

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

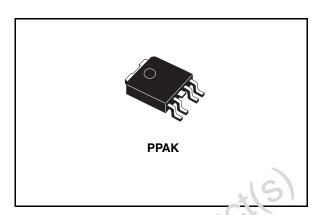
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



L4987Cxx

Very low drop voltage regulators with inhibit and dropout control flag

Features

- Very low dropout voltage (0.25 V typ.)
- Dropout control flag
- Very low quiescent current
- (Typ. 90 mA in OFF Mode, 500 mA in ON Mode)
- Output current up to 200 mA
- Logic-controlled electronic shutdown
- Output voltages of 3.3 V, 5 V
- Internal current and thermal limit
- Only 2.2 µF for stability
- Available in ± 2% selection at 25°C
- Supply voltage rejection: 70 dB (typ.)

notebook) it is possible to use the hag to monitor the battery charge status through the dropout of the regulator.

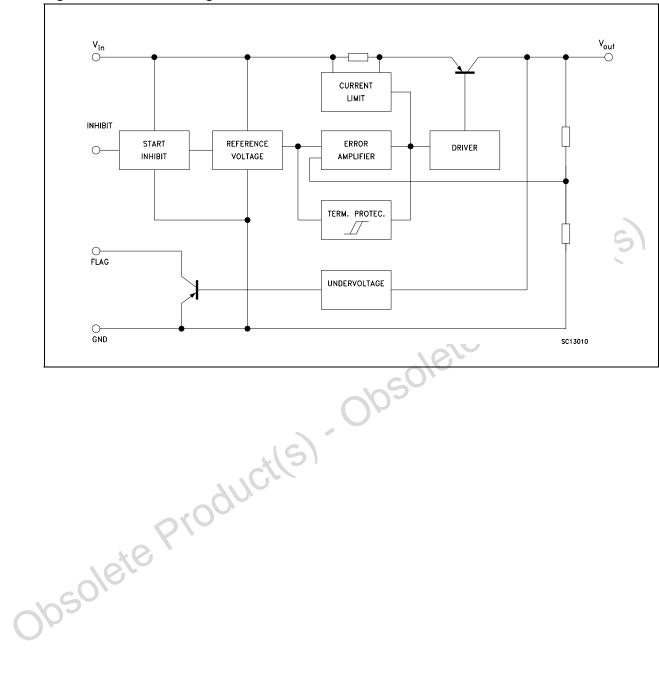
Description

The L4987 is a very low drop regulator available in PPAK. The very low drop-voltage (0.5 V Max at 200 mA) and the very low quiescent current make it particularly suitable for low noise, low power applications, and in battery powered systems. The input dump protection up to 40 V nakes it ideal for automotive applications, a shutdown Logic Control function is available (pin 2, TTL compatible). This means that when the device is used as a local regulator, it is possible to put a part of the bearin standby, decreasing the total power consumption. The regulator employs an outpu pin (open collector) providing a logic signal when the pass transistor is in saturation at low ແລ້ວut voltage, this signal can be used to prevent the pop-up phenomenon in the car radio. In battery powered systems (the cellular phone,

Table 1. Device summary

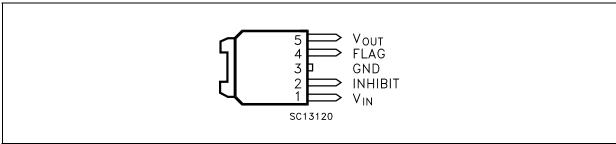
Part number	Order code	Output voltage
L4987Cxx33	L4987CPT33TR	3.3 V
L4987Cxx50	L4987CPT50TR	5.0 V

Contents


1	Schematic diagram 3
2	Pin configuration 4
3	Maximum ratings
4	Electrical characteristics 6
5	Typical characteristics 8
6	Application hint of L4987CPT33
7	Test circuits
8	Package mechanical data
9	Revision history
Obsol	Typical characteristics 8 Application hint of L4987CPT33 9 6.1 How to use the control flag 9 Test circuits 11 Package mechanical data 12 Revision history 15

L4987Cxx Schematic diagram

1 Schematic diagram


Figure 1. Schematic diagram

Pin configuration L4987Cxx

2 Pin configuration

Figure 2. Pin connections (top view)

L4987Cxx Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VI	DC Input voltage	40	V
Io	Output current	Internally Limited	
P _{tot}	Power dissipation	Internally Limited	
T _{stg}	Storage temperature range	-40 to 150	°C
T _{op}	Operating junction temperature range	-40 to 125	°C

Note:

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied

Table 3. Thermal data

Symbol	Parameter	PPAK	Unit
R_{thJC}	Thermal resistance junction-case	8	°C/W
R _{thJA}	Thermal resistance junction-ambient	100	°C/W
psole	ie Product(s). Obs	slete '	

Electrical characteristics L4987Cxx

4 Electrical characteristics

Table 4. Electrical characteristics of L4987Cxx33 (refer to the test circuits, V_I = 6.3 V, I_O = 5 mA, T_J = 25°C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified)

Symbol	Parameter	Test co	nditions	Min.	Тур.	Max.	Unit
V	Output voltage	I _O = 200 mA, V _I = 6.3 V		3.234	3.3	3.366	V
V _O	Output voltage	I _O = 200 mA, V _I = 6.	3 V, T _J =-40 to 125°C	2.76		3.432	\ \ \
V _I	Operating input voltage	I _O = 200 mA		4		18	V
I _{out}	Output current limit			250			Α
ΔV_{O}	Line regulation	$V_{I} = 4.6 \text{ to } 18 \text{ V}, I_{O} =$	= 0.5 mA		2.4	14	mV
ΔV_{O}	Load regulation	$V_I = 4.4 \text{ V}, I_O = 0.5 \text{ t}$	o 200 mA		3	20	mV
	Quiescent current	$V_I = 4.6 \text{ to } 18 \text{ V}, I_O =$	= 0 mA		0.7	1	m 1
I_{d}	ON MODE	$V_{I} = 4.6 \text{ to } 18 \text{ V}, I_{O} =$	= 200 mA		1.5	6	mA
	OFF MODE	V _I = 12 V			90	180	μA
		I ₀ = 5 mΔ	f = 120 Hz		80	Cr.	
SVR	Supply voltage rejection		f = 1 KHz		75	<i>J</i>	dB
		1, 0.0 = 1.1	f = 10 KHz	01	60		
V	Dronout voltage	I _O = 200 mA			0.25	0.5	V
V_d	Dropout voltage	I _O = 200 mA, T _J =-40 to 125°C				0.7	\ \ \
V _{IL}	Control input logic low	$T_J = -40 \text{ to } 125^{\circ}\text{C}$, c0'			0.8	V
V_{IH}	Control input logic high	$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	102	2			V
I _I	Control input current				10		μA
C _O	Output bypass capacitance	ESR = 0.5 to 10 Ω , I _O = 0 to 200 mA T _J = -40 to 125°C		2	10		μF
V _{FL}	Control flag output low	V_1 - V_0 < V_{CESAT} power, I_{FL} = 6mA I_0 = 200mA				0.5	V
I _{FH}	Control flag output high leakage current	V _I > 4 V, V _{OH} = 15 V	,			10	μΑ

Table 5. Electrical characteristics of L4987Cxx50 (refer to the test circuits, $V_I = 8$ V, $I_O = 5$ mA, $T_J = 25$ °C, $C_I = 0.1$ µF, $C_O = 2.2$ µF unless otherwise specified)

Symbol	Parameter	Test c	onditions	Min.	Тур.	Max.	Uni		
.,	0	$I_{O} = 200 \text{ mA}, V_{I} = 8$	$I_O = 200 \text{ mA}, V_I = 8 \text{ V}$ $I_O = 200 \text{ mA}, V_I = 8 \text{ V}, T_J = -40 \text{ to } 125^{\circ}\text{C}$		I _O = 200 mA, V _I = 8 V		5	5.1	
V _O	Output voltage	$I_{O} = 200 \text{ mA}, V_{I} = 8$				5.2	V		
VI	Operating input voltage	I _O = 200 mA	I _O = 200 mA			18	V		
l _{out}	Output current limit			250			Α		
ΔV_{O}	Line regulation	$V_{I} = 6.3 \text{ to } 18 \text{ V}, I_{O}$	= 0.5 mA		3	20	m\		
ΔV_{O}	Load regulation	$V_I = 6.3 \text{ V}, I_O = 0.5$	to 200 mA		3	20	m\		
	Quiescent current	$V_{I} = 6.3 \text{ to } 18 \text{ V}, I_{O}$	= 0 mA		0.7	1	m		
I_d	ON MODE	$V_{I} = 6.3 \text{ to } 18 \text{ V}, I_{O}$	= 200 mA		1.5	6	m/		
	OFF MODE	V _I = 12 V			90	180	μΑ		
			f = 120 Hz		76				
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}$ $V_I = 7.3 \pm 1 \text{ V}$	f = 1 KHz		71		dE		
		1 - 7.5 - 1 1	f = 10 KHz		58				
W	Dranaut voltage	I _O = 200 mA			0.3	0.5	V		
V_d	Dropout voltage	$I_{O} = 200 \text{ mA}, T_{J} = -$	$_{\rm O}$ = 200 mA, $\rm T_{\rm J}$ = -40 to 125°C		0	0.7	, v		
V_{IL}	Control input logic low	$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		K.		0.8	٧		
V _{IH}	Control input logic high	$T_{J} = -40 \text{ to } 125^{\circ}\text{C}$		2			٧		
II	Control input current				10		μA		
Co	Output bypass capacitance	ESR = 0.5 to 10 Ω , T _J = -40 to 125°C	ESR = 0.5 to 10 Ω , I _O = 0 to 200 mA T _J = -40 to 125°C				μF		
V _{FL}	Control flag output low	$V_I - V_O < V_{CESAT}$ po $I_O = 200 \text{ mA}$	ower, I _{FL} = 6 mA			0.5	٧		
I _{FH}	Control flag output high leakage current	V _I > 5.85 V, V _{OH} =			10	μA			

5 Typical characteristics

(Unless otherwise specified $T_J = 25^{\circ}C$, $C_I = C_O = 0.1 \mu F$)

Figure 3. Output and flag voltage vs input Figure 4. Output voltage vs input voltage voltage

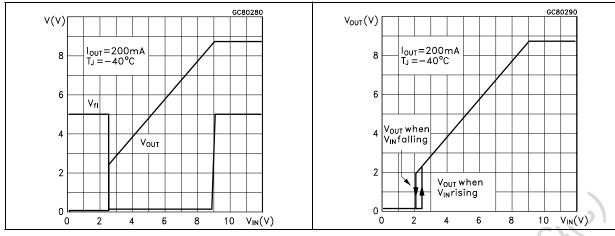


Figure 5. Output and flag voltage vs input voltage

Figure 6. Output voltage vs input voltage

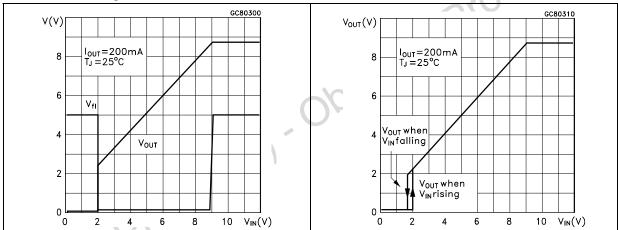
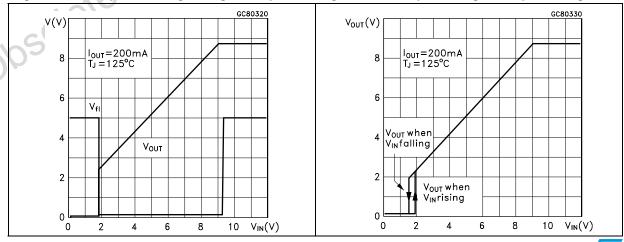



Figure 7. Output and flag voltage vs inp. volt. Figure 8. Output voltage vs input voltage

57

8/16

6 Application hint of L4987CPT33

6.1 How to use the control flag

The flag produces a logic "low" whenever the output drops out of regulation. An "out of regulation condition can result from:

- 1) Low input voltage (V_{IN} ≤V_{OUT} + V_{DROP})
- 2) Current limiting
- 3) Thermal limiting

Figure 3. to *Figure 4.* show the typical behavior of the output voltage and the control flag versus the input voltage and the temperature. No hysteresis is implemented; so the response of V_{OUT} and V_{FLAG} are the same either when the V_{IN} ramps up or down.

The control flag is an open collector which requires an external pull-up resistor. This may be connected to the regulator output (*Figure 11*.) or some other supply voltage (*Figure 12*.).

Using the regulator output prevents an invalid "high" on the flag which occurs if it is pulled up to an external voltage while the regulator input voltage is reduced below about 2 V (*Figure 13.*).

Concerning the pull-up resistor its value must be properly chosen as suggested below. When "low" as it is possible to see in *Figure 7*. the control flag voltage is:

 $V_{FLAG(LOW)} = V_{CE} = 0.5 = V_{SUPPLY} - R_{PULL} \times I_{FL}$

V_{SUPPLY} is chosen by design and, thus is known, while I_{FL} must be at maximum 10 mA.

Then $0.5 \text{ V} \ge \text{V}_{\text{SUPPLY}} - \text{R}_{\text{PULL}} \times 10 \text{ mA}$

The minimum value of RPULL, is, so, determined by the following equation:

 $R_{PULL(min)} \ge V_{SUPPLY} - 0.5/10 \text{ mA}$

Regarding the maximum value of R_{PULL} note that its value depends of the type of logic used (CMOS, TTL etc.), the transistor leakage current and the presence or not of a load on V_{FLAG} .

The following example shows how to determine the R_{PULL} max in the case of CMOS logic, no load and 10 μA (for L4987 it is the maximum value of I_{FH}) of control flag leakage current.

Because of CMOS logic:

V_{FLAG(HIGH)} ≥ 2/3 V_{SUPPLY}

but:

V_{FLAG(HIGH)} = V_{SUPPLY} - R_{PULL} x I_{FH} ≥ 2/3 V_{SUPPLY}

so, the maximum value is determined by the following equation:

 $R_{PULL(MAX)} \le (1/3 V_{SUPPLY})/10 \text{ mA}$

 $V_{OUT}=3.3V$

 $R_L=16.5\Omega$

 $R_{PULL} = 1 K\Omega$

and FLAG

1

2

between OUT

 $T_J = 25^{\circ}C$

 $C_{IN}=1\mu F$ $C_{OUT}=2.2 \mu F$

Vout(V)

 $V_{flag}(V)$

0

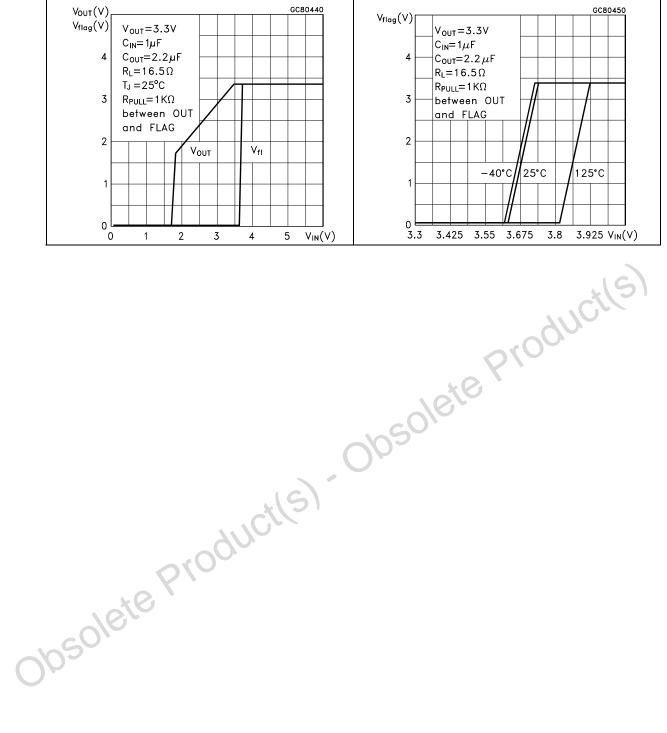
0

Output and flag voltage vs input Figure 9.

 V_{OUT}

3

 V_{fI}


4

5

 $V_{IN}(V)$

GC80440

Figure 10. Flag voltage vs input

L4987Cxx Test circuits

7 Test circuits

Figure 11. Test circuit

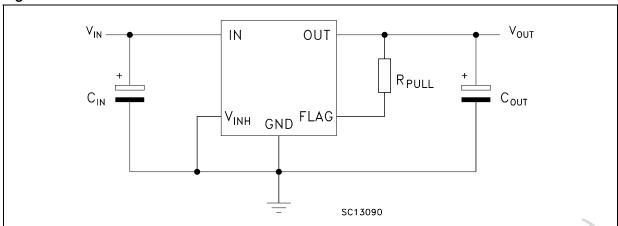


Figure 12. Single antenna receiver with master receiver port

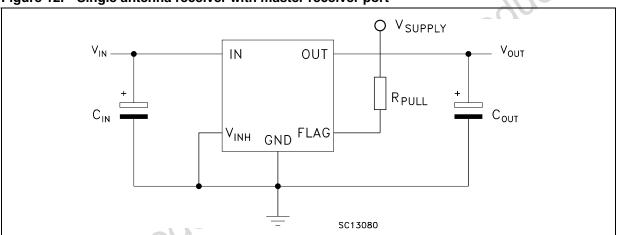
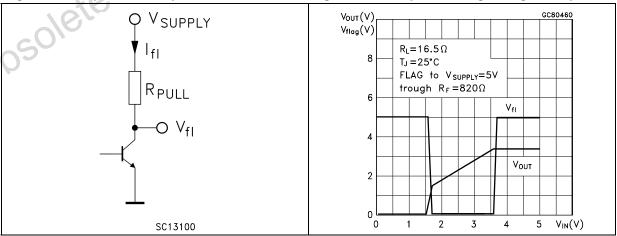
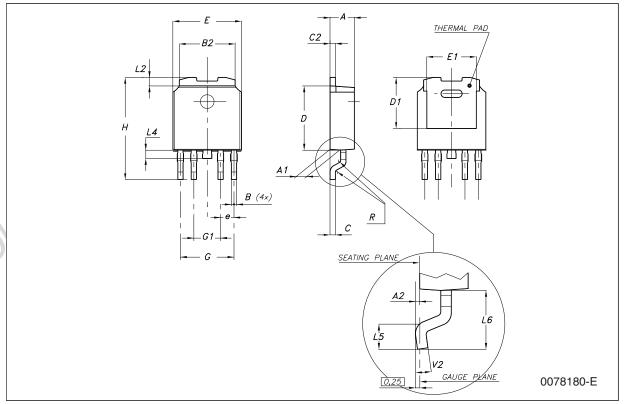



Figure 13. Equivalent output circuit

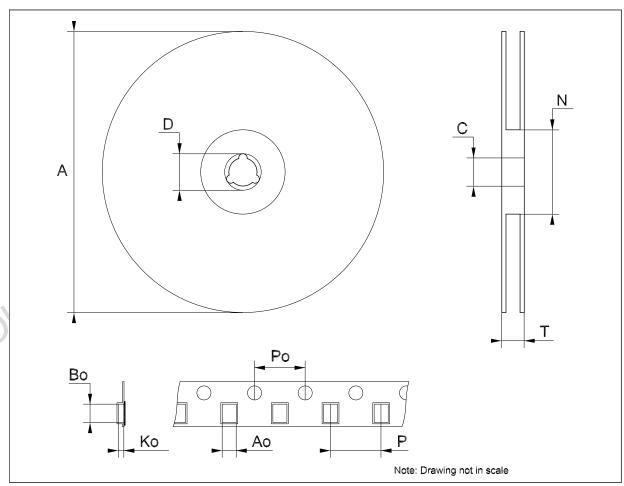
Figure 14. Output and flag voltage vs input

8 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Obsolete Product(s). Obsolete Product(s)

PPAK mechanical data


Dim		mm.				
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.4		0.6	0.015		0.023
B2	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
D1		5.1			0.201	
Е	6.4		6.6	0.252		0.260
E1		4.7			0.185	
е		1.27			0.050	
G	4.9		5.25	0.193		0.206
G1	2.38		2.7	0.093		0.106
Н	9.35		10.1	0.368		0.397
L2		0.8	1		0.031	0.039
L4	0.6		1	0.023		0.039
L5	1			0.039		
L6		2.8			0.110	

577

Tape & reel DPAK-PPAK mechanical data

Dim.		mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			330			12.992	
С	12.8	13.0	13.2	0.504	0.512	0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76	
Во	10.40	10.50	10.60	0.409	0.413	0.417	
Ko	2.55	2.65	2.75	0.100	0.104	0.105	
Ро	3.9	4.0	4.1	0.153	0.157	0.161	
Р	7.9	8.0	8.1	0.311	0.315	0.319	

L4987Cxx Revision history

9 Revision history

Table 6. Document revision history

Date	Revision	Changes
22-Jun-2004	4	${ m V_O}$ min and ${ m V_O}$ max values in Table 5, pag. 4 have been corrected.
04-Sep-2006	5	The I _{FH} value on table 7 has been updated and new template.
26-Sep-2007	6	Add <i>Table 1</i> . in cover page.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

4