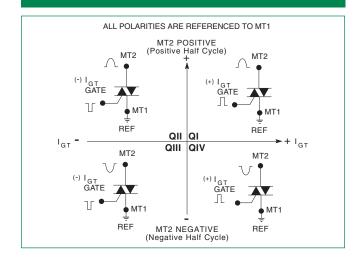


Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

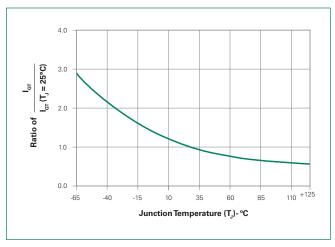


Figure 3: Normalized DC Holding Current vs. Junction Temperature

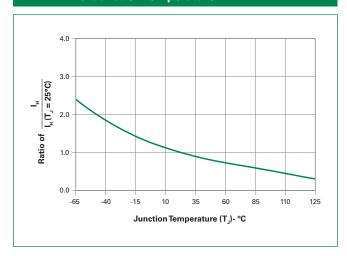


Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

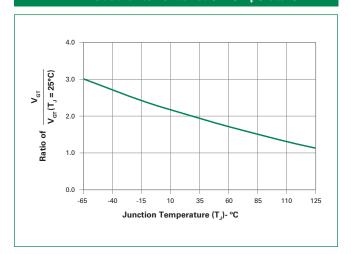


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

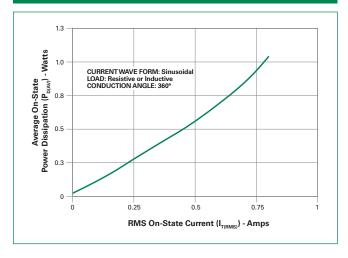


Figure 6: Maximum Allowable Case Temperature vs. On-State Current

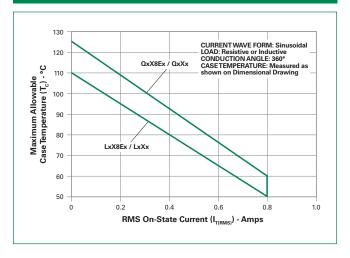


Figure 7: Maximum Allowable Ambient Temperature vs. On-State Current

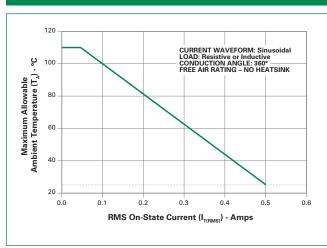
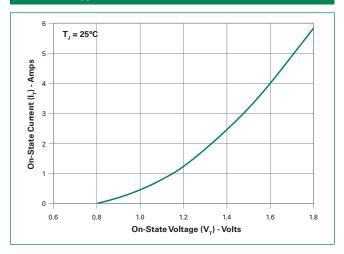
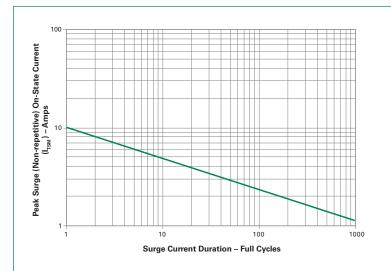
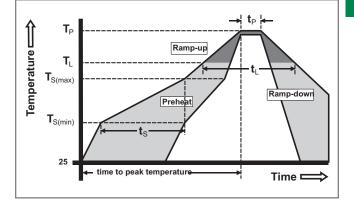




Figure 8: On-State Current vs. On-State Voltage (Typical)

Figure 9: Surge Peak On-State Current vs. Number of Cycles


Supply Frequency: 60Hz Sinusoidal Load: Resistive RMS On-State [$I_{\tiny{T(RMS)}}$]: Max Rated Value at Specific Case Temperature

Notes:

- Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

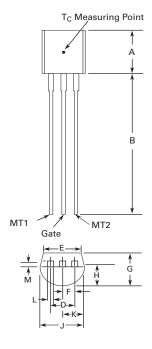
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly
	-Temperature Min (T _{s(min)})	150°C
Pre Heat	-Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 180 secs
Average ra (T _L) to pea	amp up rate (Liquidus Temp) k	5°C/second max
T _{S(max)} to T _l	- Ramp-up Rate	5°C/second max
Reflow	-Temperature (T _L) (Liquidus)	217°C
nellow	-Temperature (t _L)	60 – 150 seconds
PeakTemp	perature (T _P)	260 ^{+0/-5} °C
Time with	in 5°C of actual peak ure (t _p)	20 – 40 seconds
Ramp-dov	vn Rate	5°C/second max
Time 25°C	to peakTemperature (T _P)	8 minutes Max.
Do not ex	ceed	280°C

Teccor® brand Thyristors 0.8 Amp Sensitive & Standard Triacs

Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Lead Material	Copper Alloy

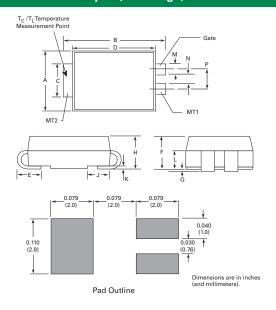

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell- time at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Dimensions — TO-92 (E Package)



Dimension	Inches		Millimeters		
Difficusion	Min	Max	Min	Max	
А	0.176	0.196	4.47	4.98	
В	0.500		12.70		
D	0.095	0.105	2.41	2.67	
Е	0.150		3.81		
F	0.046	0.054	1.16	1.37	
G	0.135	0.145	3.43	3.68	
Н	0.088	0.096	2.23	2.44	
J	0.176	0.186	4.47	4.73	
K	0.088	0.096	2.23	2.44	
L	0.013	0.019	0.33	0.48	
M	0.013	0.017	0.33	0.43	

All leads insulated from case. Case is electrically nonconductive.

Dimensions — Compak (C Package)

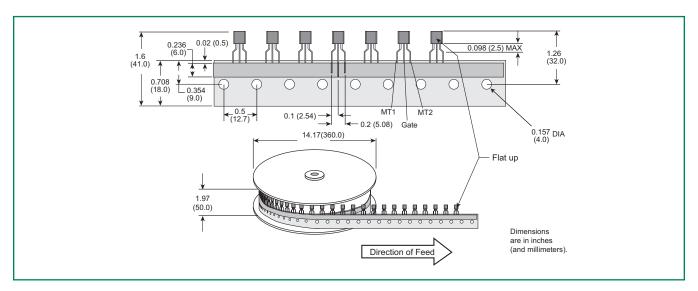
Dimension	Inches		Millin	neters
Dimension	Min	Max	Min	Max
А	0.130	0.156	3.30	3.95
В	0.201	0.220	5.10	5.60
С	0.077	0.087	1.95	2.20
D	0.159	0.181	4.05	4.60
Е	0.030	0.063	0.75	1.60
F	0.075	0.096	1.90	2.45
G	0.002	0.008	0.05	0.20
Н	0.077	0.104	1.95	2.65
J	0.043	0.053	1.09	1.35
K	0.006	0.016	0.15	0.41
L	0.030	0.055	0.76	1.40
М	0.022	0.028	0.56	0.71
N	0.027	0.033	0.69	0.84
Р	0.052	0.058	1.32	1.47

Product Selector

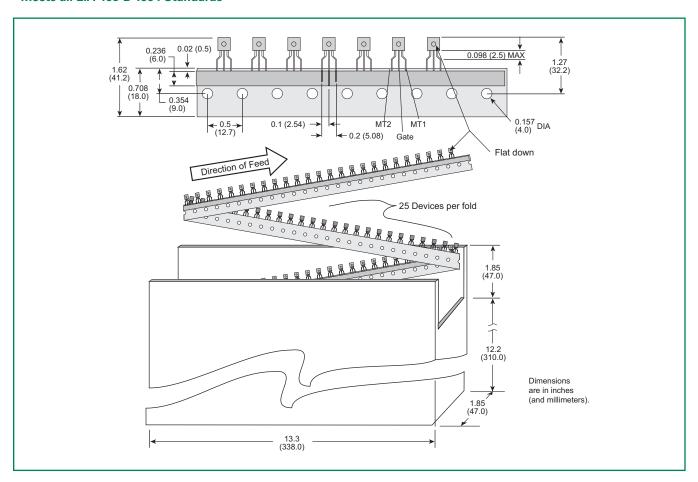
Part Number	Voltage		Gate Sensitivity Quadrants		_	D 1
	400V	600V	I – II – III	IV	Туре	Package
LxX8E3	X	X	3 mA	3 mA	Sensitive Triac	TO-92
LxX3	X	X	3 mA	3 mA	Sensitive Triac	Compak
LxX8E5	X	X	5 mA	5 mA	Sensitive Triac	TO-92
LxX5	X	X	5 mA	5 mA	Sensitive Triac	Compak
LxX8E6	X	X	5 mA	10 mA	Sensitive Triac	TO-92
LxX8E8	X	X	10 mA	20 mA	Sensitive Triac	TO-92
QxX8E3	X	X	10 mA		Standard Triac	TO-92
QxX3	X	X	10 mA		Standard Triac	Compak
QxX8E4	X	X	25 mA		Standard Triac	TO-92
QxX4	X	Х	25 mA		Standard Triac	Compak

Note: x = voltage

Packing Options

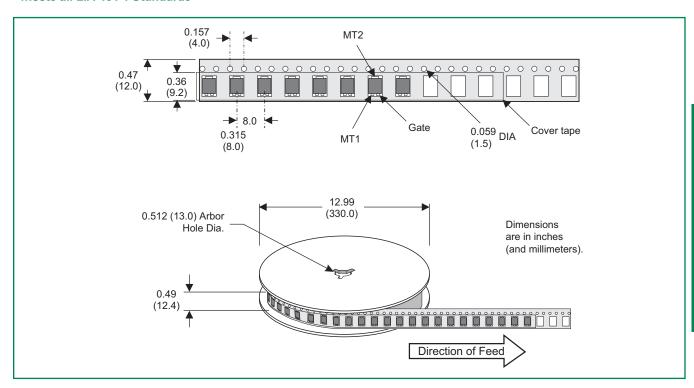

Part Number	Marking	Weight	Packing Mode	Base Quantity
L/QxX8Ey	L/QxX8Ey	0.188 g	Bulk	2000
L/QxX8EyRP	L/QxX8Ey	0.188 g	Reel Pack	2000
L/QxX8EyAP	L/QxX8Ey	0.188 g	Ammo Pack	2000
L/QxXyRP	L/QxXy	0.081 g	Embossed Carrier	2500

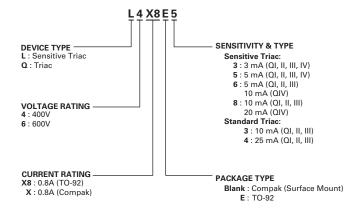
Note: x = voltage, y = sensitivity


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications


Meets all EIA-468-B 1994 Standards



Compak Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-1 Standards

Part Numbering System

Part Marking System

TO-92 (E Package) Compak (C Package)

Teccor® brand Thyristors

