

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IO-Link communication master transceiver IC

Datasheet - production data

Features

- Supply voltage from 18 V to 32.5 V
- Programmable output stages: high-side, low-side or push-pull ($< 2 \Omega$)
- Up to 500 mA L+ protected high-side driver
- COM1, COM2 and COM3 mode supported
- Additional IEC61131-2 type 1 input
- Short-circuit and overcurrent output protection through current limitation and programmable cut-off current
- 3.3 V / 5 V, 50 mA linear regulator
- 5 mA IO-Link digital input
- Fast mode I²C for IC control, configuration and diagnostic
- Diagnostic dual LED sequence generator and driver
- 5 V and 3.3 V compatible I/Os
- Overvoltage protection (> 36 V)
- Overtemperature protection
- ESD protection
- Miniaturized VFQFPN 26L (3.5x5x1 mm) package

Applications

- Industrial sensors
- Factory automation

Process control

Description

The L6360 is a monolithic IO-Link master port compliant with PHY2 (3-wire) supporting COM1 (4.8 kbaud), COM2 (38.4 kbaud) and COM3 (230.4 kbaud) modes. The C/Qo output stage is programmable: high-side, low-side or push-pull; also cut-off current, cut-off current delay time. and restart delay are programmable. Cut-off current and cut-off current delay time, combined with thermal shutdown and automatic restart. protect the device against overload and shortcircuit. C/Qo and L+ output stages are able to drive resistive, inductive and capacitive loads. Inductive loads up to 10 mJ can be driven. Supply voltage is monitored and low voltage conditions are detected. The L6360 transfers, through the PHY2(C/Qo pin), data received from a host microcontroller through the USART (IN C/Qo pin), or to the USART (OUT C/Q_I pin) data received from PHY2 (C/Q_I pin). To enable full IC control, configuration and monitoring (i.e. fault conditions stored in the status register), the communication between the system microcontroller and the L6360 is based on a fast mode 2-wire I²C. The L6360 has nine registers to manage the programmable parameters and the status of the IC. Monitored fault conditions are: L+ line, overtemperature, C/Q overload, linear regulator undervoltage, and parity check. Internal LED driver circuitries, in open drain configuration, provide two programmable sequences to drive two LEDs.

Contents L6360

Co	nte	nts
CU	HILE	H

1	Block di	iagram	6
2	Pin desc	cription	7
3	Absolut	e maximum ratings	9
4		nended operating conditions	
5		al characteristics	
6		configuration	
	6.1	Introduction	
	6.2	Main features	
	6.3	General description	18
	6.4	SDA/SCL line control	
	6.5	Mode selection	18
	6.6	Functional description	20
	6.7	Communication flow	20
	6.8	I ² C address	21
	6.9	Internal register	21
	6.10	Start-up default configuration	31
	6.11	Interrupt	33
	6.12	Demagnetization	33
		6.12.1 Fast demagnetization	
		6.12.2 Slow demagnetization	
7	I ² C proto	ocol	
	7.1	Protocol configuration	
	7.2	Operating modes	37
8	Physica	I layer communication	47
	8.1	Transceiver	47
	8.2	IEC 61131-2 type 1 digital inputs	48
9	Diagnos	stic LED sequence generator and driver	49
10	Line reg	julator	50
11	Applicat	tion example	51
12	EMC pro	otection considerations	52
	12.1	Supply voltage protection	
	12.2	I/O line protection	
2/60		DocID022817 Rev 5	

L6360	Contents
L0300	Contents

13	Ordering	g information	56
14	Package	information	57
	14.1	VFQFPN 26L (3.5x5x1 mm) package information	57
	14.2	Packing information	58
15	Revision	n history	59

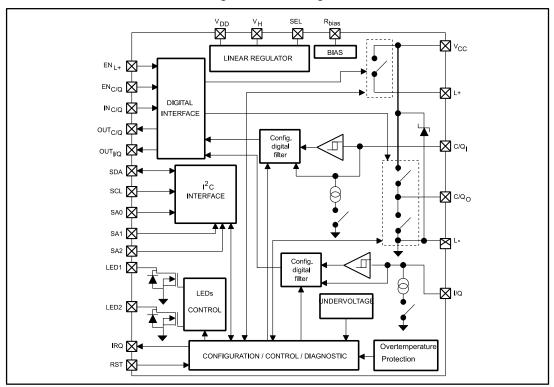
List of tables L6360

List of tables

Table 1: Pin description	7
Table 2: Absolute maximum ratings	9
Table 3: Recommended operating conditions	10
Table 4: Thermal data	10
Table 5: Supply	
Table 6: Electrical characteristics - linear regulator	14
Table 7: Electrical characteristics - logic inputs and outputs	14
Table 8: Electrical characteristics - LED driving	
Table 9: Electrical characteristics - I ² C (fast mode)	15
Table 10: Main parameter typical variations vs. +/- 1% variation of Rbias value	16
Table 11: Register addresses	21
Table 12: ENcgo: C/Q pull-down enable	24
Table 13: Icoq: C/QO HS and LS cut-off current	24
Table 14: tdcoq: C/QO HS and LS cut-off current delay time	25
Table 15: trcoq: C/QO restart delay time	
Table 16: t _{dbq} : C/QI debounce time	
Table 17: ENcal: I/Q pull-down enable	26
Table 18: CQ _{PDG} : C/Q pull-down generator switching	
Table 19: L+cod: L+ cut-off disable	
Table 20: t _{DCOL} : L+ HS cut-off current delay time	
Table 21: trcol: L+ restart delay	27
Table 22: Bit 1:0 = t _{dbi} [1:0]: I/Q debounce time	27
Table 23: C/Q output stage configuration	
Table 24: Parameter default configuration	
Table 25: Register default configuration	
Table 26: Current write mode direction bit	
Table 27: Sequential write mode direction bit	
Table 28: Read mode: register address	
Table 29: Address register	
Table 30: Linear regulator selection pin	
Table 31: Supply voltage protection component description	
Table 32: Refined supply voltage protection component description	
Table 33: V _H protection component description	
Table 34: Typical protection in IO-Link application component description	
Table 35: IO-Link and SIO application extended protection component description	
Table 36: Ordering information	56
Table 37: VFQFPN 26L (3.5x5x1.0 mm) package mechanical data	
Table 38: Document revision history	59

L6360 List of figures

List of figures


Figure 1: Block diagram	
Figure 2: Pin connection (top through view)	
Figure 3: Rise/fall time test setup	
Figure 4: Normalized rise and fall time vs. output capacitor value (typ. values in push-pull confi	•
Figure 5: A master transmitter addressing a slave receiver with a 7-bit address (the transfer is	not
changed)	19
Figure 6: A master reads data from the slave immediately after the first byte	19
Figure 7: Transfer sequencing	
Figure 8: I ² C communication	20
Figure 9: Status register	
Figure 10: Power-on bit behavior	22
Figure 11: Overtemperature (OVT) bit behavior	23
Figure 12: Cut-off behavior	
Figure 13: Control register 1	
Figure 14: Control register 2	26
Figure 15: Configuration register	27
Figure 16: LED1 registers	30
Figure 17: LED2 registers	30
Figure 18: Parity register	
Figure 19: Power stage, Q2 is not present on L+ output	
Figure 20: Fast demagnetization principle schematic. Load connected to L	
Figure 21: Fast demagnetization waveform. Load connected to L	35
Figure 22: Slow demagnetization block. Load connected to L	35
Figure 23: Slow demagnetization waveform. Load connected to GND	36
Figure 24: Device initialization	
Figure 25: Current write mode flow chart procedure	38
Figure 26: Current write mode frames	
Figure 27: Sequential write mode flow chart procedure	40
Figure 28: Sequential write mode frames	
Figure 29: Microcontroller parity check calculus	
Figure 30: Register sequence in sequential write mode	42
Figure 31: Current read mode flow chart procedure	
Figure 32: Current read mode frames	
Figure 33: Current read communication flow	
Figure 34: Sequential/random read mode	44
Figure 35: Sequential/random read communication flow	
Figure 36: Block diagram communication mode	
Figure 37: System communication mode	
Figure 38: C/Q or L+ channel cut-off protection	48
Figure 39: C/Q or L+ channel current limitation and cut-off protection with latched restart	
Figure 40: LED drivers	
Figure 41: Linear regulator	
Figure 42: Linear regulator principle schematic	
Figure 43: Application example	
Figure 44: Supply voltage protection with uni-directional Transil	
Figure 45: Refined supply voltage protection	
Figure 46: V _H protection vs. V _{CC}	
Figure 47: Typical protection in IO-Link applications	
Figure 48: IO-Link and SIO application extended protection	
Figure 49: VFQFPN 26L (3.5x5x1.0 mm) package outline	
Figure 50: VFQFPN 26L (3.5x5x1.0 mm) carrier tape outline	58

Block diagram L6360

1 Block diagram

Figure 1: Block diagram

L6360 Pin description

2 Pin description

Figure 2: Pin connection (top through view)

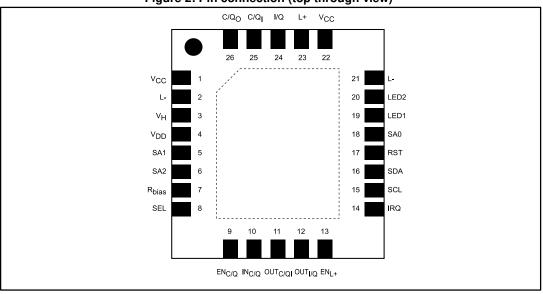


Table 1: Pin description

Number	Name	Function	Туре
1	Vcc	IC power supply	Supply
2	L-	L- line (IC ground)	Supply
3	V _H	Linear regulator supply voltage	Supply
4	V_{DD}	Linear regulator output voltage	Output
5	SA1	Serial address 1	Input
6	SA2	Serial address 2	Input
7	R _{bias}	External resistor for internal reference generation	Input
8	SEL	Linear regulator 3.3 V/5 V voltage selection. Output is 5 V when SEL pin is pulled to GND	Input
9	EN _{C/Q}	C/Q output enable	Input
10	IN _{C/Q}	C/Q channel logic input	Input
11	OUTH _{C/Q}	C/Q channel logic output	Output
12	OUTH _{I/Q}	I/Q channel logic output	Output
13	EN _{L+}	L+ switch enable. When EN _{L+} is high the switch is closed	Input
14	IRQ	Interrupt request signal (open drain)	Output
15	SCL	Serial clock line	Input
16	SDA	Serial data line	Input/output
17	RST	Reset - active low	Input
18	SA0	Serial address 0	Input
19	LED1	Status/diagnostic LED (open drain)	Output
20	LED2	Status/diagnostic LED (open drain)	Output

Pin description L6360

Number	Name	Function	Туре
21	L-	L- line (IC ground)	Supply
22	Vcc	IC power supply	Supply
23	L+	L+ line	Supply
24	I/Q	I/Q channel line	Input
25	C/Q _I	Transceiver (C/Q channel) line	Input
26	C/Q _O	Transceiver (C/Q channel) line	Output

3 Absolute maximum ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	VCLAMP	
V _{SEL}	Linear regulator selection pin voltage	-0.3 to 4	
V_{DD}	Linear regulator output voltage	5.5	
VH	Linear regulator input voltage	Vcc	
V _{SDA} , SCL, SA0, 1, 2	I ² C voltage	-0.3 to V _{DD} + 0.3	
V _{LED1,2}	LED1,2 voltage	-0.3 to $V_{DD} + 0.3$	V
$V_{C/QI},V_{I/Q}$	C/Q _I , I/Q voltage	-0.3 to V_{CC} + 0.3	
V _{RST}	Reset voltage	-0.3 to $V_{DD} + 0.3$	
V_{IRQ}	IRQ voltage	-0.3 to $V_{DD} + 0.3$	
V _{Rbias}	External precision resistance voltage	-03 to 4	
V _{ESD}	Electrostatic discharge (human body model)	2000	
ICLAMP	Current through V_{CLAMP} in surge test (1 kV, 500 Ω) condition	2	Α
Ic/Qo, I _{L+}	C/Qo, L+ current (continuous)	Internally limited	Α
IOUT _{C/Q} , IOUT _{I/Q}	OUT _{C/Q} , OUT _{I/Q} output current	±5	mA
I _{SDA}	I ² C transmission data current (open drain pin)	10	mA
I _{RQ}	Interrupt request signal current	2 ⁽¹⁾	Α
I _{LED1,2}	LED1, 2 current	10	mA
Eload	L+ demagnetization energy	10	mJ
Ртот	Power dissipation at T _C = 25 °C	Internally limited	W
P _{LR}	Linear regulator power dissipation	200	mW
TJ	Junction operating temperature	Internally limited	°C
T _{STG}	Storage temperature range	-55 to 150	C

Notes:

⁽¹⁾Peak value during fast transient test only.

4 Recommended operating conditions

Table 3: Recommended operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply voltage	18		32.5	٧
V _H	Linear regulator input voltage	7		Vcc	٧
fscL	SCL clock frequency			400	kHz
R _{bias}	Precision resistance	-0.1%	124	0.1%	kΩ
TJ	Junction temperature	40		125	°C

Table 4: Thermal data

Symbol	Parameter	Тур.	Unit
R _{thj-case}	Thermal resistance, junction-to-case	6	°C/W
R _{thj-amb}	Thermal resistance, junction-to-ambient(1)	50	°C/W

Notes:

⁽¹⁾Mounted on FR4 PCB with 2 signal Cu layers and 2 power Cu layers interconnected through vias.

5 Electrical characteristics

(18 V < V_{CC} < 30 V; -25 °C < T_{J} < 125 °C; V_{DD} = 5 V; unless otherwise specified).

Table 5: Supply

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VCLAMP	Voltage clamp	I = 5 mA	36			V
Vuv	Undervoltage on threshold		16	17	18	V
V _{UVH}	Undervoltage hysteresis		0.3	1		V
V _{REGLN5H}	Linear regulator undervoltage high threshold	SEL = L	4.3		4.7	
V _{REGLN5L}	Linear regulator undervoltage low threshold	SEL = L	3.6		4.2	V
V _{REG5HYS}	Linear regulator undervoltage hysteresis	SEL = L	0.1			V
V _{REGLN33H}	Linear regulator undervoltage high threshold	SEL = H	2.8		3.1	
VREGLN33L	Linear regulator undervoltage low threshold	SEL = H	2.5		2.7	V
V _{REG33HYS}	Linear regulator undervoltage hysteresis	SEL = H	0.1			V
V _{QТНН}	C/Q _I and I/Q upper voltage threshold		10.5		12.9	>
V _{QTHL}	C/Q _I and I/Q lower voltage threshold		8		11.4	V
V _{QHY}	C/Q and I/Q hysteresis voltage		1			V
V _{demag}	L+ demagnetization voltage	I = 5 mA	-8.5	-6.5	-4.8	V
V _{fHS}	C/Q high-side freewheeling diode forward voltage	I = 10 mA		0.5		V
V _{fLS}	C/Q low-side freewheeling diode forward voltage	I = 10 mA		0.5		V

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VLTHOFF	L+ line diagnostic lower threshold		9	10	11	V
V _{LTHY}	L+ line diagnostic hysteresis		0.1	1		V
VLTHON	L+ line diagnostic upper threshold		10	11	12	V
Is	Supply current	OFF-state		100		μA
		ON-state Vcc at 32.5 V		4		mA
loffcq	OFF-state C/Qo current	$EN_{C/Q} = 0, \ V_{C/Q} = 0 \ V$			1	μA
			70	115	190	
Icoq	C/Qo low- and high-side cut-off	Programmable	150	220	300	mA
ICOQ	current	1 Togrammable	290	350	440	ША
			430	580	720	
I _{LIMQ}	C/Qo low- and high-side limitation current		500		1600	mA
loffl	L+ OFF-state current	$EN_{L+} = 0, V_{L+} = 0 V$	0		200	μA
Icol	L+ cut-off current		480	580	730	mA
ILIML	L+ limitation current		500		1600	mA
I _{INC/Qi}	C/Qı pull-down	Programmable	5		6.5	mA
TINC/QI	current	Trogrammable	2		3.3	mA
l _{INI/Q}	I/Q pull-down current		2		3	mA
	L+ high-side	IOUT = 0.2 A at T _J = 25 °C		1		Ω
Ronl	ON-state resistance	I _{OUT} = 0.2 A at T _J = 125 °C			2	Ω
	C/Q _O high-side	$I_{OUT} = 0.2 \text{ A}$ at $T_J = 25 ^{\circ}\text{C}$		1		Ω
Roncah	ON-state resistance	I _{OUT} = 0.2 A at T _J = 125 °C			2	Ω
	C/Q _O low-side	$I_{OUT} = 0.2 \text{ A at T}_{J} = 25 ^{\circ}\text{C}$		0.6		Ω
Roncal	ON-state resistance	I _{OUT} = 0.2 A at T _J = 125 °C			1.2	Ω
	IN _{C/Q} to C/Q _O	Push-pull (CQ _O rising edge)		140		ns
tdINC/Q	propagation delay time	Push-pull (CQ _O falling edge)		160		ns
	EN _{C/Q} to C/Q _O	Push-pull (CQ _O rising edge)		110		ns
tenc/Q	propagation delay time	Push-pull (CQ _O falling edge)		225		ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
trPP	C/Q rise time in push-pull configuration	10% to 90%	250		860	ns
t _{fPP}	C/Q fall time in push-pull configuration	10% to 90%	290		860	ns
t _{rHS}	C/Q rise time in high-side configuration			410		ns
t _{fHS}	C/Q fall time in high-side configuration			700		ns
trLS	C/Q rise time in low-side configuration			750		ns
t _{fLS}	C/Q fall time in low-side configuration			530		ns
tenl	ENL to L+ propagation delay time			1		μs
t _{rL+}	L+ rise time			3		μs
t _{fL+}	L+ fall time			25		μs
	C/Q _i to OUT _{C/Q} (falling) propagation delay time			40		ns
t _{dC/Qi}	C/Q _I to OUT _{C/Q} (rising) propagation delay time			100		ns
t	I/Q to OUT _{I/Q} (falling) propagation delay time			40		ns
t _{dI/Q}	I/Q to OUT _{I/Q} (rising) propagation delay time			100		ns
	C/Qo low- and			100		μs
t.	high-side cut-off	Programmable		150		μs
t _{dcoq}	current delay	Programmable		200		μs
	time		250		μs	
t _{rcoq}	C/Qo restart delay time Programmable	Programmable		255 × t _{dcoq}		μs
rcoq		delay time		Latched ⁽¹⁾		μδ
t _{dbq}	C/Q _I debounce Programmable		0		μs	
	time			5		μδ

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
				20		
				100		
				0		
+	I/Q debounce	Drogrammable		5		
t _{dbl}	time	Programmable		20		μs
				100		
	L+ cut-off			500		
t _{dcol}	current delay time Programmable	Programmable		0		μs
+ .	L+ restart delay	Programmable		64		ms
t _{rcol}	time	Frogrammable		Latched (1)		
T _{JSD}	Junction temperature shutdown			150		°C
Тлнүзт	Junction temperature thermal hysteresis			20		°C
T _{JRST}	Junction temperature restart threshold			130		°C

Notes:

Table 6: Electrical characteristics - linear regulator

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
\/	Linear regulator output voltage	SEL = L	4.84	5	5.13	V
V _{DD}	Linear regulator output voltage	SEL = H	3.22	3.3	3.37	V
I _{LIMR}	Linear regulator output current limitation		65			mA

Table 7: Electrical characteristics - logic inputs and outputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VIL	Input low-level voltage				0.8	V
V _{IH}	Input high-level voltage		2.2			V
VIHIS	Input hysteresis voltage			0.2		V
lin	Input current	V _{IN} = 5 V			1	μΑ
Vol	Output low-level voltage	I _{OUT} = -2 mA			0.5	V
Vон	Output high-level voltage	I _{OUT} = 2 mA	V _{DD} - 0.5 V			V
V _{LIRQ}	Open drain output low- level voltage	I _{OUT} = 2 mA			0.5	V

 $^{^{(1)}}$ Unlatch through I^2 C communication.

Table 8: Electrical characteristics - LED driving

			9			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{LED1,2}	Open drain output low-level voltage	I _{LED} = 2 mA			0.5	V
I _{LED}	LED1, 2 leakage current	V _{LED1} = V _{LED2} = 5 V		3		nA

Table 9: Electrical characteristics - I²C (fast mode)

Symbol	Parameter Parameter	Test conditions	Min.	Max.	Unit
Cymbol		Tool ouriding	IVIII.	IIIUA.	Oiiit
V _{IL(SDA)}	SDA high level input voltage			0.3	V
V _{IH(SDA)}	SDA high level input voltage		0.7 x V _{DD}		٧
V _{IL(SCL)}	SCL low level input voltage			0.3	٧
V _{IH(SCL)}	SCL high level input voltage		0.7 x V _{DD}		V
I _{IN}	I ² C SDA, SCL input current	$(0.1 \text{ x V}_{DD}) < V_{IN} < (0.9 \text{ x V}_{DD})$	-10	10	μΑ
t _{r(SDA)}	I ² C SDA rise time		20 + 0.1 C _b	300	ns
t _{r(SCL)}	I ² C SCL rise time		20 + 0.1 C _b	300	ns
t _{f(SDA)}	I ² SDA fall time		20 + 0.1 C _b	300	ns
t _{f(SCL)}	I ² C SCL fall time		20 + 0.1 C _b	300	ns
t _{su(SDA)}	SDA set-up time		100		ns
th(SDA)	SDA hold time			0.9	μs
t _{su(STA)}	Repeated start condition setup		0.6		μs
tsu(STO)	Top condition set-up time		0.6		μs
tw(START/STOP)	Stop to start condition time (bus free)		1.3		μs
tw(SCLL)	SCL clock low time		1.3		μs
t _{w(SCLH)}	SCL clock high time		0.6		μs
Сь	Capacitance for each bus line			400	pF
Cı	Capacitance for each I/O pin			10	pF

Values based on standard I²C protocol requirement.

Figure 3: Rise/fall time test setup

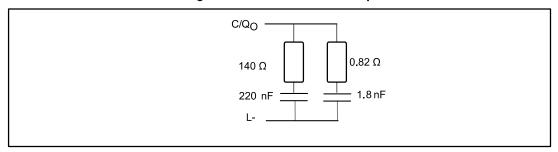


Figure 4: Normalized rise and fall time vs. output capacitor value (typ. values in push-pull configuration)

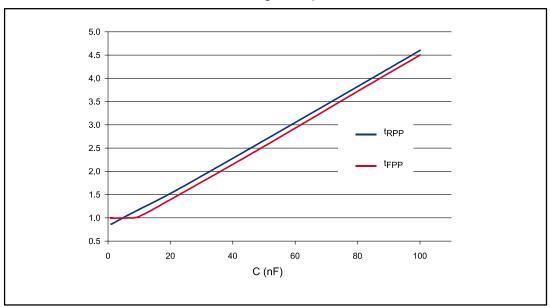


Table 10: Main parameter typical variations vs. +/- 1% variation of Rbias value

	Parameter	Typ. variation vs. Rbia		vs. R _{bias}
Symbol		R _{bias} [kΩ]		2]
		122.74	124	125.24
Is	Supply current	0.76%	0	-0.50%
I _{INC/Qi}	Input current C/Q ₁ pin (5.5 mA)	0.93%	0	-0.93%
I _{INC/Qi}	Input current C/Q ₁ pin (2.5 mA)	0.75%	0	-1.13%
I _{INI/Q}	Input current I/Q pin (2.5 mA)	0.85%	0	-0.85%
t _{dcoq}	C/Qo low- and high-side cut-off current delay time	-2.44%	0	2.00%
Icoq	C/Qo low- and high-side cut-off current (115 mA)	1.19%	0	-1.28%
t _{dcol}	L+ cut-off current delay time (500 μs)	-0.95%	0	0.47%
I _{COL}	L+ cut-off current	1.36%	0	-0.91%
t _{rcol}	L+ restart delay time	-0.93%	0	0.97%
Vuv	Undervoltage ON-threshold	0.00%	0	0.00%

47/

	Parameter	Typ. vai	iation	vs. R _{bias}
Symbol		R	_{bias} [kΩ	2]
		122.74	124	125.24
V_{DD}	Linear regulator output voltage (3.3 V)	-0.03%	0	0.03%
V_{DD}	Linear regulator output voltage (5 V)	-0.02%	0	0.02%
I_{LIMQ}	C/Qo high-side limitation current	0.64%	0	-0.71%
I _{LIMQ}	C/Qo low-side limitation current	0.28%	0	-1.47%
I _{LIML}	L+ limitation current	0.47%	0	-2.09%
V_{QTHH}	C/Q _I and I/Q upper voltage threshold	0.00%	0	0.00%
V _{QTHL}	C/Q _I and I/Q lower voltage threshold	0.00%	0	0.00%
V _{QHY}	C/Q and I/Q hysteresis voltage	0.00%	0	0.00%
trPP	C/Q rise time in push-pull configuration	-1.59%	0	1.18%
t _{fPP}	C/Q fall time in push-pull configuration	-2.14%	0	0.94%
t _{dINC/Q}	IN _{C/Q} to C/Q _O propagation delay time	-1.44%	0	0.75%
t _{dINC/Q}	IN _{C/Q} to C/Q _O propagation delay time	-2.36%	0	0.18%
t _{dC/Qi}	C/Q _I to OUT _{C/Q} propagation delay time	0.49%	0	1.13%
t _{dC/Qi}	C/Q _I to OUT _{C/Q} propagation delay time	1.82%	0	0.03%
t _{dbq}	C/Q _I debounce time (100 μs)	-1.76%	0	1.50%
t _{dcoq}	C/Qo low- and high-side cut-off current delay time (200 μs)	-1.27%	0	2.00%
Icoq	C/Qo low-side cut-off current (220 mA)	0.39%	0	-1.56%
Icoq	C/Qo low-side cut-off current (350 mA)	0.36%	0	-1.43%
Icoq	C/Qo low-side cut-off current (580 mA)	0.65%	0	-1.72%
trcoq	C/Qo restart delay time	-0.90%	0	0.97%
Icoq	C/Qo high-side cut-off current (220 mA)	0.84%	0	-0.84%
Icoq	C/Qo high-side cut-off current (350 mA)	1.38%	0	-0.69%
Icoq	C/Qo high-side cut-off current (580 mA)	1.08%	0	-1.08%

Device configuration L6360

6 Device configuration

SDA and SCL configure the L6360 device through I2C.

6.1 Introduction

The I²C bus interface serves as an interface between the microcontroller and the serial I²C bus. It provides single master functions, and controls all I²C bus-specific sequencing, protocol and timing. It supports fast I²C mode (400 kHz).

6.2 Main features

- Parallel bus/I²C protocol converter
- Interrupt generation
- Fast I²C mode
- 7-bit addressing

6.3 General description

In addition to receiving and transmitting data, this interface converts it from serial to parallel format and vice versa. The interface is connected to the I²C bus by a data pin (SDA) and a clock pin (SCL).

6.4 SDA/SCL line control

SDA is a bi-directional line, SCL is the clock input. SDA should be connected to a positive supply voltage via a current-source or pull-up resistor. When the bus is free, both lines are HIGH. The output stages of the devices connected to the bus must have an open drain or open collector output to perform the wired AND function. Data on the I²C bus can be transferred to rates up to 400 Kbit/s in fast mode. The number of interfaces connected to the bus is limited by the bus capacitance. For a single master application, the master's SCL output can be a push-pull driver provided that there are no devices on the bus which would stretch the clock. Transmitter mode: the microcontroller interface holds the clock line low before transmission. Receiver mode: the microcontroller interface holds the clock line low after reception. When the I²C microcontroller cell is enabled, the SDA and SCL ports must be configured as floating inputs. In this case, the value of the external pull-up resistors used depends on the application. When the I²C microcontroller cell is disabled, the SDA and SCL ports revert to being standard I/O port pins. On the L6360, the SDA output is an open drain pin.

6.5 Mode selection

Possible data transfer formats are:

- The master transmitter transmits to the slave receiver. The transfer direction is not changed
- The slave receiver acknowledges each byte
- The master reads data from the slave immediately after the first byte (see Figure 6: "A
 master reads data from the slave immediately after the first byte"). At the moment of
 the first acknowledge, the master transmitter becomes a master receiver and the slave
 receiver becomes a slave transmitter

This first acknowledge is still generated by the slave. Subsequent acknowledges are generated by the master. The STOP condition is generated by the master which sends a not-acknowledge (A) just prior to the STOP condition.

L6360 Device configuration

Figure 5: A master transmitter addressing a slave receiver with a 7-bit address (the transfer is not changed)

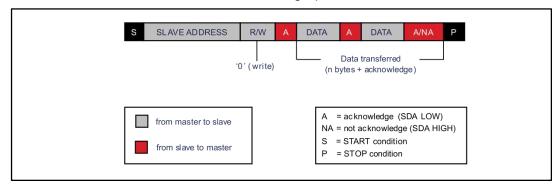
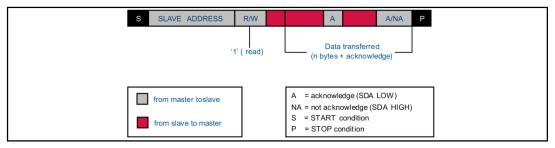



Figure 6: A master reads data from the slave immediately after the first byte

On the microcontroller, the interface can operate in the two following modes:

- Master transmitter/receiver
- Idle mode (default state)

The microcontroller interface automatically switches from idle to master receiver after it detects a START condition and from master receiver to idle after it detects a STOP condition. On the L6360 the interface can operate in the two following modes:

- Slave transmitter/receiver
- Idle mode (default state)

The interface automatically switches from idle to slave transmitter after it detects a START condition and from slave transmitter to idle after it detects a STOP condition.

Device configuration L6360

6.6 Functional description

By default, the I²C microcontroller interface operates in idle; to switch from default idle mode to master mode a START condition generation is needed. The transfer sequencing is shown in the picture below.

7-bit master transmitter (microcontroller)/ slave receiver (L6360)

S SLAVE ADDRESS R/W DATA1 DATA N A/NA P

7-bit master receiver (microcontroller) / slave transmitter (L6360)

S SLAVE ADDRESS R/W A A/NA P

A DATA1 DATA N

Figure 7: Transfer sequencing

6.7 Communication flow

from master to slave

The communication is managed by the microcontroller that generates the clock signal. A serial data transfer always begins with a START condition and ends with a STOP condition. Data is transferred as 8-bit bytes, MSB first. The first byte following the START condition contains the address (7 bits). The 9th clock pulse follows the 8th clock cycle of a byte transfer, during which the receiver must send an acknowledge bit to the transmitter.

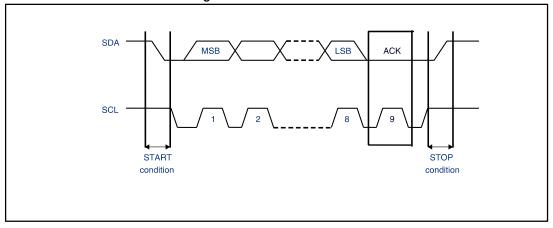


Figure 8: I²C communication

Each byte is followed by an acknowledgment bit as indicated by the A or A blocks in the sequence. A START condition immediately followed by a STOP condition (void message) is a prohibited format.

L6360 Device configuration

6.8 I²C address

Each I^2C connected to the bus is addressable by a unique address. The I^2C address is 7 bits long, and there is a simple master/slave relationship. The LSB of the L6360 address can be programmed by means of dedicated IC pins (SA0, SA1 and SA2, which can be hard wired to V_{DD} or GND, or handled by μC outputs): the microcontroller can interface up to 8 L6360 ICs. The I^2C inside the device has 5 pins:

- SDA: data
- SCL: clock
- SA0: LSB of the L6360 address
- SA1: bit 1 of the L6360 address
- SA2: bit 2 of the L6360 address

The I2C L6360 IC address is:

- Fixed part (4 MSBits): set to "1100"
- Programmable part (3 LSBits) by hardware: from "000 to 111" connecting SAx pins to GND or VDD

In the L6360 the SDA is an open drain pin.

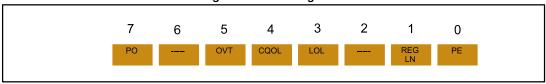
6.9 Internal register

The L6360 has some internal registers to perform control, configuration, and diagnostic operations. These registers are listed below:

- · Status register
- Configuration register
- Control register 1
- Control register 2
- LED1 register MSB
- LED1 register LSB
- LED2 register MSB
- LED2 register LSB
- Parity register

Each register is addressable as follows:

Table 11: Register addresses

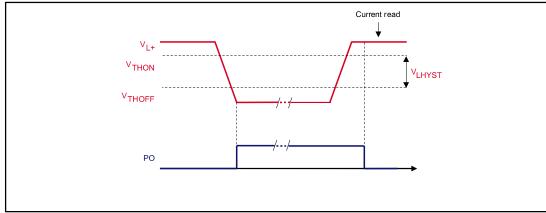

Address	Register name
0000	Status register
0001	Configuration register
0010	Control register 1
0011	Control register 2
0100	LED1 MSB
0101	LED1 LSB
0110	LED2 MSB
0111	LED2 LSB
1000	Parity register

Status register

Read only

Reset value: [00000000]

Figure 9: Status register



The status register stores diagnostic information. It can be read to check the status of the run-time of the device (faults, warning, transmission corrupted, etc.). When a fault condition occurs, a bit (corresponding to the fault condition) in the status register is set and an interrupt (via the IRQ pin) is generated. If there is no persistent fault condition, the status register is cleared after a successful current read.

Bit 7 = PO: Power-on (L+ line)

This bit indicates the status of L+ line voltage. If the voltage goes under the lower threshold (V_{LTHOFF}) and EN_{L+} is high, the PO bit is set. It is reset after a successful current read if the L+ voltage has returned above the upper threshold V_{LTHON} and the read operation has begun after the bit has been set. When the PO bit is high, IRQ is generated. During EN_{L+} transition (from low-level to high-level) and during L+ line voltage transition, a fault condition is reported setting the PO bit and activating the IRQ pin. To reset the fault a successful current read is necessary.

Figure 10: Power-on bit behavior

Bit 6 = not used: always at zero

Bit 5 = OVT: overtemperature fault

This bit indicates the status of the IC internal temperature. If the temperature goes above the thermal shutdown threshold (T > T_{JSD}) the OVT bit is set. It is reset after a successful current read if the temperature has returned below the thermal restart threshold (T_{JDS} - T_{JHIST}) and the read operation has begun after the bit has been set. When OVT bit is high, the power outputs are disabled and IRQ is generated.

T_{JSD}

T_{JRST}

T_{JRST}

OVT

Figure 11: Overtemperature (OVT) bit behavior

Bit 4 = CQOL: C/Q overload

This bit is set if a cut-off occurs on the C/Q channel. It is reset after a successful current read if the restart delay time (t_{rcoq}) has elapsed or the protection is latched (bit $t_{rcoq} = 1$). The read operation should begin after the CQOL bit has been set. When CQOL bit is high, IRQ is generated. When CQOL bit is high and the protection is latched (bit $t_{rcoq} = 1$ in control register 1), the C/Q power output is disabled. See next figure.

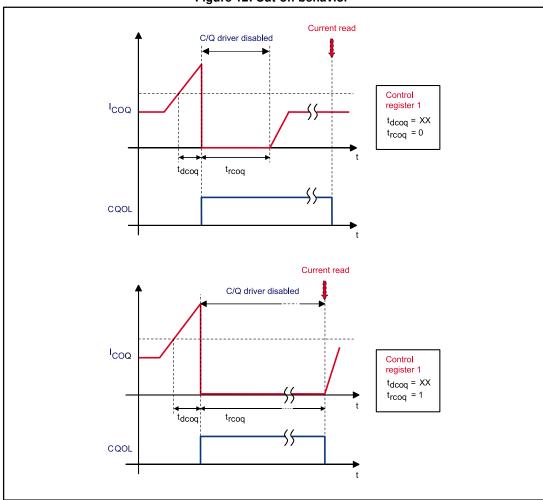


Figure 12: Cut-off behavior

Bit 3 = LOL: L+ overload

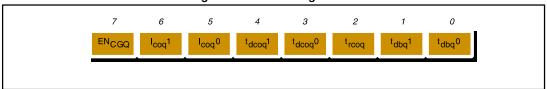
This bit is set if a cut-off occurs on the L+ driver. It is reset after a successful current read if the restart delay time (t_{rcol}) has elapsed or the protection is latched (bit $t_{rcol} = 1$ in control register 2). The read operation should begin after the LOL bit has been set. When LOL bit is high, IRQ is generated. When LOL bit is high and the protection is latched (bit $t_{rcol} = 1$ in control register 2), the L+ power output is disabled. The behavior is the same as the C/Q driver (see *Figure 12: "Cut-off behavior"*).

Bit 2 = not used: always at zero

Bit 1 = REG LN: linear regulator undervoltage fault

This bit is set in case of undervoltage of the linear regulator output (V_{REGLNL}). It is reset after a successful current read if the linear regulator output has returned to normal operation and the read operation has begun after the bit has been set. When REGLN bit is high, IRQ is generated.

Bit 0 = PE: parity check error


This flag is set if parity error occurs.

Control register 1

Read/write

Reset value: [00100001]

Figure 13: Control register 1

The control register holds the parameters to control the L6360.

Bit 7 = ENcgq: C/Q_I pull-down enable

Table 12: ENCGQ: C/Q pull-down enable

ENcgq	Pull-down generator status		
0	Always OFF		
1	If EN _{G/Q} = 0	ON	
	If EN _{G/Q} = 1	OFF	

Bit 6:5 = Icoq [1:0]: C/Qo HS and LS cut-off current

This bit is used to configure the cut-off current value on the C/Q channel, as shown in the following table.

Table 13: Icog: C/QO HS and LS cut-off current

I _{coq} [1]	I _{coq} [0]	Тур.
0	0	115 mA
0	1	220 mA
1	0	350 mA
1	1	580 mA

24/60

L6360 Device configuration

Bit $4:3 = t_{dcoq}$ [1:0]: C/Q_O HS and LS cut-off current delay time

The channel output driver is turned off after a delay (t_{dcoq}) programmable by means of these two bits.

Table 14: t_{dcoq} : C/QO HS and LS cut-off current delay time

t _{dcoq} [1]	t _{dcoq} [0]	Тур.
0	0	100 μs
0	1	150 μs
1	0	200 μs
1	1	250 μs ⁽¹⁾

Notes:

Bit $2 = t_{rcoq}$: C/Q_O restart delay time

After a cut-off event, the channel driver automatically restarts after a delay (t_{rcoq}) programmable by means of this bit.

Table 15: trcoq: C/QO restart delay time

t _{rcoq}	Тур.	
0	255x t _{dcoq}	
1	Latched ⁽¹⁾	

Notes:

Bit $1:0 = t_{dbq} [1:0]$: C/Q_I debounce time

Debounce time is the minimum time that data must be in a given state after a transition. It is a programmable time, and can be configured as shown in the following table.

Table 16: t_{dbq}: C/QI debounce time

t _{dbq} [1]	t _{dbq} [0]	Тур.
0	0	0 μs
0	1	5 μs
1	0	20 μs
1	1	100 μs

Control register 2

Read/write

Reset value: [0x100001]

⁽¹⁾According to power dissipation at 2 kHz switching, C < 1 μF and power dissipation 0.7 W.

⁽¹⁾Unlatch through I²C communication (reading or writing any internal register).