

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DMOS dual full bridge driver with PWM current controller

Datasheet - production data

PowerDIP24 (20 + 2 + 2)

PowerSO36

SO24 (20 + 2 + 2)

Ordering numbers: L6227N (PowerDIP24) L6227PD (PowerSO36) L6227D (SO24)

Features

- Operating supply voltage from 8 to 52 V
- 2.8 A output peak current (1.4 A DC)
- $R_{DS(ON)}$ 0.73 Ω typ. value at T_i = 25 °C
- · Operating frequency up to 100 KHz
- Non-dissipative overcurrent protection
- Dual independent constant t_{OFF} PWM current controllers
- Slow decay synchronous rectification
- Cross conduction protection
- Thermal shutdown
- Undervoltage lockout
- · Integrated fast freewheeling diodes

Applications

- Bipolar stepper motor
- Dual DC motor

Description

The L6227 device is a DMOS dual full bridge designed for motor control applications, realized in BCD technology, which combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip. The device also includes two independent constant off time PWM current controllers that performs the chopping regulation. Available in PowerDIP24 (20 + 2 + 2), PowerSO36 and SO24 (20 + 2 + 2) packages, the L6227 device features a non-dissipative overcurrent protection on the high-side Power MOSFETs and thermal shutdown.

Contents L6227

Contents

1	Block diagram 3							
2	Maximum ratings							
3	Pin connections							
4	Elect	rical characteristics	8					
5	Circu	uit description	. 11					
	5.1	Power stages and charge pump	11					
	5.2	Logic inputs	11					
6	PWM	current control	. 14					
7	Slow	decay mode	. 18					
	7.1	Non-dissipative overcurrent protection	. 18					
	7.2	Thermal protection	. 21					
8	Appl	ication information	. 22					
	8.1	Output current capability and IC power dissipation	. 24					
	8.2	Thermal management	. 25					
9	Pack	age information	. 27					
10	Revie	sion history	31					

Block diagram L6227

Block diagram

CHARGE PUMP VSA V_{BOOT} V_{BOOT} CURRENT LIMITING OUT1A OUT2A ENA IN1A SENSE A IN2A MASKING ONE RCA/INH SHOT Vthe VREFA BRIDGE A VOLTAGE REGULATOR THERMAL PROTECTION - 10 V ENB VSB IN1B OUT1B BRIDGE B IN2B OUT2B RCB SENSE B VREFB D99IN1085V1

Figure 1. Block diagram

Maximum ratings L6227

2 Maximum ratings

Table 1. Absolute maximum ratings

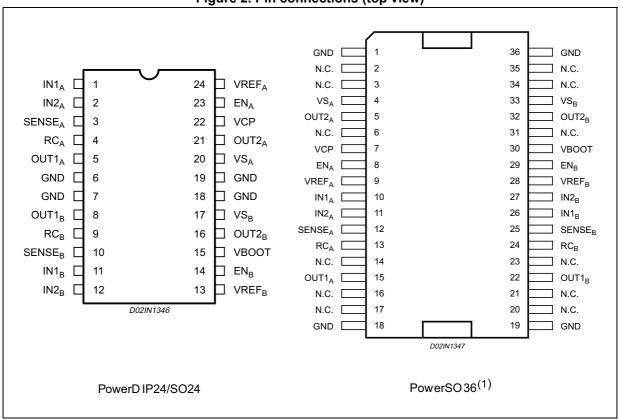
Symbol	Parameter	Test conditions	Value	Unit
V_S	Supply voltage	$V_{SA} = V_{SB} = V_{S}$	60	V
V _{OD}	Differential voltage between VS _A , OUT1 _A , OUT2 _A , SENSE _A and VS _B , OUT1 _B , OUT2 _B , SENSE _B	$V_{SA} = V_{SB} = V_{S} = 60 \text{ V};$ $V_{SENSEA} = V_{SENSEB} = GND$	60	V
V_{BOOT}	Bootstrap peak voltage	$V_{SA} = V_{SB} = V_{S}$	V _S + 10	V
V_{IN}, V_{EN}	Input and enable voltage range		-0.3 to +7	٧
V _{REFA} , V _{REFB}	Voltage range at pins V _{REFA} and V _{REFB}		-0.3 to +7	>
${\sf V}_{\sf RCA,} \ {\sf V}_{\sf RCB}$	Voltage range at pins RC _A and RC _B		-0.3 to +7	>
V _{SENSEA,} V _{SENSEB}	Voltage range at pins SENSE _A and SENSE _B		-1 to +4	٧
I _{S(peak)}	Pulsed supply current (for each V _S pin), internally limited by the overcurrent protection	$V_{SA} = V_{SB} = V_{S};$ $t_{PULSE} < 1 \text{ ms}$	3.55	Α
I _S	RMS supply current (for each V _S pin)	$V_{SA} = V_{SB} = V_{S}$	1.4	Α
T _{stg} , T _{OP}	Storage and operating temperature range		-40 to 150	°C

Table 2. Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Max.	Unit
V _S	Supply voltage	$V_{SA} = V_{SB} = V_{S}$	8	52	V
V _{OD}	Differential voltage between VS _A , OUT1 _A , OUT2 _A , SENSE _A and VS _B , OUT1 _B , OUT2 _B , SENSE _B	V _{SA} = V _{SB} = V _S ; V _{SENSEA} = V _{SENSEB}		52	V
V _{REFA} , V _{REFB}	Voltage range at pins V _{REFA} and V _{REFB}		-0.1	5	٧
V _{SENSEA} , V _{SENSEB}	Voltage range at pins SENSE _A and SENSE _B	(pulsed t _W < t _{rr}) (DC)	-6 -1	6 1	V V
I _{OUT}	RMS output current			1.4	Α
Tj	Operating junction temperature		-25	+125	°C
f _{sw}	Switching frequency			100	KHz

L6227 Maximum ratings

Table 3. Thermal data


Symbol	Description	PowerDIP24	SO24	PowerSO36	Unit
R _{th-j-pins}	Maximum thermal resistance junction pins	19	15	-	°C/W
R _{th-j-case}	Maximum thermal resistance junction case	-	-	2	°C/W
R _{th-j-amb1}	Maximum thermal resistance junction ambient ⁽¹⁾	44	52	-	°C/W
R _{th-j-amb1}	Maximum thermal resistance junction ambient ⁽²⁾	-	-	36	°C/W
R _{th-j-amb1}	Maximum thermal resistance junction ambient ⁽³⁾	-	-	16	°C/W
R _{th-j-amb2}	Maximum thermal resistance junction ambient ⁽⁴⁾	59	78	63	°C/W

- 1. Mounted on a multilayer FR4 PCB with a dissipating copper surface on the bottom side of 6 cm² (with a thickness of 35 μm).
- 2. Mounted on a multilayer FR4 PCB with a dissipating copper surface on the top side of 6 cm 2 (with a thickness of 35 μ m).
- 3. Mounted on a multilayer FR4 PCB with a dissipating copper surface on the top side of 6 cm 2 (with a thickness of 35 μ m), 16 via holes and a ground layer.
- 4. Mounted on a multilayer FR4 PCB without any heat sinking surface on the board.

Pin connections L6227

3 Pin connections

Figure 2. Pin connections (top view)

^{1.} The slug is internally connected to pins 1, 18, 19 and 36 (GND pins).

1.

Table 4. Pin description

Pac	kage			
SO24/ PowerDIP24	PowerSO36	Name	Туре	Function
Pin no.	Pin no.			
1	10	IN1 _A	Logic input	Bridge A logic input 1.
2	11	IN2 _A	Logic input	Bridge A logic input 2.
3	12	SENSEA	Power supply	Bridge A source pin. This pin must be connected to power ground through a sensing power resistor.
4	13	RC _A	RC pin	RC network pin. A parallel RC network connected between this pin and ground sets the current controller OFF-time of the bridge A.
5	15	OUT1 _A	Power output	Bridge A output 1.

L6227 Pin connections

Table 4. Pin description (continued)

D	kaga			continued)
	kage			
SO24/ PowerDIP24	PowerSO36	Name	Туре	Function
Pin no.	Pin no.			
6, 7, 18, 19	1, 18, 19, 36	GND	GND	Signal ground terminals. In PowerDIP and SO packages, these pins are also used for heat dissipation toward the PCB.
8	22	OUT1 _B	Power output	Bridge B output 1.
9	24	RCB	RC pin	RC network pin. A parallel RC network connected between this pin and ground sets the current controller OFF-time of the bridge B.
10	25	SENSEB	Power supply	Bridge B source pin. This pin must be connected to power ground through a sensing power resistor.
11	26	IN1 _B	Logic input	Bridge B input 1
12	27	IN2 _B	Logic input	Bridge B input 2
13	28	VREF _B	Analog input	Bridge B current controller reference voltage. Do not leave this pin open or connect to GND.
14	29	EN _B	Logic input ⁽¹⁾	Bridge B enable. LOW logic level switches OFF all Power MOSFETs of bridge B. This pin is also connected to the collector of the overcurrent and thermal protection transistor to implement overcurrent protection. If not used, it has to be connected to +5 V through a resistor.
15	30	VBOOT	Supply voltage	Bootstrap voltage needed for driving the upper Power MOSFETs of both bridge A and bridge B.
16	32	OUT2 _B	Power output	Bridge B output 2.
17	33	VS _B	Power supply	Bridge B power supply voltage. It must be connected to the supply voltage together with pin VS _A .
20	4	VS _A	Power supply	Bridge A power supply voltage. It must be connected to the supply voltage together with pin VS _B .
21	5	OUT2 _A	Power output	Bridge A output 2.
22	7	VCP	Output	Charge pump oscillator output.
23	8	ENA	Logic input ⁽¹⁾	Bridge A enable. LOW logic level switches OFF all Power MOSFETs of bridge A. This pin is also connected to the collector of the overcurrent and thermal protection transistor to implement overcurrent protection. If not used, it has to be connected to +5 V through
24	9	VREF _A	Analog input	a resistor. Bridge A current controller reference voltage. Do not leave this pin open or connect to GND.

^{1.} Also connected at the output drain of the overcurrent and thermal protection MOSFET. Therefore, it has to be driven putting in series a resistor with a value in the range of 2.2 K Ω - 180 K Ω , recommended 100 K Ω .

Electrical characteristics L6227

4 Electrical characteristics

Table 5. Electrical characteristics (T_{amb} = 25 °C, V_{s} = 48 V, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{Sth(ON)}	Turn-on threshold		5.8	6.3	6.8	V
V _{Sth(OFF)}	Turn-off threshold		5	5.5	6	V
I _S	Quiescent supply current	All bridges OFF; $T_j = -25 \text{ °C to } 125 \text{ °C}^{(1)}$		5	10	mA
T _{j(OFF)}	Thermal shutdown temperature			165		°C
Output DM	OS transistors	•	•	<u>, </u>	•	
	High-side + low-side switch ON	T _j = 25 °C		1.47	1.69	W
$R_{DS(ON)}$	resistance	$T_j = 25 \text{ °C}$ $T_j = 125 \text{ °C}^{(1)}$		2.35	2.7	W
	Laskasa surrant	EN = low; OUT = V _S			2	mA
I _{DSS}	Leakage current	EN = low; OUT = GND	-0.3			mA
Source dra	ain diodes		•			
V _{SD}	Forward ON voltage	I _{SD} = 1.4 A, EN = LOW		1.15	1.3	V
t _{rr}	Reverse recovery time	I _f = 1.4 A		300		ns
t _{fr}	Forward recovery time			200		ns
Logic inpu	t	1	1			
V _{IL}	Low level logic input voltage		-0.3		0.8	V
V_{IH}	High level logic input voltage		2		7	V
I _{IL}	Low level logic input current	GND logic input voltage	-10			μA
I _{IH}	High level logic input current	7 V logic input voltage			10	μΑ
V _{th(ON)}	Turn-on input threshold			1.8	2.0	V
V _{th(OFF)}	Turn-off input threshold		0.8	1.3		V
V _{th(HYS)}	Input threshold hysteresis		0.25	0.5		V
Switching	characteristics					
t _{D(on)EN}	Enable to out turn ON delay time ⁽²⁾	I _{LOAD} =1.4 A, resistive load	500		800	ns
t _{D(on)IN}	Input to out turn ON delay time	I _{LOAD} =1.4 A, resistive load (deadtime included)		1.9		μs
t _{RISE}	Output rise time ⁽²⁾	I _{LOAD} = 1.4 A, resistive load	40		250	ns
t _{D(off)EN}	Enable to out turn OFF delay time ⁽²⁾	I _{LOAD} = 1.4 A, resistive load	500	800	1000	ns
t _{D(off)IN}	Input to out turn OFF delay time	I _{LOAD} = 1.4 A, resistive load	500	800	1000	ns
t _{FALL}	Output fall time ⁽²⁾	I _{LOAD} = 1.4 A, resistive load	40		250	ns
t _{dt}	Dandtina anatastis a		0.5	1		II.C
	Deadtime protection		0.5			μs

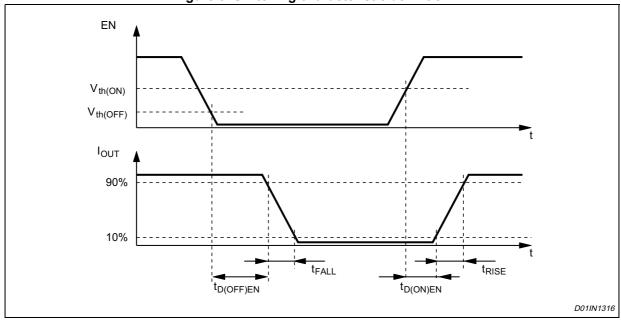

8/32 DocID9453 Rev 2

Table 5. Electrical characteristics $(T_{amb} = 25 \, ^{\circ}C, \, V_{s} = 48 \, V, \, unless \, otherwise \, specified) (continued)$

('amb 20 0, 's 10 1, amost canel most speciment) (continued)							
Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit	
PWM comp	PWM comparator and monostable						
I _{RCA,} I _{RCB}	Source current at pins RC _A and RC _B	V _{RCA} = V _{RCB} = 2.5 V	3.5	5.5		mA	
V _{offset}	Offset voltage on sense comparator	V _{REFA} , V _{REFB} = 0.5 V		±5		mV	
t _{PROP}	Turn OFF propagation delay ⁽³⁾			500		ns	
t _{BLANK}	Internal blanking time on SENSE pins			1		μs	
t _{ON(MIN)}	Minimum On time			2.5	3	μs	
	PWM recirculation time	R_{OFF} = 20 K Ω ; C_{OFF} = 1 nF		13		μs	
t _{OFF}		R_{OFF} = 100 K Ω ; C_{OFF} = 1 nF		61		μs	
I _{BIAS}	Input bias current at pins VREF _A and VREF _B				10	μA	
Overcurrer	Overcurrent protection						
I _{SOVER}	Input supply overcurrent protection threshold	$T_j = -25 ^{\circ}\text{C to } 125 ^{\circ}\text{C}^{(1)}$	2	2.8	3.55	Α	
R _{OPDR}	Open drain ON resistance	I = 4 mA		40	60	W	
t _{OCD(ON)}	OCD turn-on delay time ⁽⁴⁾	I = 4 mA; C _{EN} < 100 pF		200		ns	
t _{OCD(OFF)}	OCD turn-off delay time ⁽⁴⁾	I = 4 mA; C _{EN} < 100 pF		100		ns	

- 1. Tested at 25 °C in a restricted range and guaranteed by characterization.
- 2. See Figure 3: Switching characteristic definition.
- 3. Measured applying a voltage of 1 V to pin SENSE and a voltage drop from 2 V to 0 V to pin VREF.
- 4. See Figure 4: Overcurrent detection timing definition.

Figure 3. Switching characteristic definition

Electrical characteristics L6227

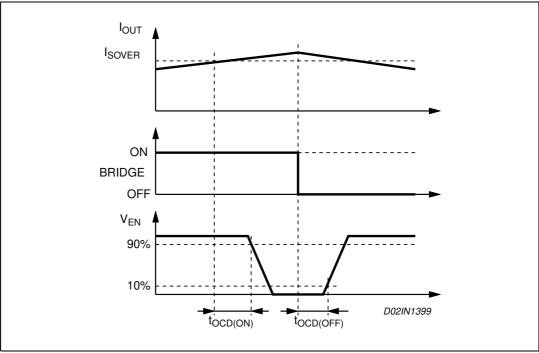
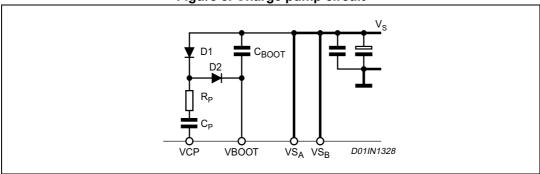


Figure 4. Overcurrent detection timing definition

L6227 Circuit description

5 Circuit description

5.1 Power stages and charge pump


The L6227 device integrates two independent power MOS full bridges. Each power MOS has an $R_{DS(ON)}$ = 0.73 Ω (typical value at 25 °C), with intrinsic fast freewheeling diode. Cross conduction protection is achieved using a deadtime (t_d = 1 μ s typical) between the switch off and switch on of two power MOS in one leg of a bridge.

Using N-channel power MOS for the upper transistors in the bridge requires a gate drive voltage above the power supply voltage. The bootstrapped (V_{BOOT}) supply is obtained through an internal oscillator and few external components to realize a charge pump circuit as shown in *Figure 5*. The oscillator output (VCP) is a square wave at 600 kHz (typical) with 10 V amplitude. Recommended values/part numbers for the charge pump circuit are shown in *Table 6*.

Component	Value
C _{BOOT}	220 nF
C _P	10 nF
R _P	100 Ω
D1	1N4148
D2	1N4148

Table 6. Charge pump external components values

5.2 Logic inputs

Pins IN1_A, IN2_B, IN1_B and IN2_B are TTL/CMOS compatible logic inputs. The internal structure is shown in *Figure 6*. Typical value for turn-on and turn-off thresholds are respectively $V_{thon} = 1.8 \text{ V}$ and $V_{thoff} = 1.3 \text{ V}$.

Pins EN_A and EN_B have identical input structure with the exception that the drains of the overcurrent and thermal protection MOSFETs (one for the bridge A and one for the bridge B) are also connected to these pins. Due to these connections some care needs to be taken in driving these pins. The EN_A and EN_B inputs may be driven in one of two configurations as shown in *Figure 7* or 8. If driven by an open drain (collector) structure,

Circuit description L6227

a pull-up resistor R_{EN} and a capacitor C_{EN} are connected as shown in *Figure 7*. If the driver is a standard push-pull structure the resistor R_{EN} and the capacitor C_{EN} are connected as shown in *Figure 8*. The resistor R_{EN} should be chosen in the range from 2.2 k Ω to 180 K Ω . Recommended values for R_{EN} and C_{EN} are respectively 100 K Ω and 5.6 nF. More information on selecting the values is found in *Section 7.1: Non-dissipative overcurrent protection on page 18*.

Figure 6. Logic inputs internal structure

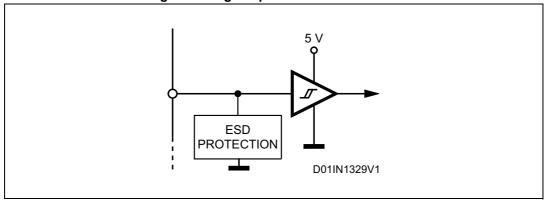


Figure 7. EN_A and EN_B pins open collector driving

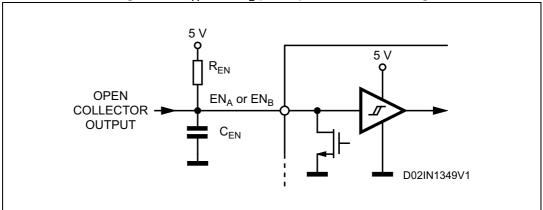
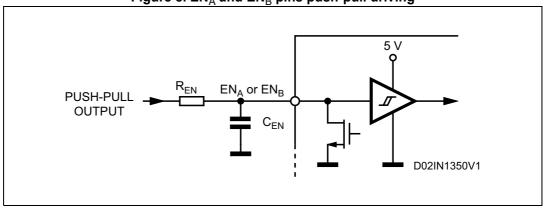



Figure 8. ENA and ENB pins push-pull driving

57

L6227 Circuit description

Table 7. Truth table

Inputs			Ou	tputs	Description ⁽¹⁾
EN	IN1	IN2	OUT1	OUT2	Description
L	X ⁽²⁾	X ⁽²⁾	High Z ⁽³⁾	High Z ⁽³⁾	Disable
Н	L	L	GND	GND	Brake mode (lower path)
Н	Н	L	Vs	GND (Vs) ⁽⁴⁾	Forward
Н	L	Н	GND (Vs)	Vs	Reverse
Н	Н	Н	Vs	Vs	Brake mode (upper path)

- 1. Valid only in case of load connected between OUT1 and OUT2.
- 2. X = don't care.
- 3. High Z= high impedance output.
- 4. GND (Vs) = GND during t_{ON} , Vs during t_{OFF} .

PWM current control L6227

6 PWM current control

The L6227 device includes a constant off time PWM current controller for each of the two bridges. The current control circuit senses the bridge current by sensing the voltage drop across an external sense resistor connected between the source of the two lower power MOS transistors and ground, as shown in *Figure 9*. As the current in the load builds up the voltage across the sense resistor increases proportionally. When the voltage drop across the sense resistor becomes greater than the voltage at the reference input (VREF_A or VREF_B), the sense comparator triggers the monostable switching the low-side MOS off. The low-side MOS remains off for the time set by the monostable and the motor current recirculates in the upper path. When the monostable times out the bridge will again turn on. Since the internal deadtime, used to prevent cross conduction in the bridge, delays the turn on of the power MOS, the effective off time is the sum of the monostable time plus the deadtime.

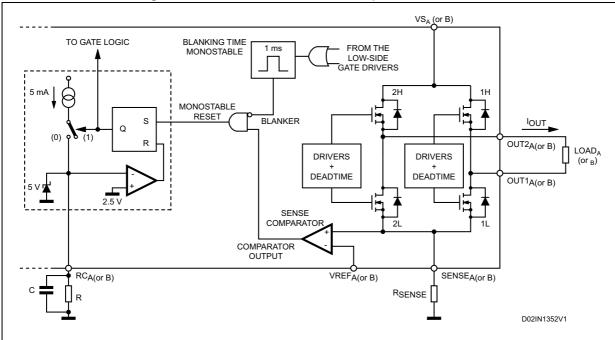


Figure 9. PWM current controller simplified schematic

Figure 10 shows the typical operating waveforms of the output current, the voltage drop across the sensing resistor, the RC pin voltage and the status of the bridge. Immediately after the low-side power MOS turns on, a high peak current flows through the sensing resistor due to the reverse recovery of the freewheeling diodes. The L6227 device provides a 1 μ s blanking time t_{BLANK} that inhibits the comparator output so that this current spike cannot prematurely retrigger the monostable.

L6227 PWM current control

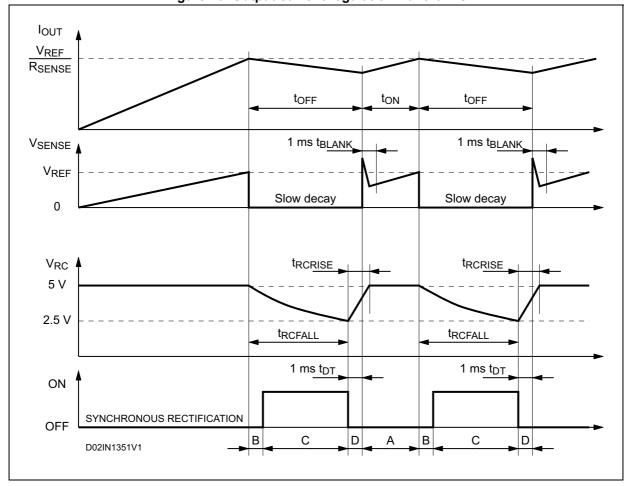


Figure 10. Output current regulation waveforms

PWM current control L6227

Figure 11 shows the magnitude of the Off time t_{OFF} versus C_{OFF} and R_{OFF} values. It can be approximately calculated from the equations:

Equation 1

$$t_{\mathsf{RCFALL}} = 0.6 \cdot \mathsf{R}_{\mathsf{OFF}} \cdot \mathsf{C}_{\mathsf{OFF}}$$

$$t_{\mathsf{OFF}} = t_{\mathsf{RCFALL}} + t_{\mathsf{DT}} = 0.6 \cdot \mathsf{R}_{\mathsf{OFF}} \cdot \mathsf{C}_{\mathsf{OFF}} + t_{\mathsf{DT}}$$

where R_{OFF} and C_{OFF} are the external component values and t_{DT} is the internally generated deadtime with:

Equation 2

20 KΩ
$$\leq$$
 R_{OFF} \leq 100 KΩ
0.47 nF \leq C_{OFF} \leq 100 nF
t_{DT} = 1 μs (typical value)

Therefore:

Equation 3

$$t_{OFF(MIN)} = 6.6 \mu s$$

 $t_{OFF(MAX)} = 6 m s$

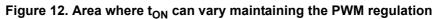
These values allow a sufficient range of t_{OFF} to implement the drive circuit for most motors.

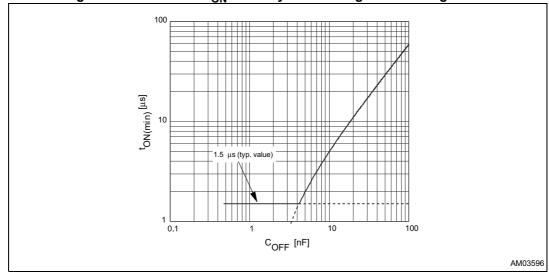
The capacitor value chosen for C_{OFF} also affects the rise time t_{RCRISE} of the voltage at the pin RCOFF. The rise time t_{RCRISE} will only be an issue if the capacitor is not completely charged before the next time the monostable is triggered. Therefore, the on time t_{ON} , which depends by motors and supply parameters, has to be bigger than t_{RCRISE} for allowing a good current regulation by the PWM stage. Furthermore, the on time t_{ON} can not be smaller than the minimum on time $t_{ON(MIN)}$.

Equation 4

$$\begin{cases} t_{ON} > t_{ON(MIN)} = 2.5 \mu s \text{ (typ. value)} \\ t_{ON} > t_{RCRISE} - t_{DT} \end{cases}$$

Figure 12 shows the lower limit for the on time t_{ON} for having a good PWM current regulation capacity. It has to be said that t_{ON} is always bigger than $t_{ON(MIN)}$ because the device imposes this condition, but it can be smaller than t_{RCRISE} - t_{DT} . In this last case the device continues to work but the off time t_{OFF} is not more constant.


So, small C_{OFF} value gives more flexibility for the applications (allows smaller on time and, therefore, higher switching frequency), but, the smaller is the value for C_{OFF} , the more influential will be the noises on the circuit performance.


16/32 DocID9453 Rev 2

L6227 PWM current control

1.10⁴
R_{OFF} = 100 kΩ
R_{OFF} = 20 kΩ
10
C_{OFF} [nF]

Figure 11. t_{OFF} versus C_{OFF} and R_{OFF}

Slow decay mode L6227

7 Slow decay mode

Figure 13 shows the operation of the bridge in the slow decay mode. At the start of the off time, the lower power MOS is switched off and the current recirculates around the upper half of the bridge. Since the voltage across the coil is low, the current decays slowly. After the deadtime the upper power MOS is operated in the synchronous rectification mode. When the monostable times out, the lower power MOS is turned on again after some delay set by the deadtime to prevent cross conduction.

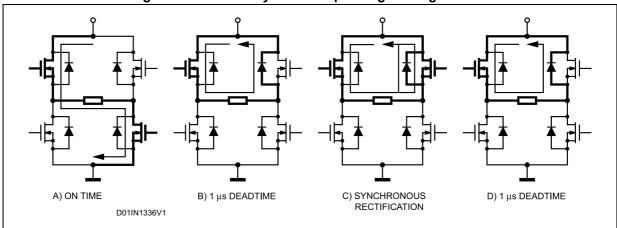


Figure 13. Slow decay mode output stage configurations

7.1 Non-dissipative overcurrent protection

The L6227 integrates an "Overcurrent Detection" circuit (OCD). This circuit provides protection against a short-circuit to ground or between two phases of the bridge. With this internal overcurrent detection, the external current sense resistor normally used and its associated power dissipation are eliminated. *Figure 14* shows a simplified schematic of the overcurrent detection circuit.

To implement the overcurrent detection, a sensing element that delivers a small but precise fraction of the output current is implemented with each high-side power MOS. Since this current is a small fraction of the output current there is very little additional power dissipation. This current is compared with an internal reference current I_{REF} . When the output current in one bridge reaches the detection threshold (typically 2.8 A) the relative OCD comparator signals a fault condition. When a fault condition is detected, the EN pin is pulled below the turn off threshold (1.3 V typical) by an internal open drain MOS with a pull down capability of 4 mA. By using an external R-C on the EN pin, the off time before recovering normal operation can be easily programmed by means of the accurate thresholds of the logic inputs.

18/32 DocID9453 Rev 2

L6227 Slow decay mode

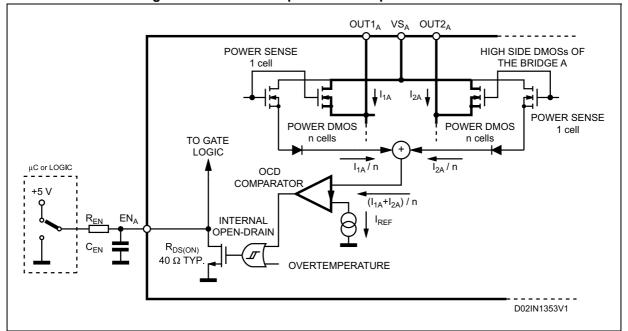


Figure 14. Overcurrent protection simplified schematic

Figure 15 shows the overcurrent detection operation. The disable time $t_{DISABLE}$ before recovering normal operation can be easily programmed by means of the accurate thresholds of the logic inputs. It is affected whether by C_{EN} and R_{EN} values and its magnitude is reported in Figure 16. The delay time t_{DELAY} before turning off the bridge when an overcurrent has been detected depends only by C_{EN} value. Its magnitude is reported in Figure 17.

 C_{EN} is also used for providing immunity to pin EN against fast transient noises. Therefore the value of C_{EN} should be chosen as big as possible according to the maximum tolerable delay time and the R_{EN} value should be chosen according to the desired disable time.

The resistor R_{EN} should be chosen in the range from 2.2 K Ω to 180 K Ω . Recommended values for R_{EN} and C_{EN} are respectively 100 K Ω and 5.6 nF that allow obtaining 200 μ s disable time.

Slow decay mode L6227

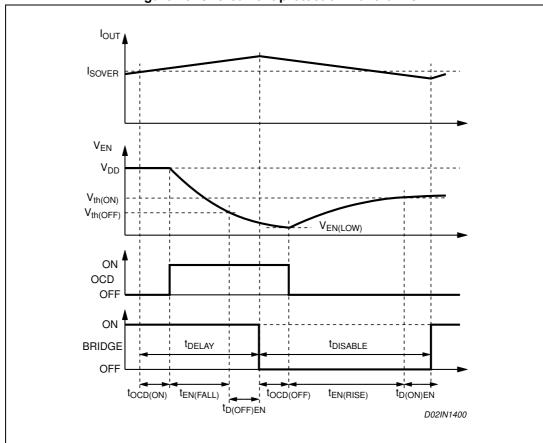


Figure 15. Overcurrent protection waveforms

L6227 Slow decay mode

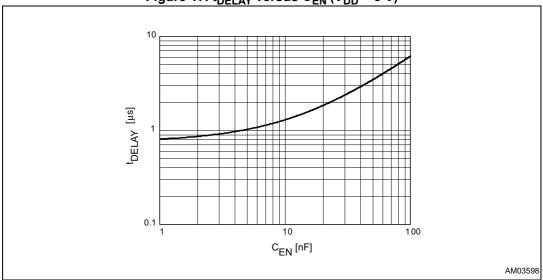


Figure 17. t_{DELAY} versus C_{EN} ($V_{DD} = 5 V$)

7.2 Thermal protection

In addition to the overcurrent protection, the L6227 device integrates a thermal protection for preventing the device destruction in case of junction overtemperature. It works sensing the die temperature by means of a sensible element integrated in the die. The device switches-off when the junction temperature reaches 165 °C (typ. value) with 15 °C hysteresis (typ. value).

8 Application information

A typical application using the L6227 device is shown in *Figure 18*. Typical component values for the application are shown in Table 3. A high quality ceramic capacitor in the range of 100 to 200 nF should be placed between the power pins (VS_A and VS_B) and ground near the L6227 to improve the high frequency filtering on the power supply and reduce high frequency transients generated by the switching. The capacitors connected from the EN_A and EN_B inputs to ground set the shutdown time for the bridge A and bridge B respectively when an overcurrent is detected (see *Section 7.1: Non-dissipative overcurrent protection*). The two current sensing inputs (SENSE_A and SENSE_B) should be connected to the sensing resistors with a trace length as short as possible in the layout. The sense resistors should be non-inductive resistors to minimize the di/dt transients across the resistor. To increase noise immunity, unused logic pins (except EN_A and EN_B) are best connected to 5 V (high logic level) or GND (low logic level) (see *Table 4: Pin description on page 6*). It is recommended to keep power ground and signal ground separated on the PCB.

Table 8. Component values for typical application

Component	Value
C ₁	100 μF
C ₂	100 nF
C _A	1 nF
C _B	1 nF
C _{BOOT}	220 nF
C _P	10 nF
C _{ENA}	5.6 nF
C _{ENB}	5.6 nF
C _{REFA}	68 nF
C _{REFB}	68 nF
D ₁	1N4148
D ₂	1N4148
R _A	39 ΚΩ
R _B	39 ΚΩ
R _{ENA}	100 ΚΩ
R _{ENB}	100 ΚΩ
R _P	100 Ω
R _{SENSEA}	0.6 Ω
R _{SENSEB}	0.6 Ω

VS_A VREFA 20 VS_B 24 VS 8 - 52 V_{DC} C_2 VREFB C_1 13 • V_{REFB} = 0 - 1 V POWER $\mathsf{C}_{\mathsf{REFB}}$ **Ĭ** GROUND D_1 R_{ENA} 23 C_P SIGNAL GROUND R_{ENB} EN_B VBOOT 14 EN_B SENSEA R_{SENSEB} SENSEB IN1_B IN1_B 11 IN2_B LOAD 12 IN2_B OUT2_A IN1_A IN1_A LOAD_B $OUT1_{B}$ IN2_A IN2_A OUT2_B GND GND GND GND D02IN1343V1

Figure 18. Typical application

8.1 Output current capability and IC power dissipation

In *Figure 19* and *Figure 20* are shown the approximate relation between the output current and the IC power dissipation using PWM current control driving two loads, for two different driving types:

- One full bridge ON at a time (Figure 19) in which only one load at a time is energized.
- Two full bridges ON at the same time (*Figure 20*) in which two loads at the same time are energized.

For a given output current and driving type the power dissipated by the IC can be easily evaluated, in order to establish which package should be used and how large must be the on-board copper dissipating area to guarantee a safe operating junction temperature (125 °C maximum).

Figure 19. IC power dissipation versus output current with one full bridge ON at a time

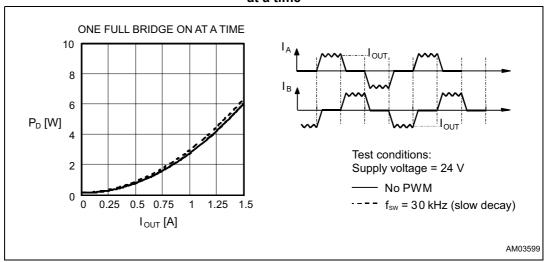
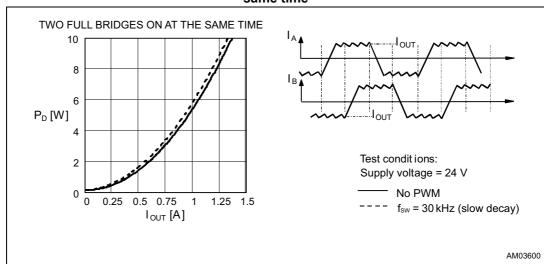
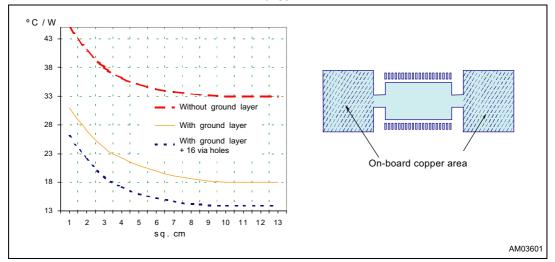



Figure 20. IC power dissipation versus output current with two full bridges ON at the same time

24/32 DocID9453 Rev 2

8.2 Thermal management

In most applications the power dissipation in the IC is the main factor that sets the maximum current that can be delivered by the device in a safe operating condition. Therefore, it has to be taken into account very carefully. Besides the available space on the PCB, the right package should be chosen considering the power dissipation. Heat sinking can be achieved using copper on the PCB with proper area and thickness. *Figure 22*, *23* and *24* show the junction to ambient thermal resistance values for the PowerSO36, PowerDIP24 and SO24 packages.


For instance, using a PowerSO package with a copper slug soldered on a 1.5 mm copper thickness FR4 board with a 6 cm 2 dissipating footprint (copper thickness of 35 μ m), the R_{th j-amb} is about 35 °C/W. *Figure 21* shows mounting methods for this package. Using a multilayer board with vias to a ground plane, thermal impedance can be reduced down to 15 °C/W.

Slug soldered to PCB with dissipating area plus ground layer

Slug soldered to PCB with dissipating area plus ground layer contacted through via holes

Figure 21. Mounting the PowerSO package

Figure 22. PowerSO36 junction ambient thermal resistance versus on-board copper area

