imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

L6740L

Hybrid controller (4+1) for AMD SVID and PVID processors

Features

- Hybrid controller: compatible with PVI and SVI CPUs
- Dual controller: 2 to 4 scalable phases for CPU CORE, 1 phase for NB
- Dual-edge asynchronous architecture with LTB Technologytm
- PSI management to increase efficiency in light-load conditions
- Dual over-current protection: Average and per-phase
- Load indicator (CORE section)
- Logic level support for LVDDRIII
- Voltage positioning
- Dual remote sense
- Adjustable independent reference offset
- Feedback disconnection protection
- Programmable OV protection
- Oscillator internally fixed at 150 kHz externally adjustable
- LSLess startup to manage pre-biased output
- Flexible driver support
- HTQFP48 package

Applications

- Hybrid high-current VRM, VRD for desktop, server, workstation, IPC CPUs supporting PVI and SVI interface
- High-density DC / DC converters

Description

L6740L is a hybrid CPU power supply controller compatible with both parallel (PVI) and serial (SVI) protocols for AMD processors.

The device embeds two independent control loops for the CPU core and the integrated NB, each one with its own set of protections. L6740L is able to work in single-plane mode, addressing only the CORE section, according to the parallel DAC codification. When in dual-plane mode, it is compatible with the AMD SVI specification addressing the CPU and NB voltages according to the SVI bus commands.

The dual-edge asynchronous architecture is optimized by LTB Technologytm allowing fast loadtransient response minimizing the output capacitor and reducing the total BOM cost.

PSI management allows the device to selectively turn-off phases when the CPU is in low-power states increasing the over-all efficiency.

Fast protection against load over current is provided for both the sections. Furthermore, feedback disconnection protection prevents from damaging the load in case of disconnections in the system board.

Order codes	Package	Packaging
L6740L	HTQFP48	Tube
L6740LTR	HTQFP48	Tape and reel

Table 1.Device summary

September 2	2008
-------------	------

••••••••••••••••••••••••••••••••••••••			
8			
12			
40			
13			
13			
13			
15			
16			
16			
16			
SVI - serial interface			
18			
18			
21			
21			
22			
22			
23			
CORE section - phase # programming 24			
24			
25			
26			
26			
27			
27			

	6.8	NB section - maximum duty-cycle limitation 28
	6.9	On-the-fly VID transitions 28
	6.10	Soft-start
		6.10.1 LS-Less start-up
7	Outpu	It voltage monitoring and protections
	7.1	Programmable overvoltage 31
	7.2	Feedback disconnection 32
	7.3	PWRGOOD
	7.4	Over-current
		7.4.1 CORE section
		7.4.2 NB section
8	Main	oscillator
9	Syste	m control loop compensation
	9.1	Compensation network guidelines 38
10	LTB T	echnology™ 39
11	Layou	ıt guidelines
	11.1	Power components and connections 41
	11.2	Small signal components and connections
12	TQFP	48 mechanical data and package dimensions
13	Revis	ion history

1 Typical application circuit and block diagram

1.1 Application circuit

Figure 1. Typical 4+1 application circuit

Figure 2. Typical 3+1 application circuit

L6740L

1.2 Block diagram

Figure 4. Block diagram

57

2 Pins description and connection diagrams

Figure 5. Pins connection (top view)

2.1 Pin descriptions

Pi	Pin# Name		Function
1 VCC		VCC	Device power supply. Operative voltage is 12V \pm 15%. Filter with 1µF MLCC to SGND.
2	2 SGND		All the internal references are referred to this pin. Connect to the PCB signal ground.
З		COMP	Error amplifier output. Connect with an $\rm R_F$ - $\rm C_F$ to FB. The CORE section or the device cannot be disabled by grounding this pin.
4	ection	FB	Error amplifier inverting input. Connect with a resistor R_{FB} to VSEN and with an R_{F} - C_{F} to COMP. Offset current programmed by OS is sunk through this pin.
5	Core s	DROOP	A current proportional to the total current read is sourced from this pin according to the current reading gain. Short to FB to implement droop function, if not used, short to SGND.
6		VSEN	Output voltage monitor. It manages OVP and UVP protections and PWRGOOD. Connect to the positive side of the load for remote sensing. See <i>Section 7</i> for details.

Table 2.Pin description

L6740L

Pin#		Name	Function
7		FBG	Remote ground sense. Connect to the negative side of the load for remote sensing. See <i>Section 9</i> for proper layout of this connection.
8	Core section	OS	Offset programming pin. Internally set to 1.24 V. Connecting a R_{OS} resistor to SGND allows to set a current that is mirrored into FB pin in order to program a positive offset according to the selected R_{FB} . Short to SGND to disable the function. See <i>Section 6.4</i> for details.
9		LTB	LTB Technology TM input pin. Connect through an R_{LTB} - C_{LTB} network to the regulated voltage (CORE section) to detect load transient. See <i>Section 10</i> for details.
1	10 OVP / V		<i>OVP.</i> Overvoltage programming pin. Internally pulled-up to 3.3 V by 11 μ A. Connect to SGND through a R _{OVP} resistor and filter with 10 nF (typ) to set a fixed voltage according to the R _{OVP} resistor. If floating it will program 3.3 V threshold. See <i>Section 7</i> for details. <i>V_FIX - Hardware override.</i> Short to SGND to enter VFIX mode (WARNING: this condition overrides any code programmed on the VIDx lines). In this case, the device will use SVI inputs as static VIDs and OVP threshold will be set to 1.8 V. See <i>Section 5.4.5</i> for details.
11	Core section	LTB_GAIN	LTB Technology TM gain pin. Connect to SGND through a resistor $R_{LTBGAIN}$ to program the LTB Gain. See <i>Section 10</i> for details.
1	2	PSI_L	Power saving indicator (SVI mode). Open-drain input/output pin. See <i>Section 5.4.3</i> for details.
13		CS1+	Channel 1 current sense positive Input. Connect through an R-C filter to the phase-side of the channel 1 inductor. See <i>Section 9</i> for proper layout of this connection.
14		CS1-	Channel 1 current sense negative input. Connect through a R _G resistor to the output-side of the channel inductor. See <i>Section 9</i> for proper layout of this connection.
15	ion	CS2+	Channel 2 current sense positive input. Connect through an R-C filter to the phase-side of the channel 2 inductor. See <i>Section 9</i> for proper layout of this connection.
16	Core sect	CS2-	Channel 2 current sense negative input. Connect through a R _G resistor to the output-side of the channel inductor. See <i>Section 9</i> for proper layout of this connection.
17		CS3+	Channel 3 current sense positive input. Connect through an R-C filter to the phase-side of the channel 3 inductor. When working at 2 phase, directly connect to V_{out_CORE} . See <i>Section 9</i> for proper layout of this connection.
18		CS3-	Channel 3 current sense negative input. Connect through a R_G resistor to the output-side of the channel inductor. When working at 2 phase, connect through R_G to CS3+. See <i>Section 9</i> for proper layout of this connection.

 Table 2.
 Pin description (continued)

Pin# Nan		Name	Function
19	c	CS4+	Channel 4 current sense positive input. Connect through an R-C filter to the phase-side of the channel 4 inductor. When working at 2 or 3 phase, directly connect to V_{out_CORE} . See <i>Section 9</i> for proper layout of this connection.
20	Core section	CS4-	Channel 4 current sense negative input. Connect through a R_G resistor to the output-side of the channel inductor. When working at 2 or 3 phase, connect through R_G to CS4+. See <i>Section 9</i> for proper layout of this connection.
21		OC_PHASE	Per-phase over-current (CORE section). Internally set to 1.24 V, connecting to SGND with a resistor R_{OC_TH} it programs the OC threshold per-phase. See <i>Section 7.4.1</i> for details.
2	2	NC	Not internally connected.
23	NB section	NB_ISEN	NB current sense pin. Used for NB voltage positioning and NB_OCP. Connect through a resistor R _{ISEN} to the relative LS Drain. See <i>Section 7.4</i> for details.
2	4	NC	Not internally connected.
25, 26	PVI interface	VID4, VID5	Voltage IDentification pins. Internally pulled-low by 10 μ A, they are used to program the output voltage. Used only in PVI-mode, ignored when in SVI-mode. See <i>Section 5</i> for details.
27		OSC / FLT	<i>OSC</i> : It allows programming the switching frequency F_{SW} of both sections. Switching frequency can be increased according to the resistor R_{OSC} connected from the pin to. SGND with a gain of 6.8 kHz/µA (see <i>Section 8</i> for details). If floating, the switching frequency is 150 kHz per phase. <i>FLT</i> : The pin is forced high (3.3 V) in case of an OV / UV fault. To recover from this condition, cycle VCC or the EN pin. See <i>Section 7</i> for details.
28	Core section	OC_AVG / LI	Average over-current and load indicator pin. A current proportional to the current delivered by the CORE section (a copy of the DROOP current) is sourced through this pin. The average-OC threshold is programmed by connecting a resistor R_{OC_AVG} to SGND. When the generated voltage crosses the OC_AVG threshold ($V_{OC_AVGTH} = 2.5$ V Typ) the device latches with all mosfets OFF (to recover, cycle VCC or the EN pin). A load indicator with 2.5 V end-of-scale is then implemented. See Section 7.4.1 for details.
29	section	NB_OS	Offset programming pin. Internally set to 1.24 V, connecting a R _{OS_NB} resistor to SGND allows setting a current that is mirrored into NB_FB pin in order to program a positive offset according to the selected R _{FB_NB} . Short to SGND to disable the function. See <i>Section 6.7</i> for details.
30	NB	NB_FBG	Remote ground sense. Connect to the negative side of the load to perform remote sense. See <i>Section 9</i> for proper layout of this connection.

 Table 2.
 Pin description (continued)

Pin#		Name	Function
31		NB_VSEN	NB output voltage monitor. It manages OVP and UVP protections and PWRGOOD. Connect to the positive side of the NB load to perform remote sensing. See <i>Section 9</i> for proper layout of this connection.
32	section N	NB_DROOP	A current proportional to the total current read by the NB section is sourced through this pin according to the current reading gain (R _{ISEN}). Short to NB_FB to implement Droop Function or connect to SGND through a resistor and filter with 1nF capacitor to implement NB LOAD Indicator. If not used, short to SGND.
33	NB	NB_FB	NB error amplifier inverting input. Connect with a resistor R_{FB_NB} to NB_VSEN and with an R_{F_NB} - C_{F_NB} to NB_COMP. Offset current programmed by NB_OS is sunk through this pin.
34		NB_COMP	Error amplifier output. Connect with an R_{F_NB} - C_{F_NB} to NB_FB. The NB section or the device cannot be disabled by grounding this pin.
35, 36	erface	VID0, VID1	Voltage IDentification pins. Internally pulled-low by 10 μ A, they are used to program the output voltage. VID1 is monitored on the EN pin rising-edge to define the operative mode of the controller (SVI or PVI). When in SVI mode, VID0 is ignored. See <i>Section 5</i> for details.
37	SVI / PVI inte	PWROK	System-wide Power Good input (SVI mode). Internally pulled-low by 10 μA. When low, the device will decode the two SVI bits (SVC, SVD) to determine the <i>Pre-PWROK Metal VID</i> (default condition when pin is floating). When high, the device will actively run the SVI protocol. <i>Pre-PWROK Metal VID</i> are latched after EN is asserted and re-used in case of PWROK de-assertion. Latch is reset by VCC or EN cycle.
38 EN		EN	VR Enable. Internally pulled-up to 3.3 V by 10 μ A. Pull-low to disable the device. When set free, the device immediately checks for the VID1 status to determine the SVI / PVI protocol to be adopted and configures itself accordingly. See <i>Section 5</i> for details.
39	interface	SVC / VID3	Voltage IDentification pin - SVI clock pin. Internally pulled-low by 10 μ A, it is used to program the output voltage. When in SVI-mode, it is considered as Serial-VID-data (input / open drain output). See <i>Section 5</i> for details.
40	SVI / PVI	SVD / VID2	Voltage IDentification pins - SVI data pin. Internally pulled-low by 10 μ A, it is used to program the output voltage. When in SVI-mode, it is considered as Serial-VID-data (input / open drain output). See <i>Section 5</i> for details.
41 1		PWRGOOD	VCORE and NB Power Good. It is an open-drain output set free after SS as long as both the voltage planes are within specifications. Pull-up to 3.3V (typ) or lower, if not used it can be left floating. When in PVI mode, it monitors the CORE section only.

Table 2.	Pin description	(continued)
----------	-----------------	-------------

Pin#		Name	Function
42	NB section	NB_ENDRV	External driver enable. Open drain output used to control NB section external driver status: pulled-low to manage HiZ conditions or pulled-high to enable the driver. Pull up to 3.3 V (typ) or lower. When in PVI mode, NB section is always kept in HiZ.
43	CORE section	ENDRV	External driver enable. Open drain output used to control CORE section external driver status: pulled-low to manage HiZ conditions or pulled-high to enable the driver. Pull up to 3.3 V (typ) or lower.
44	NB section	NB_PWM	PWM output. Connect to external driver PWM input. The device is able to manage HiZ status by setting the pin floating. When in PVI mode, NB section is kept in HiZ. See <i>Section 5.4.4</i> for details about HiZ management.
45 to 48	CORE section	PWM1 to PWM4	PWM outputs. Connect to external drivers PWM inputs. The device is able to manage HiZ status by setting the pins floating. By shorting to SGND PWM4 or PWM3 and PWM4, it is possible to program the CORE section to work at 3 or 2 phase respectively. See <i>Section 5.4.4</i> for details about HiZ management.
		Thermal pad	Thermal pad connects the silicon substrate and makes good thermal contact with the PCB. Connect to the PGND plane.

 Table 2.
 Pin description (continued)

2.2 Thermal data

Table 3	Thermal	data
Table 5.	merman	uala

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction to ambient (device soldered on 2s2p PC board)	40	°C/W
R _{thJC}	Thermal resistance junction to case	1	°C/W
T _{MAX}	Maximum junction temperature	150	°C
T _{STG}	Storage temperature range	-40 to 150	°C
Т _Ј	Junction temperature range	0 to 125	°C

3 Electrical specifications

3.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	to PGND	15	V
	All other pins to PGNDx	-0.3 to 3.6	V

3.2 Electrical characteristics

Table 5. Electrical characteristics

(V_{CC} = 12 V ± 15%, T_J = 0 °C to 70 °C unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Supply curre	ent and power-ON					
I _{CC}	VCC supply current			20		mA
	VCC turn-ON	VCC rising			9	V
UVLOVCC	VCC turn-OFF	VCC falling	7			V
Oscillator		•				
	Main oscillator accuracy		135	150	165	kHz
FSW	Oscillator adjustability	$R_{OSC} = 27 \text{ k}\Omega$	380	465	550	kHz
ΔV _{OSC}	PWM ramp amplitude	CORE and NB section		2		V
FAULT	Voltage at pin OSC	OVP, UVP latch active	3		3.6	V
d	ND duty avala limit	I _{NB_DROOP} = 0 μA		80		%
UMAX_NB	IND duty-cycle limit	I _{NB_DROOP} = 35 μA		40		%
PVI / SVI inte	erface	·				
	Input high		2			V
EN,	Input low				0.80	V
PWROK	Pull-up current	EN pin		10		μA
	Pull-down current	PWORK pin		10		μA
VID2,/SVD	Input high	(SVI mode)	0.95			V
VID3/SVC	Input low	(SVI mode)			0.65	V
SVD	Voltage low (ACK)	I _{SINK} = -5 mA			250	mV
	Input high	(PVI mode)	1.3			V
VID0 to VID5	Input low	(PVI mode)			0.80	V
	Pull-down current			10		μA
V_FIX	Entering V_FIX mode				0.90	V

Table 5.

Electrical characteristics (continued) $(V_{CC} = 12 V \pm 15\%, T_J = 0 \ ^{\circ}C \ to \ 70 \ ^{\circ}C \ unless \ otherwise \ specified).$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
PSI_L	Voltage low	I _{SINK} = -5 mA			250	mV
Voltage posi	tioning (CORE and NB se	ction)				
CORE		VSEN to V _{CORE} ; FBG to GND _{CORE}	-8		8	mV
NB	Output voltage accuracy	NBVSEN to V_{NB} ; NBFBG to GND_{FB}	-10		10	mV
	OFFSET bias voltage	$I_{OS} = 0$ to 250 μ A	1.190	1.24	1.290	V
OS, NB_OS	OFFSET current range		0		250	μA
	OFFSET - I _{FB} accuracy	$I_{OS} = 0$ to 250 μ A	-15		15	%
DROOP		$I_{DROOP} = 0$ to 140 μ A; OS = OFF	-9		9	μA
NB_DROOP	DROOP accuracy	$I_{NB_{DROOP}} = 0$ to 35 μ A; OS = OFF	-4		4	μA
A ₀	EA DC gain			100		dB
SR	Slew rate	COMP, NB_COMP to SGND = 10pF		20		V/µs
PWM output	s (CORE and NB section)					
PWMx,	Output high	l = 1 mA	3		3.6	V
NB_PWM	Output low	l = -1 mA			0.2	V
I _{PWMx}	Test current			10		μA
ENDRV, NB_ENDRV	Output low	I = -5 mA			0.4	V
Protections						
	Overvoltage protection	V_FIX mode (V_FIX = SGND); VSEN, NB_VSEN rising	1.720	1.800	1.880	V
OVP	Bias current		7	11	15	μA
	OV programmability	R _{OVP} = 180 kΩ	1.730	1.800	1.870	V
UVP	Under voltage protection	VSEN, NB_VSEN falling; wrt Ref.	-470	-400	-330	mV
	PGOOD threshold	VSEN, NB_VSEN falling; wrt Ref	-300	-250	-200	mV
FWINGOOD	Voltage low	I _{PWRGOOD} = -4 mA			0.4	V
	VSEN disconnection	Sourced from NB_VSEN; OS = OFF		50		μA
VSEN-DISC		Sunk from VSEN; OS = OFF		30		μA
V _{FB-DISC}	FB disconnection	CORE - V_{CS-} rising, above VSEN	500	600	700	mV
FBG DISC	FBG disconnection	EA NI input wrt VID	350	450	550	mV
OC_PHASE	Per-phase OC	CORE section; bias voltage	1.200	1.240	1.280	V
kV _{OC_AVGTH}		CORE section	2.430	2.500	2.570	V
kl _{OC_AVGTH}	Average OC	$I_{DROOP} = 0$ to 140 μ A; OS = OFF	-11		11	μA
I _{OCTH_NB}	OC threshold	NB section	32	37.5	43	μA

4 Device description and operation

L6740L is a hybrid CPU power supply controller compatible with both parallel (PVI) and Serial (SVI) protocols for AMD K8 - second generation processors. The device provides complete control logic and protections for a high-performance step-down DC-DC voltage regulator, optimized for advanced microprocessor power supply supporting both PVI and SVI communication. It embeds two independent controllers for CPU CORE and the integrated NB, each one with its own set of protections.

L6740L is able to detect which kind of CPU is connected in order to configure itself to work as a single-plane PVI controller or dual-plane SVI controller.

The controller performs a single-phase control for the NB section and a programmable 2-to-4 phase control for the CORE section featuring dual-edge non-latched architecture: this allows fast load-transient response optimizing the output filter consequently reducing the total BOM cost. Further reduction can be achieved by enabling LTB Technology^(TM). NB phase (when enabled) will be automatically phase-shifted with respect to the CORE phases in order to reduce the total input RMS current amount.

PSI_L Flag is sent to the VR through the SVI bus. The controller monitors this flag and selectively modifies the phase number in order to optimize the system efficiency when the CPU enters low-power states. This causes the over-all efficiency to be maximized at light loads so reducing losses and system power consumption.

Both sections feature programmable over-voltage protection and adjustable constant overcurrent protection. Voltage positioning (LL) is possible thanks to an accurate fully-differential current-sense across the main inductors for the CORE section and thanks to the loss-less current sense across low-side MOSFET $R_{DS(on)}$ for the NB section. In both cases, LL may be disabled and the generated current information may be used to implement a Load Indicator function.

L6740L features dual remote sensing for the regulated outputs (CORE and NB) in order to recover from PCB voltage drops also protecting the load from possible feedback network disconnections.

LSLess start-up function allows the controller to manage pre-biased start-up avoiding dangerous current return through the main inductors as well as negative undershoot on the output voltage if the output filter is still charged before start-up.

L6740L also supports V_FIX mode for system debugging: in this particular configuration the SVI bus is used as a static bus configuring 4 operative voltages for both the sections and ignoring any serial-VID command.

When working in PVI mode, the device features on-the-fly VID management: VID code is continuously sampled and the reference update according to the variation detected,

L6740L is available in TQFP48 package.

5 Hybrid CPU support and CPU_TYPE detection

L6740L is able to detect the type of the CPU-core connected and to configure itself accordingly. At system start-up, on the rising-edge of the EN signal, the device monitors the status of VID1 and configures the PVI mode (VID1 = 1) or SVI mode (VID1 = 0).

When in PVI mode, L6740L uses the information available on the VID[0: 5] bus to address the CORE section output voltage according to *Table 6*. NB section is kept in HiZ mode.

When in SVI mode, L6740L ignores the information available on VID0, VID4 and VID5 and uses VID2 and VID3 as a SVI bus addressing the CORE and NB sections according to the SVI protocol.

Caution: To avoid any risk of errors in CPU type detection (i.e. detecting SVI CPU when PVI CPU is installed on the socket and vice versa), it is recommended to carefully control the start-up sequencing of the system hosting L6740L in order to ensure than on the EN rising-edge, VID1 is in valid and correct state.

5.1 PVI - parallel interface

PVI is a 6-bit-wide parallel interface used to address the CORE section reference. According to the selected code, the device sets the CORE section reference and regulates its output voltage as reported into *Table 6*.

NB section is always kept in HiZ; no activity is performed on this section. Furthermore, PWROK information is ignored as well since the signal only applies to the SVI protocol.

5.2 PVI start-up

Once the PVI mode has been detected, the device uses the whole code available on the VID[0:5] lines to define the reference for the CORE section. NB section is kept in HiZ. Soft-start to the programmed reference is performed regardless of the state of PWROK.

See Section 6.10 for details about soft-start.

Figure 6. System start-up: SVI (to metal-VID; left) and PVI (right)

L6740L

VID5	VID4	VID3	VID2	VID1	VID0	Output voltage	VID5	VID4	VID3	VID2	VID1	VID0	Output voltage
0	0	0	0	0	0	1.5500	1	0	0	0	0	0	0.7625
0	0	0	0	0	1	1.5250	1	0	0	0	0	1	0.7500
0	0	0	0	1	0	1.5000	1	0	0	0	1	0	0.7375
0	0	0	0	1	1	1.4750	1	0	0	0	1	1	0.7250
0	0	0	1	0	0	1.4500	1	0	0	1	0	0	0.7125
0	0	0	1	0	1	1.4250	1	0	0	1	0	1	0.7000
0	0	0	1	1	0	1.4000	1	0	0	1	1	0	0.6875
0	0	0	1	1	1	1.3750	1	0	0	1	1	1	0.6750
0	0	1	0	0	0	1.3500	1	0	1	0	0	0	0.6625
0	0	1	0	0	1	1.3250	1	0	1	0	0	1	0.6500
0	0	1	0	1	0	1.3000	1	0	1	0	1	0	0.6375
0	0	1	0	1	1	1.2750	1	0	1	0	1	1	0.6250
0	0	1	1	0	0	1.2500	1	0	1	1	0	0	0.6125
0	0	1	1	0	1	1.2250	1	0	1	1	0	1	0.6000
0	0	1	1	1	0	1.2000	1	0	1	1	1	0	0.5875
0	0	1	1	1	1	1.1750	1	0	1	1	1	1	0.5750
0	1	0	0	0	0	1.1500	1	1	0	0	0	0	0.5625
0	1	0	0	0	1	1.1250	1	1	0	0	0	1	0.5500
0	1	0	0	1	0	1.1000	1	1	0	0	1	0	0.5375
0	1	0	0	1	1	1.0750	1	1	0	0	1	1	0.5250
0	1	0	1	0	0	1.0500	1	1	0	1	0	0	0.5125
0	1	0	1	0	1	1.0250	1	1	0	1	0	1	0.5000
0	1	0	1	1	0	1.0000	1	1	0	1	1	0	0.4875
0	1	0	1	1	1	0.9750	1	1	0	1	1	1	0.4750
0	1	1	0	0	0	0.9500	1	1	1	0	0	0	0.4625
0	1	1	0	0	1	0.9250	1	1	1	0	0	1	0.4500
0	1	1	0	1	0	0.9000	1	1	1	0	1	0	0.4375
0	1	1	0	1	1	0.8750	1	1	1	0	1	1	0.4250
0	1	1	1	0	0	0.8500	1	1	1	1	0	0	0.4125
0	1	1	1	0	1	0.8250	1	1	1	1	0	1	0.4000
0	1	1	1	1	0	0.8000	1	1	1	1	1	0	0.3875
0	1	1	1	1	1	0.7750	1	1	1	1	1	1	0.3750

 Table 6.
 Voltage identifications (VID) codes for PVI mode

5.3 SVI - serial interface

SVI is a two wire, clock and data, bus that connects a single master (CPU) to one slave (L6740L). The master initiates and terminates SVI transactions and drives the clock, SVC, and the data, SVD, during a transaction. The slave receives the SVI transactions and acts accordingly. SVI wire protocol is based on fast-mode I^2C .

SVI interface also considers two additional signal needed to manage the system start-up. These signals are EN and PWROK. The device return a PWRGOOD signal if the output voltages are in regulation.

5.4 SVI start-up

Once the SVI mode has been detected on the EN rising-edge, L6740L checks for the status of the two serial VID pins, SVC and SVD, and stores this value as the *Pre-PWROK Metal VID*. The controller initiate a soft-start phase regulating both CORE and NB voltage planes to the voltage level prescribed by the *Pre-PWROK Metal VID*. See *Table 7* for details about *Pre-PWROK Metal VID* codifications. The stored *Pre-PWROK Metal VID* value are re-used in any case of PWROK de-assertion.

After bringing the output rails into regulation, the controller asserts the PWRGOOD signal and waits for PWROK to be asserted. Until PWROK is asserted, the Controller regulates to the *Pre-PWROK Metal VID* ignoring any commands coming from the SVI interface.

After PWROK is asserted, the processor has initialized the serial VID interface and L6740L waits for commands from the CPU to move the voltage planes from the *Pre-PWROK Metal VID* values to the operative VID values. As long as PWROK remains asserted, the controller will react to any command issued through the SVI interface according to SVI Protocol.

See Section 6.10 for details about soft-start.

SVC	ev D	Output voltage [V]					
SVC SVD		Pre-PWROK metal VID	V_FIX mode				
0	0	1.1V	1.4V				
0	1	1.0V	1.2V				
1	0	0.9V	1.0V				
1	1	0.8V	0.8V				

Table 7.V_FIX mode and metalVID

5.4.1 Set VID command

The *Set VID Command* is defined as the command sequence that the CPU issues on the SVI bus to modify the voltage level of the CORE section and/or the NB section.

During a *Set VID Command*, the processor sends the start (START) sequence followed by the address of the section which the *Set VID Command* applies. The processor then sends the write (WRITE) bit. After the write bit, the Voltage Regulator (VR) sends the acknowledge (ACK) bit. The processor then sends the VID bits code during the *data phase*. The VR sends the acknowledge (ACK) bit after the data phase. Finally, the processor sends the stop (STOP) sequence. After the VR has detected the stop, it performs an On-the-Fly VID

transition for the addressed section(s) or, more in general, react to the sent command accordingly. Refer to *Figure 7*, *Table 8* and *Table 9* for details about the *Set VID command*.

L6740L is able to manage individual power OFF for both the sections. The CPU may issue a serial VID command to power OFF or power ON one section while the other one remains powered. In this case, the PWRGOOD signal remains asserted.

Table 8.	SVI send byte - Address and data phase	description
----------	--	-------------

bits	Description						
Address phase							
6:4	Always 110b.						
3	Not applicable, ignored.						
2	Not applicable, ignored.						
1	CORE section ⁽¹⁾ . If set then the following data byte contains the VID code for CORE section.						
0	NB section ⁽¹⁾ . If set then the following data byte contains the VID code for NB section.						
Data phase							
7	PSI_L Flag (active low). When asserted, the VR is allowed to enter power-saving mode. See <i>Section 5.4.3</i> .						
6:0	VID code. See Table 9.						

1. Assertion in both bit 1 and 0 will address the VID code to both CORE and NB simultaneously.

 Table 9.
 Data phase - serial VID codes

SVI [6:0]	Output voltage						
000_0000	1.5500	010_0000	1.1500	100_0000	0.7500	110_0000	0.3500
000_0001	1.5375	010_0001	1.1375	100_0001	0.7375	110_0001	0.3375
000_0010	1.5250	010_0010	1.1250	100_0010	0.7250	110_0010	0.3250
000_0011	1.5125	010_0011	1.1125	100_0011	0.7125	110_0011	0.3125
000_0100	1.5000	010_0100	1.1000	100_0100	0.7000	110_0100	0.3000
000_0101	1.4875	010_0101	1.0875	100_0101	0.6875	110_0101	0.2875
000_0110	1.4750	010_0110	1.0750	100_0110	0.6750	110_0110	0.2750
000_0111	1.4625	010_0111	1.0625	100_0111	0.6625	110_0111	0.2625
000_1000	1.4500	010_1000	1.0500	100_1000	0.6500	110_1000	0.2500
000_1001	1.4375	010_1001	1.0375	100_1001	0.6375	110_1001	0.2375
000_1010	1.4250	010_1010	1.0250	100_1010	0.6250	110_1010	0.2250
000_1011	1.4125	010_1011	1.0125	100_1011	0.6125	110_1011	0.2125
000_1100	1.4000	010_1100	1.0000	100_1100	0.6000	110_1100	0.2000
000_1101	1.3875	010_1101	0.9875	100_1101	0.5875	110_1101	0.1875
000_1110	1.3750	010_1110	0.9750	100_1110	0.5750	110_1110	0.1750
000_1111	1.3625	010_1111	0.9625	100_1111	0.5625	110_1111	0.1625
001_0000	1.3500	011_0000	0.9500	101_0000	0.5500	111_0000	0.1500
001_0001	1.3375	011_0001	0.9375	101_0001	0.5375	111_0001	0.1375
001_0010	1.3250	011_0010	0.9250	101_0010	0.5250	111_0010	0.1250
001_0011	1.3125	011_0011	0.9125	101_0011	0.5125	111_0011	0.1125
001_0100	1.3000	011_0100	0.9000	101_0100	0.5000	111_0100	0.1000
001_0101	1.2875	011_0101	0.8875	101_0101	0.4875	111_0101	0.0875
001_0110	1.2750	011_0110	0.8750	101_0110	0.4750	111_0110	0.0750
001_0111	1.2625	011_0111	0.8625	101_0111	0.4625	111_0111	0.0625
001_1000	1.2500	011_1000	0.8500	101_1000	0.4500	111_1000	0.0500
001_1001	1.2375	011_1001	0.8375	101_1001	0.4375	111_1001	0.0375
001_1010	1.2250	011_1010	0.8250	101_1010	0.4250	111_1010	0.0250
001_1011	1.2125	011_1011	0.8125	101_1011	0.4125	111_1011	0.0125
001_1100	1.2000	011_1100	0.8000	101_1100	0.4000	111_1100	OFF
001_1101	1.1875	011_1101	0.7875	101_1101	0.3875	111_1101	OFF
001_1110	1.1750	011_1110	0.7750	101_1110	0.3750	111_1110	OFF
001_1111	1.1625	011_1111	0.7625	101_1111	0.3625	111_1111	OFF

5.4.2 PWROK de-assertion

Anytime PWROK de-asserts while EN is asserted, the controller uses the previously stored *Pre-PWROK Metal VID* and regulates all the planes to that level performing an On-the-Fly transition to that level.

PWRGOOD is treated appropriately being de-asserted in case the *Pre-PWROK Metal VID* voltage is out of the initial voltage specifications.

5.4.3 **PSI_L** and efficiency optimization at light-load

PSI_L is an active-low flag (i.e. low logic level when asserted) that can be set by the CPU to allow the VR to enter power-saving mode to maximize the system efficiency when in light-load conditions. The status of the flag is communicated to the controller through the SVI bus and it is reported on the PSI_L pin (open-drain).

The controller monitors the PSI_L pin also to define the PSI Strategy, that is the action performed by the controller when PSI_L is asserted. According to *Table 10*, by programming different voltage divider on PSI_L, it is possible to configure the device to disable one or two phases while PSI_L is asserted. The device can also be configured to take no action so phase number will not change after PSI_L assertion.

In case the phase number is changed, the device will disable one or two phases starting from the highest one (i.e. if working at 3 phases, phase 3 will be disabled in case of 1 phase reduction; phase 2 and 3 in case of 2phase reduction). To disable Phases, the controller will set HiZ on the related PWM and re-configure internal phase-shift to maintain the interleaving. Furthermore, the internal current-sharing will be adjusted to consider the phase number reduction. ENDRV will remain asserted.

When PSI_L is de-asserted, the device will return to the original configuration.

Start-up is performed with all the configured phases enabled. In case of on-the-fly VID transitions, the device will maintain the phase configuration set before.

PSI strategy (i.e. the voltage across PSI_L) is read and stored when PWRGOOD is asserted at the end of the Soft-Start phase.

The phase number management is affected by the external driver selected.

 If the external driver features the EN function, PSI_L can be tied directly to the EN of the drivers of the phases that will be disabled.

Furthermore, in case the desired strategy is to work in single phase when 4phases are configured, PSI_L can be tied also to the EN of the driver connected to Phase2 (apparently, from 4phases the max reduction would be to 2phase min.) in order to disable also this phase during low-power mode.

• If the external driver manages HiZ through the PWM input, PSI_L will be connected only to the external divider used to set the strategy. The system can be down-graded to single-phase only if configured for three phases.

Since PSI_L can be used to enable some of the external drivers connected, the status of the pin is the logic AND between the PSI_L Flag and the status of the ENDRV pin: if the controller wants to disable the external drivers pulling low ENDRV (because of protections or simply for start-up synchronization) also PSI_L will be tied low.

NB section is not impacted by PSI_L status change. *Figure 8* shows an example of the efficiency improvement that can be achieved by enabling the PSI management.

PSI_L	PSI strategy
GND	No strategy. PSI_L still reproduces the status of the PSI Flag
Pull-Up to <3V	Phase number is cut by 1 while PSI_L is asserted.
Pull-Up to 3.3V	Phase number is cut by 2 while PSI_L is asserted.

Table 10. PSI strategy

5.4.4 HiZ management

L6740L is able to manage HiZ through both the PWMx and driver enable signals. When the controller wants to set in high impedance the output of one section, it set the relative PWM floating and, at the same time, pulls-low the related ENDRV.

5.4.5 Hardware jumper override - V_FIX

Anytime the pin OVP/V_FIX is driven low, the controller enters V_FIX mode.

When in V_FIX mode, both NB and CORE section voltages are governed by the information shown in *Table 7*. Regardless of the state of PWROK, the device will work in SVI mode. SVC and SVD are considered as static VID and the output voltage will change according to their status. Dynamic SVC/SVD-change management is provided in this condition.

V_FIX mode is intended for system debug only.

Protection management differs in this case, see *Section 7.1* for details.

6 Output voltage positioning

Output voltage positioning is performed by selecting the controller operative-mode (*SVI, PVI* and *V_FIX*) and by programming the droop function and offset to the reference of both the sections (See *Figure 9*). The controller reads the current delivered by each section by monitoring the voltage drop across the low-side MOSFET for NB section or DCR Inductors for CORE section. The current (I_{DROOP} / I_{DROOP_NB}) sourced from the DROOP / NB_DROOP pin, directly proportional to the read current, causes the related section output voltage to vary according to the external R_{FB} / R_{FB_NB} resistor so implementing the desired load-line effect. The current (I_{OS} / I_{OS_NB}) programmed through the OS / NB_OS pins is sunk from the FB / NB_FB pins causing the output voltage to be offset according to the resistance R_{FB} / R_{FB_NB} connected.

L6740L embeds a dual remote-sense buffer to sense remotely the regulated voltage of each section without any additional external components. In this way, the output voltage programmed is regulated compensating for board and socket losses. Keeping the sense traces parallel and guarded by a power plane results in common mode coupling for any picked-up noise.

Both DROOP and OFFSET function can be disabled: see *Section 6.3* and *Section 6.4* for details about CORE section and *Section 6.6* and *Section 6.7* for details about NB section. In case DROOP effect is not desired, the current information sourced from the DROOP pin may be used to implement a Load Indicator as reported in *Section 6.3* and *Section 6.6*.

Figure 9. Voltage positioning

CORE section implements a flexible 2 to 4 interleaved-phase converter. To program the desired number of phase, simply short to SGND the PWMx signal that is not required to be used according to *Table 11*. For three phase operation, short PWM4 to SGND while for two phase operation, short PWM3 and PWM4 to SGND.

Caution: For the disabled phase(s), the current reading pins need to be properly connected to avoid errors in current-sharing and voltage-positioning: CSx+ needs to be connected to the regulated output voltage while CSx- needs to be connected to CSx+ through the same Rg resistor used for the active phases.

Phase number	PWM1	PWM2 PWM3		PWM1 PWM2		PWM4
1	n/a					
2	to Driver SGN			SGND		
3		SGND				
4	to Driver					

 Table 11.
 CORE section - phase number programming

6.2 CORE section - current reading and current sharing loop

L6740L embeds a flexible, fully-differential current sense circuitry for the CORE section that is able to read across inductor parasitic resistance or across a sense resistor placed in series to the inductor element. The fully-differential current reading rejects noise and allows placing sensing element in different locations without affecting the measurement's accuracy. The trans-conductance ratio is issued by the external resistor Rg placed outside the chip between CSx- pin toward the reading points. The current sense circuit always tracks the current information, the pin CSx+ is used as a reference keeping the CSx- pin to this voltage. To correctly reproduce the inductor current an R-C filtering network must be introduced in parallel to the sensing element. The current that flows from the CSx- pin is then given by the following equation (See *Figure 10*):

$$I_{CSx-} = \frac{DCR}{R_{G}} \cdot \frac{1 + s \cdot L/DCR}{1 + s \cdot R \cdot C} \cdot I_{PHASEx}$$

Considering now to match the time constant between the inductor and the R-C filter applied (Time constant mismatches cause the introduction of poles into the current reading network causing instability. In addition, it is also important for the load transient response and to let the system show resistive equivalent output impedance) it results:

$$\frac{L}{R_{L}} = R \cdot C \quad \Rightarrow \quad I_{CSx-} = \frac{R_{L}}{R_{G}} \cdot I_{PHASEx} = I_{INFOx}$$

 R_G resistor is typically designed in order to have an information current I_{INFOx} in the range of about 35 μA (I_{OCTH}) at the OC threshold.

Current reading - CORE section (left) and NB section (right) Figure 10.

The current read through the CSx+ / CSx- pairs is converted into a current IINFOx proportional to the current delivered by each phase and the information about the average current $I_{AVG} = \Sigma I_{INFOx} / N$ is internally built into the device (N is the number of working phases). The error between the read current IINFOx and the reference IAVG is then converted into a voltage that with a proper gain is used to adjust the duty cycle whose dominant value is set by the voltage error amplifier in order to equalize the current carried by each phase.

6.3 CORE section - load-line and load-indicator (optional)

L6740L is able to introduce a dependence of the output voltage on the load current recovering part of the drop due to the output capacitor ESR in the load transient. Introducing a dependence of the output voltage on the load current, a static error, proportional to the output current, causes the output voltage to vary according to the sensed current.

Figure 10 shows the Current Sense Circuit used to implement the Load-Line. The current flowing across the inductor(s) is read through the R - C filter across CSx+ and CSx- pins. R_G programs a trans conductance gain and generates a current I_{CSx} proportional to the current of the phase. The sum of the I_{CSx} current is then sourced by the FB pin (I_{DROOP}). R_{FB} gives the final gain to program the desired load-line slope (*Figure 9*).

Time constant matching between the inductor (L / DCR) and the current reading filter (RC) is required to implement a real equivalent output impedance of the system so avoiding over and/or under shoot of the output voltage as a consequence of a load transient. See Section 6.2. The output characteristic vs. load current is then given by (Offset disabled):

$$V_{CORE} = VID - R_{FB} \cdot I_{DROOP} = VID - R_{FB} \cdot \frac{DCR}{R_G} \cdot I_{OUT} = VID - R_{LL} \cdot I_{OUT}$$

Where R_{LL} is the resulting load-line resistance implemented by the CORE section.

The whole power supply can be then represented by a "real" voltage generator with an equivalent output resistance R_{II} and a voltage value of VID.

R_{FB} resistor can be then designed according to the R_{LL} specifications as follow:

$$R_{FB} = R_{LL} \cdot \frac{R_G}{DCR}$$

Caution: Load-line (DROOP) implementation is optional, in case it is not desired, the resulting current information may be employed for other purposes, such as an additional load indicator (LI). In

