imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

L6758A

Datasheet - production data

High performance (4+1) dual controller for the VR12

Features

- VR12 compliant with 25 MHz SVID bus rev 1.5
- serialVID with programmable IMAX, TMAX, VBOOT, ADDRESS
- Second generation LTB Technology[™]
- Dual controller:
 - two-to-four phase for core
 - 1 phase for graphics (GFX) or system agent (VSA)
- Single NTC design for TM, LL and IMON thermal compensation (for each section)
- VFDE and GDC gate drive control for efficiency optimization
- DPM dynamic phase management
- Dual remote sense
- 0.5% output voltage accuracy
- Fully-differential current sense across DCR
- AVP adaptive voltage positioning
- Dual independent adjustable oscillator
- Dual current monitor
- Pre-biased output management
- 5 V supply, 12 V monitor
- Average and per-phase OC protection
- OV, UV and FB disconnection protection
- Dual VR_RDY
- VFQFPN48 6x6 mm package

July 2013

DocID023298 Rev 2

Applications

• High-current VRM / VRD for desktops / servers / workstations / new generation CPUs

Description

L6758A is a dual controller designed to power Intel[®] VR12 processors: all required parameters are programmable through dedicated pinstrapping.

The device features two-to-four phase programmable operation for multi-phase sections and a single-phase with independent control loops. Both sections feature second generation LTB Technology to provide fast load transient response, minimizing and optimizing the output filter composition.

The L6758A supports power state transitions featuring VFDE, programmable DPM and GDC, maintaining the best efficiency over all loading conditions without compromising transient responses. The device assures fast and independent protection against load overcurrent, under/overvoltage and feedback disconnections.

The device is available in VFQFPN48 package.

Table 1. Device summary

Order code	Package	Packaging
L6758A	VFQFPN48 6x6 mm	Tray
L6758ATR	VFQFPN48 6x6 mm	Tape and reel

This is information on a product in full production.

1/42

Contents

1	Турі	Typical application circuit and block diagram				
	1.1	Applica	ation circuit	4		
	1.2	Block	diagram	5		
2	Pino	descript	tion and connection diagrams	6		
	2.1	Pin de	scription	6		
	2.2	Therm	al data	11		
3	Elec	trical sp	pecifications	12		
	3.1	Absolu	ute maximum ratings	12		
	3.2	Electric	cal characteristics	12		
4	VR1	2 serial	data bus and IC configuration	15		
5	Devi	ce desc	cription and operation	20		
6	Outp	out volta	age positioning	21		
	6.1	Multi-p	phase section: phase # programming	21		
	6.2	Multi-p	phase section: current reading and current sharing loop	22		
	6.3	Multi-p	bhase section: defining load-line	23		
	6.4	Multi-p	bhase section: IMON information	23		
	6.5	Single	-phase section: current reading	24		
	6.6	Single	-phase section: defining load-line	24		
	6.7	Dynam	nic VID transition support	25		
	6.8	DVID	optimization: REF/SREF	25		
7	Outp	out volta	age monitoring and protection	27		
	7.1	Overvo	oltage	27		
	7.2	Overcu	urrent	28		
		7.2.1	Multi-phase section	28		
		7.2.2	Overcurrent and power states	29		
		7.2.3	Single-phase section	29		

8	Single	e NTC thermal monitor and compensation	30
	8.1	Thermal monitor and VR_HOT	30
	8.2	Thermal compensation	31
	8.3	TM and TCOMP design	31
9	Efficie	ency optimization	32
	9.1	Dynamic phase management (DPM)	32
	9.2	Variable frequency diode emulation (VFDE)	33
10	Main	oscillator	34
11	Syste	m control loop compensation	35
	11.1	Compensation network guidelines	36
	11.2	LTB technology	37
12	Packa	age mechanical data	38
13	Revis	ion history	41

1 Typical application circuit and block diagram

1.1 Application circuit

Figure 1. Typical 4-phase application circuit

DocID023298 Rev 2

57

1.2 Block diagram

Figure 2. Block diagram

DocID023298 Rev 2

2 Pin description and connection diagrams

Figure 3. Pin connection (top view)

2.1 Pin description

T	able	2.	Pin	descr	iption
---	------	----	-----	-------	--------

Pin#	Name		Function		
1	LTB		LTB Technology input pin. See Section 11.2 for details.		
2	IMON	Multi-phase section	Current monitor output. A current proportional to the multi-phase load current is sourced from this pin. Connect through a resistor R_{MON} to local GND. When the pin voltage reaches 1.55 V, overcurrent protection is set and the IC latches. Filtering through C_{IMON} to GND allows to control the delay for OC intervention.		
3	RGND		Remote ground sense. Connect to the negative side of the load to perform remote sense.		
4	VSEN		Output voltage monitor, manages OV and UV protection. Connect to the positive side of the load to perform remote sense. A fixed 50 μA current is sunk from this pin.		
5	FB		Error amplifier inverting input. Connect with a resistor R_{FB} to VSEN and with an $(R_F - C_F)// C_P$ to COMP.		
6	COMP / DPM		Error amplifier output. Connect with an $(R_F - C_F)//C_P$ to FB. The device cannot be disabled by pulling low this pin. Connect a proper resistor R_{DPM} to GND to define DPM strategy.		

Table 2.	Pin	description	(continued)
----------	-----	-------------	-------------

Pin#	Name		Function
7	REF	-phase ction	The reference used for the regulation of the multi-phase section is available on this pin with -100 mV offset. Connect through an R_{REF} - C_{REF} to RGND to optimize DVID transitions. Connect through an R_{OS} resistor to FB pin to implement small positive offset to the regulation.
8	GDC	Multis	Gate drive control pin. Used for efficiency optimization, see <i>Section 9</i> for details. If not used, it can be left floating.
9	VCC12		+12 V bus monitor to synchronize startup. The IC waits for the 12 V to become available before implementing soft- start when enabled. Connect directly to the +12 V bus (i.e. the high-side MOSFET drain).
10	SVCLK	<u>N</u>	Serial clock.
11	ALERT#	/I pr	Alert.
12	SVDATA	Ю	Serial data.
13	EN_VTT		VTT level sensitive enable pin (3.3 V compatible). Pull low to disable the device, pull up above the turn-on threshold to enable the controller.
14	SPWM / SEN	Single-ph section	PWM output. Connect to external driver PWM input. During normal operation the device is able to manage HiZ status by setting and holding the pin to a fixed voltage defined by PWMx strapping. Connect to VCC5 with 1 k Ω to disable single-phase section.
15	VR_HOT		Voltage regulator HOT. Open drain output; this is an alarm signal asserted by the controller when the temperature sensed through the TM and or ST pins exceed TMAX (active low). See <i>Section 8</i> for details.
16	SCSP		Single-phase section current sense positive input. Connect through an R-C filter to the phase-side of the channel 1 inductor.
17	SCSN		Single-phase section current sense negative input. Connect through an Rg resistor to the output-side of the channel inductor. Filter the output-side of Rg with 100 nF (typ.) to GND.
18	SIMON	-phase section	Current monitor output. A current proportional to the single-phase current is sourced from this pin. Connect through a resistor R_{SIMON} to local GND. When the pin voltage reaches 1.55 V, overcurrent protection is set and the IC latches. Filtering through C_{SIMON} to GND allows to control the delay for OC intervention.
19	SRGND	Single	Remote ground sense. Connect to the negative side of the load to perform remote sense.
20	SVSEN		Output voltage monitor, manages OV and UV protection. Connect to the positive side of the load to perform remote sense.
21	SFB		Error amplifier inverting input. Connect with a resistor $\rm R_{SFB}$ to SVSEN and with an ($\rm R_{SF}$ - $\rm C_{SF})/\!/$ $\rm C_{SP}$ to SCOMP.

Pin#	Name		Function			
22	SCOMP / TMAX	ase section	Error amplifier output. Connect with an $(R_{SF} - C_{SF})//C_{SP}$ to SFB. The device cannot be disabled by pulling low this pin. Connect proper resistor R_{TMAX} to GND to define TMAX register.			
23	SREF	Single-ph	The reference used for the regulation of the single-phase section is available on this pin with -100 mV offset. Connect through an R_{SREF} - C_{SREF} to SRGND to optimize DVID transitions. Connect through an R_{SOS} resistor to the SFB pin to implement small positive offset to the regulation.			
24	VCC5		Main IC power supply. Operative voltage is 5 V ±5%. Filter with 1 μF MLCC to GND (typ.).			
25	SOSC	Single-phase section	Oscillator pin. It allows the programming of the switching frequency F_{SSW} for the single- phase section. The pin is internally set to 1.0 V, frequency for single-phase is programmed according to the resistor connected to GND or VCC with a gain of 10 kHz/ μ A. Leaving the pin floating programs a switching frequency of 200 kHz. See <i>Section 10</i> for details.			
26	IMAX / SIMAX	rapping	Connect a resistor divider to GND/VCC5 in order to define the IMAX register for both single-phase and multi-phase sections. See <i>Table 8</i> , <i>Table 10</i> and <i>Section 6</i> for details.			
27	BOOT / ADDR	Pinst	Connect a resistor divider to GND/VCC5 in order to define BOOT register and SVI address. See <i>Table 8</i> and <i>Section 6</i> for details.			
28	STM	hase section	Thermal monitor sensor. Connect with proper network embedding NTC to the single-phase power section. The IC senses the power section temperature and uses the information to define the VR_HOT signal and temperature zone register. By programming proper STCOMP gain, the IC also implements load-line thermal compensation for the single-phase section. Short to GND if not used. See <i>Section 8</i> for details.			
29	STCOMP	Single-p	Thermal monitor sensor gain. Connect proper resistor divider between VCC5 and GND to define the gain to apply to the signal sensed by ST to implement thermal compensation for the single-phase section. Short to GND to disable thermal compensation for single-phase. See <i>Section 8</i> for details.			
30	TCOMP	Multi-ph section	Thermal monitor sensor gain. Connect proper resistor divider between VCC5 and GND to define the gain to apply to the signal sensed by TM to implement thermal compensation for the multi-phase section. Short to GND to disable thermal compensation for multi-phase. See <i>Section 8</i> for details.			
31	ТМ	Multi-ph section	Thermal monitor sensor. Connect with proper network embedding NTC to the multi-phase power section. The IC senses the power section temperature and uses the information to define the VR_HOT signal and temperature zone register. By programming proper TCOMP gain, the IC also implements load-line thermal compensation for the multi-phase section. Short to GND if not used. See <i>Section 8</i> for details.			

Table 2. Pin description (continued)

DocID023298 Rev 2

Table 2.	Pin	description	(continued)
----------	-----	-------------	-------------

Pin#	Name	Function
32	OSC	Oscillator pin. It allows the programming of the switching frequency F_{SW} for the multiphase section. The pin is internally set to 1.0 V, frequency for multi-phase is programmed according to the resistor connected to GND or VCC with a gain of 10 kHz/ μ A. Leaving the pin floating programs a switching frequency of 200 kHz. Effective frequency observable on the load results as being multiplied by the number of active phases N. See Section 10 for details.
33	VR_RDY	VR ready. Open drain output set free after SS has finished in multi-phase section and pulled low when triggering any protection. Pull up to a voltage lower than 3.3 V (typ.), if not used it can be left floating.
34	ENDRV	Enable driver. CMOS output driven high when the IC commands the drivers. Used in conjunction with the HiZ window on the PWM pins to optimize the multi- phase section overall efficiency. Connect directly to external driver enable pin.
35	SENDRV	Enable driver. CMOS output driven high when the IC commands the drivers. Used in conjunction with the HiZ window on the PWM pins to optimize the single- phase section overall efficiency. Connect directly to external driver enable pin.
36	PWM4	PWM4 output. Connect to external driver PWM input. During normal operation the device is able to manage HiZ status by setting and holding the PWMx pin to fixed voltage. Pull to 5 V through a 1 k resistor to configure the multi-phase section to work at 3 phases.
37	PWM2	PWM2 output. Connect to external driver PWM input. This pin is also used to configure HiZ levels for compatibility with drivers and DrMOS. During normal operation the device is able to manage HiZ status by setting and holding the PWMx pin to pre-defined fixed voltage.
38	PWM3	PWM3 output. Connect to external driver PWM input. During normal operation the device is able to manage HiZ status by setting and holding the PWMx pin to fixed voltage. Pull to 5 V through 1 k resistor in conjunction with PWM4 to configure the multi-phase section to work at 2 phases.
39	PWM1	PWM1 output. Connect to external driver PWM input. This pin is also used to configure HiZ levels for compatibility with drivers and DrMOS. During normal operation the device is able to manage HiZ status by setting and holding the PWMx pin to pre-defined fixed voltage.

Pin#	Name		Function
40	SVR_RDY	Single-ph section	VR ready. Open drain output set free after SS has finished in single-phase section and pulled low when triggering any protection. Pull up to a voltage lower than 3.3 V (typ.), if not used it can be left floating.
41	CS4P		Channel 4 current sense positive input. Connect through an R-C filter to the phase-side of the channel 4 inductor. When working at 2 or 3 phases, short to the regulated voltage.
42	CS4N	Aulti-phase section	Channel 4 current sense negative input. Connect through an Rg resistor to the output-side of the channel inductor. When working at 2 or 3 phases, still connect through Rg to CS4+ and then to the regulated voltage. Filter the output-side of Rg with 100 nF (typ.) to GND.
43	CS2P		Channel 2 current sense positive input. Connect through an R-C filter to the phase-side of the channel 2 inductor.
44	CS2N		Channel 2 current sense negative input. Connect through an Rg resistor to the output-side of the channel inductor. Filter the output-side of Rg with 100 nF (typ.) to GND.
45	CS3P		Channel 3 current sense positive input. Connect through an R-C filter to the phase-side of the channel 3 inductor. When working at 2 phases, short to the regulated voltage.
46	CS3N		Channel 3 current sense negative input. Connect through an Rg resistor to the output-side of the channel inductor. When working at 2 phases, still connect through Rg to CS3P and then to the regulated voltage. Filter the output-side of Rg with 100 nF (typ.) to GND.
47	CS1P		Channel 1 current sense positive input. Connect through an R-C filter to the phase-side of the channel 1 inductor.
48	CS1N		Channel 1 current sense negative input. Connect through an Rg resistor to the output-side of the channel inductor. Filter the output-side of Rg with 100 nF (typ.) to GND.
PAD	GND		GND connection. All internal references and logic are referenced to this pin. Filter to VCC with proper MLCC capacitor and connect to the PCB GND plane.

 Table 2. Pin description (continued)

2.2 Thermal data

Symbol	Parameter	Value	Unit
R _{THJA}	Thermal resistance junction-to-ambient (device soldered on 2s2p PC board)	40	°C/W
R _{THJC}	Thermal resistance junction-to-case	1	°C/W
T _{MAX}	Maximum junction temperature	150	°C
T _{STG}	Storage temperature range	-40 to 150	°C
TJ	Junction temperature range	0 to 125	°C

Table 3. Thermal data

3 Electrical specifications

3.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCC12, GDC	to GND	-0.3 to 14	V
VCC, STM, TM, SPWM, PWMx, SIMAX/IMAX, BOOT/ADDR, SENDRV, ENDRV,	to GND	-0.3 to 7	V
All other pins	to GND	-0.3 to 3.6	V

3.2 Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Supply curre	ent and power-on					
1		EN = high		22		mA
ICC	VCC supply current	EN = low		15		mA
	VCC turn-ON	VCC rising			4.1	V
UVLO _{VCC5}	VCC turn-OFF	VCC falling	3.0			V
	VCC12 turn-ON	VCC12 rising			6.5	V
UVLO _{VCC12}	VCC12 turn-OFF	VCC12 falling	4.5			V
Oscillator, se	oft-start and enable					
-	Main oscillator accuracy		180	200	220	kHz
гsw	Oscillator adjustability	$R_{OSC} = 30 \text{ k}\Omega \text{ to GND}$	450	500	550	kHz
-	Main oscillator accuracy		207	230	253	kHz
FSSW	Oscillator adjustability	$R_{SOSC} = 30 \text{ k}\Omega \text{ to GND}$	493	580	667	kHz
ΔV _{OSC}	PWM ramp amplitude			1.5		V
	Voltage at pin SOSC	After any latch	3.0			V
FAULI	Voltage at pin OSC	After OVP latch	3.0			V
SOFT START	SS time	VBOOT > 0, from pinstrapping; multi-phase section	4	5	6	mV/μs
		VBOOT > 0, from pinstrapping; single-phase section	2	2.5	3	mV/μs

Table 5. Electrical characteristics (V _{CC} = 5 V ± 5%,	J = 0 °C to 70 °C unless otherwise specified)
--	---

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
	Turn-ON	V _{ENVTT} rising			0.6	V			
EN_VTT	Turn-OFF	V _{ENVTT} falling	0.4			V			
	Leakage current			1		μΑ			
SVI serial bus									
SVCLCK,	Input high		0.6			V			
SVDATA	Input low				0.4	V			
SVDATA, ALERT#	Voltage low (ACK)	I _{SINK} = -5 mA			50	mV			
Reference a	nd current reading				•				
k _{VID}	V _{OUT} accuracy (MPhase)	I _{OUT} =0 A; N=4; R _G =1 kΩ; R _{FB} =2.125 kΩ; VID > 1.000 V	-0.5	-	0.5	%			
k _{SVID}	V _{OUT} accuracy (SPhase)	I _{OUT} =0 A; R _G =1.3 kΩ; R _{FB} =6.663 kΩ; VID > 1.000 V	-0.5	-	0.5	%			
k k		VID = 0.8 V to 1 V	-5	-	5	mV			
KVID, KSVID	V _{OUT} accuracy	VID < 0.8 V	-8	-	8	mV			
	LL accuracy (MPhase) 0 to full load	I _{INFOx} =0; N=4; R _G =1 kΩ; R _{FB} =2.125 kΩ	-2	-	2	μA			
		I _{INFOx} = 25 μA; N=4; R _G =1 kΩ; R _{FB} =2.125 kΩ	-3.5	-	3.5	μA			
	LL accuracy (SPhase) 0 to full load	I _{SCSN} =0; R _G =1.3 kΩ; R _{FB} =6.663 kΩ	-0.75	-	0.75	μA			
		I _{SCSN} = 25 μΑ; R _G =1.3 kΩ; R _{FB} =6.663 kΩ	-1.5	-	1.5	μA			
le.		I _{INFOx} =0 μA; N=4; R _G =1 kΩ; R _{FB} =2.125 kΩ	0		1.5	μA			
KIMON	IMON accuracy (MPhase)	I _{INFOx} =25 μA; N=4; R _G =1 kΩ; R _{FB} =2.125 kΩ	-2	-	2	μA			
l.	SIMON accuracy	I _{SCSN} =25 μΑ; R _G =1.3 kΩ; R _{FB} =6.663 kΩ	0		0.75	μA			
KSIMON	(SPhase)	I _{SCSN} =25 μA; R _G =1.3 kΩ; R _{FB} =6.663 kΩ	-1	-	1	μA			
A ₀	EA DC gain			100		dB			
SR	Slew rate	COMP to SGND = 10 pF		20		V/µs			
סועס	Slew rate fast	Multi phase costion	20			mV/μs			
	Slew rate slow	111111-111256 56011011	5			mV/μs			
סועס	Slew rate fast	Single-phase sections	10			mV/μs			
	Slew rate slow		2.5			mV/μs			

Table 5. Electrical characteristics (V_{CC} = 5 V ± 5%, T_J = 0 °C to 70 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	GetReg(15h)	V 0.000 V		CC		Hex
INION ADC	Accuracy	- V _{IMON} = 0.992 V	C0		CF	Hex
PWM output	s and ENDRV					
PWMx,	Output high	I = 1 mA		5		V
SPWM	Output low	I = -1 mA			0.2	V
I _{PWM1}	Test current	Sourced from pin, EN_VTT=0.		10		μA
I _{PWM2}	Test current			0		μA
I _{PWMx, SPWM}	Test current	Sourced from pin, EN_VTT=0.		-10		μA
(S) ENDRV	Voltage low	$I_{(S)ENDRV}$ = -4 mA; both sections			0.4	V
Protections	(both sections)					<u> </u>
OVP	Overvoltage protection	VSEN rising; wrt Ref.	+125		+200	mV
UVP	Undervoltage protection	VSEN falling; wrt Ref; Ref > 500 mV	-525		-375	mV
FBR Disc	FB disconnection	V_{CS-} rising, above VSEN/SVSEN	650	700	750	mV
FBG Disc	FBG disconnection	EA NI input wrt VID	450	500	550	mV
VR_RDY, SVR_RDY	Voltage low	I = -4 mA			0.4	V
V _{OC_TOT}	Overcurrent threshold	V _{IMON} , V _{SIMON} rising	1.50	1.55	1.60	V
I _{OC_TH}	Constant current	MPhase only		35		μΑ
VR_HOT	Voltage low	I _{SINK} = -5 mA			13	Ω
GATE DRIVE	CONTROL					
	Max. current	Any PS.		200		mA
GDC	Impodonce	PS00h (GDC=VCC12)		6		Ω
	Impedance	> PS00h; (GDC=VCC5)		6		Ω

Table 5. Electrical characteristics (V_{CC} = 5 V \pm 5%, T_J = 0 °C to 70 °C unless otherwise specified)

4 VR12 serial data bus and IC configuration

The L6758A is fully compliant with Intel VR12/IMVP7 SVID protocol rev 1.5, document # 456098. To guarantee proper device and CPU operation, refer to this document for bus design and layout guidelines. Different platforms may require different pull-up impedance on the SVI bus. Impedance matching and spacing among SVDATA, SVCLK and ALERT# must be followed.

HEX	code	V _{OUT} [V]	HEX	code	V _{OUT} [V]	HEX	code	V _{OUT} [V] HEX code		code	V _{OUT} [V]
0	0	0.000	4	0	0.565	8	0	0.885	С	0	1.205
0	1	0.250	4	1	0.570	8	1	0.890	С	1	1.210
0	2	0.255	4	2	0.575	8	2	0.895	С	2	1.215
0	3	0.260	4	3	0.580	8	3	0.900	С	3	1.220
0	4	0.265	4	4	0.585	8	4	0.905	С	4	1.225
0	5	0.270	4	5	0.590	8	5	0.910	С	5	1.230
0	6	0.275	4	6	0.595	8	6	0.915	С	6	1.235
0	7	0.280	4	7	0.600	8	7	0.920	С	7	1.240
0	8	0.285	4	8	0.605	8	8	0.925	С	8	1.245
0	9	0.290	4	9	0.610	8	9	0.930	С	9	1.250
0	Α	0.295	4	Α	0.615	8	Α	0.935	С	А	1.255
0	В	0.300	4	В	0.620	8	В	0.940	С	В	1.260
0	С	0.305	4	С	0.625	8	С	0.945	С	С	1.265
0	D	0.310	4	D	0.630	8	D	0.950	С	D	1.270
0	Е	0.315	4	Е	0.635	8	Е	0.955	С	Е	1.275
0	F	0.320	4	F	0.640	8	F	0.960	С	F	1.280
1	0	0.325	5	0	0.645	9	0	0.965	D	0	1.285
1	1	0.330	5	1	0.650	9	1	0.970	D	1	1.290
1	2	0.335	5	2	0.655	9	2	0.975	D	2	1.295
1	3	0.340	5	3	0.660	9	3	0.980	D	3	1.300
1	4	0.345	5	4	0.665	9	4	0.985	D	4	1.305
1	5	0.350	5	5	0.670	9	5	0.990	D	5	1.310
1	6	0.355	5	6	0.675	9	6	0.995	D	6	1.315
1	7	0.360	5	7	0.680	9	7	1.000	D	7	1.320
1	8	0.365	5	8	0.685	9	8	1.005	D	8	1.325
1	9	0.370	5	9	0.690	9	9	1.010	D	9	1.330
1	Α	0.375	5	А	0.695	9	А	1.015	D	А	1.335
1	В	0.380	5	В	0.700	9	В	1.020	D	В	1.340

Table	6.	VID	table.	both	sections
Table	υ.		table,	DOUI	300110113

HEX	code	V _{OUT} [V]	HEX code		V _{OUT} [V]	HEX	HEX code V _{OUT} [V]		HEX	code	V _{OUT} [V]
1	С	0.385	5	С	0.705	9	С	1.025	D	С	1.345
1	D	0.390	5	D	0.710	9	D	1.030	D	D	1.350
1	Е	0.395	5	Е	0.715	9	E	1.035	D	E	1.355
1	F	0.400	5	F	0.720	9	F	1.040	D	F	1.360
2	0	0.405	6	0	0.725	А	0	1.045	Е	0	1.365
2	1	0.410	6	1	0.730	А	1	1.050	Е	1	1.370
2	2	0.415	6	2	0.735	А	2	1.055	Е	2	1.375
2	3	0.420	6	3	0.740	А	3	1.060	Е	3	1.380
2	4	0.425	6	4	0.745	А	4	1.065	Е	4	1.385
2	5	0.430	6	5	0.750	А	5	1.070	Е	5	1.390
2	6	0.435	6	6	0.755	А	6	1.075	E	6	1.395
2	7	0.440	6	7	0.760	А	7	1.080	Е	7	1.400
2	8	0.445	6	8	0.765	А	8	1.085	Е	8	1.405
2	9	0.450	6	9	0.770	А	9	1.090	E	9	1.410
2	А	0.455	6	А	0.775	А	А	1.095	Е	А	1.415
2	В	0.460	6	В	0.780	А	В	1.100	E	В	1.420
2	С	0.465	6	С	0.785	А	С	1.105	Е	С	1.425
2	D	0.470	6	D	0.790	А	D	1.110	Е	D	1.430
2	Е	0.475	6	Е	0.795	А	E	1.115	Е	Е	1.435
2	F	0.480	6	F	0.800	А	F	1.120	Е	F	1.440
3	0	0.485	7	0	0.805	В	0	1.125	F	0	1.445
3	1	0.490	7	1	0.810	В	1	1.130	F	1	1.450
3	2	0.495	7	2	0.815	В	2	1.135	F	2	1.455
3	3	0.500	7	3	0.820	В	3	1.140	F	3	1.460
3	4	0.505	7	4	0.825	В	4	1.145	F	4	1.465
3	5	0.510	7	5	0.830	В	5	1.150	F	5	1.470
3	6	0.515	7	6	0.835	В	6	1.155	F	6	1.475
3	7	0.520	7	7	0.840	В	7	1.160	F	7	1.480
3	8	0.525	7	8	0.845	В	8	1.165	F	8	1.485
3	9	0.530	7	9	0.850	В	9	1.170	F	9	1.490
3	А	0.535	7	А	0.855	В	Α	1.175	F	Α	1.495
3	В	0.540	7	В	0.860	В	В	1.180	F	В	1.500
3	С	0.545	7	С	0.865	В	С	1.185	F	С	1.505
3	D	0.550	7	D	0.870	В	D	1.190	F	D	1.510

Table 6. VID table, both sections (continued)

	Table 0. Vib table, both sections (continued)										
HEX	code	V _{OUT} [V]	HEX	code	V _{OUT} [V]	HEX	code	V _{OUT} [V]	HEX	code	V _{OUT} [V]
3	E	0.555	7	E	0.875	В	E	1.195	F	E	1.515
3	F	0.560	7	F	0.880	В	F	1.200	F	F	1.520

Table 6. VID table, both sections (continued)

Table 7. Phase number programming

	PWM1	PWM2	PWM3	PWM4	SPWM	
3+1 phase		to driver		1 k Ω pull up to	to driver	
2+1 phase	to d	river	1 k Ω to VCC5	VCC5		
3+0 phase		to driver	1 k Ω pull up to	1 k Ω pull up to		
2+0 phase	to di	river	1 k Ω to VCC5	VCC5	VCC5	

Table 8. IMAX / SIMAX pinstrapping ⁽¹⁾

			IMAX / SIMAX					
R down	R up [kO]	100 A X 5 A 3(2)	SIMA	X [A]				
[]	[]		GFX	VSA				
10	1.5		40	29				
10	2.7	N. 20 . 25	35	21				
22	6.8	$N \cdot 30 + 35$	30	13				
10	3.6		25	5				
27	11		40	29				
12	5.6		35	21				
82	43		30	13				
13	7.5		25	5				
56	36		40	29				
18	13	N. 20 . 05	35	21				
15	12	N · 30 + 25	30	13				
18	16		25	5				
15	14.7		40	29				
10	11	N - 20 + 20	35	21				
18	22	IN · 30 + 20	30	13				
56	75		25	5				

	D		IMAX / SIMAX	
R down [kΩ]	R up [kΩ]	IMAY [A](2)	SIMA	X [A]
			GFX	VSA
10	15		40	29
12	20	N . 20 + 15	35	21
12	22.6	N · 30 + 15	30	13
39	82		25	5
47	110	N · 30 + 10 -	40	29
10	27		35	21
22	68		30	13
10	36		25	5
18	75		40	29
15	75	N . 20 . 5	35	21
10	59	N · 50 + 5	30	13
10	75		25	5
10	100		40	29
10	150	N - 20	35	21
10	220	N · 30	30	13
10	Open		25	5

Table 8. IMAX / SIMAX pinstrapping ⁽¹⁾ (continued)

1. Suggested values, divider must be connected between VCC5 pin and GND.

2. N is the number of phases programmed for the multi-phase section.

Table 9	BOOT		pinstrapping ⁽¹⁾
	BOOL /	ADDR	

B down	Bup					
[kΩ]	[kΩ]	Multi-phase [V]	Single-phase [V]	Single-phase mode	Link-Rest	ADDR[h] ⁽²⁾
10	1.5	0.000	1.100	VSA	1 µs	06
10	3.6	0.000	1.100	VSA	1 μs	00
27	11	0.000	1.000	VSA		06
13	7.5	0.000	1.000	VSA	1.00	00
56	36	0.000	0.900	VSA	ιμs	06
18	16	0.000	0.900	VSA	1 µs	00
15	14.7	0.000	1.100	GFX	32 µs	06
56	75	0.000	1.100	GFX	32 µs	00
10	15	1.100	1.100	GFX		06

B down B un						
[kΩ] [k	[kΩ]	Multi-phase [V]	Single-phase [V]	Single-phase mode	Link-Rest	ADDR[h] ⁽²⁾
39	82	1.100	1.100	GFX	20.00	00
47	110	1.000	1.000	GFX	52 μ5	06
10	36	1.000	1.000	GFX	20.00	00
18	75	0.900	0.900	GFX	52 μ5	06
10	75	0.900	0.900	GFX	32 µs	00
10	100	0.000	0.000	GFX	1 µs	06
10	Open	0.000V	0.000	GFX	1 µs	00

Table 9. BOOT / ADDR pinstrapping⁽¹⁾ (continued)

1. Suggested values, divider must be connected between VCC5 pin and GND.

2. N is the number of phases programmed for the multi-phase section.

Table 10. Device configuration - single - phase section

Mode (from VBOOT)	VBOOT	DROOP	SIMAX [A]
GFX	See Table 9	Enabled	25 to 40
VSA	See Table 9	Disabled	5 to 29

COMP/SCOMP	DPM threshold set	TMAX [C]
33 k to GND	Set 3	130
17.5 k to GND	Set 2	120
12.5 k to GND	Set 1	110
5.6 k to GND	OFF	100

Table 11. DPM and TMAX pinstrapping (see Section 9.1)

5 Device description and operation

The L6758A is a programmable two-to-four phase PWM controller that provides complete control logic and protection to implement a high performance step-down DC-DC voltage regulator optimized for advanced microprocessor power supply. The device features 2nd generation LTB Technology: through a load transient detector, it is able to simultaneously turn on all the phases. This allows the output voltage deviation to be minimized and, in turn, the system cost to be minimized by providing the fastest response to a load transition.

The L6758A implements current reading across the inductor in fully-differential mode. A sense resistor in series to the inductor can be also considered in order to improve reading precision. The current information read corrects the PWM output in order to equalize the average current carried by each phase.

The controller supports VR12 specifications featuring 25 MHz SVI bus and all the required registers. The platform may program the defaults for these registers through dedicated pinstrapping.

A complete set of protection is available: overvoltage, undervoltage, overcurrent (per-phase and total) and feedback disconnection guarantee the load to be safe under all conditions.

Special power management features like DPM, VFDE and GDC modify phase number, gate driving voltage and switching frequency to optimize the efficiency over the load range.

The L6758A is available in VFQFPN48 with 6x6 mm body package.

Figure 4. Device initialization

6 Output voltage positioning

Output voltage positioning is performed by selecting the controller operative-mode (*CPU*, *VSA* and *GFX*) for the two sections and by programming the droop function effect (see *Figure 5*). The controller reads the current delivered by each section by monitoring the voltage drop across the DCR inductors. The current (I_{DROOP} / I_{SDROOP}) sourced from the FB / SFB pins, directly proportional to the read current, causes the related section output voltage to vary according to the external R_{FB} / R_{SFB} resistor, therefore implementing the desired load-line effect.

The L6758A embeds a dual remote-sense buffer to sense remotely the regulated voltage of each section without any additional external components. In this way, the output voltage programmed is regulated compensating for board and socket losses. Keeping the sense traces parallel and guarded by a power plane results in common mode coupling for any picked-up noise.

Figure 5. Voltage positioning

6.1 Multi-phase section: phase # programming

The multi-phase section implements a flexible two-to-four interleaved-phase converter. To program the desired number of phases, pull up to VCC5 the PWMx signal that is not required to be used, according to *Table 6*.

Caution: For the disabled phase(s), the current reading pins must be properly connected to avoid errors in current sharing and voltage positioning: CSxP must be connected to the regulated output voltage while CSxN must be connected to CSxP through the same R_G resistor used for the active phases.

6.2 Multi-phase section: current reading and current sharing loop

The L6758A embeds a flexible, fully-differential current sense circuitry that is able to read across inductor parasitic resistance or across a sense resistor placed in series to the inductor element. The fully-differential current reading rejects noise and allows the placing of sensing elements in different locations without affecting the measurement accuracy. The trans-conductance ratio is issued by the external resistor R_G placed outside the chip between the CSxN pin toward the reading points. The current sense circuit always tracks the current information, the CSxP pin is used as a reference keeping the CSxN pin to this voltage. To correctly reproduce the inductor current an R-C filtering network must be introduced in parallel to the sensing element. The current that flows from the CSxN pin is then given by the following equation (see *Figure 6*):

Equation 1

$$I_{CSxN} = \frac{DCR}{R_{G}} \cdot \frac{1 + s \cdot L/DCR}{1 + s \cdot R \cdot C} \cdot I_{PHASEx}$$

Considering now to match the time constant between the inductor and the R-C filter applied (time constant mismatches cause the introduction of poles into the current reading network causing instability. In addition, it is also important for the load transient response and to let the system show resistive equivalent output impedance), it results:

Equation 2

$$\frac{L}{DCR} = R \cdot C \quad \Rightarrow \quad I_{CSxN} = \frac{R_L}{R_G} \cdot I_{PHASEx} = I_{INFOx}$$

The current read through the CSxP / CSxN pairs is converted into a current I_{INFOx} proportional to the current delivered by each phase and the information about the average current $I_{AVG} = \Sigma I_{INFOx}$ / N is internally built into the device (N is the number of working phases). The error between the read current I_{INFOx} and the reference I_{AVG} is then converted

DocID023298 Rev 2

into a voltage that, with a proper gain, is used to adjust the duty cycle whose dominant value is set by the voltage error amplifier in order to equalize the current carried by each phase.

6.3 Multi-phase section: defining load-line

The L6758A introduces a dependence of the output voltage on the load current recovering part of the drop due to the output capacitor ESR in the load transient. Introducing a dependence of the output voltage on the load current, a static error, proportional to the output current, causes the output voltage to vary according to the sensed current.

Figure 6 shows the current sense circuit used to implement the load-line. The current flowing across the inductor(s) is read through the R-C filter across the CSxP and CSxN pins. R_G programs a trans-conductance gain and generates a current I_{CSx} proportional to the current of the phase. The sum of the I_{CSx} current is then sourced by the FB pin (I_{DROOP}). R_{FB} gives the final gain to program the desired load-line slope (*Figure 5*).

Time constant matching between the inductor (L / DCR) and the current reading filter (RC) is required to implement a real equivalent output impedance of the system and so avoiding over and/or undershoot of the output voltage as a consequence of a load transient. The output voltage characteristic vs. load current is then given by:

Equation 3

$$V_{OUT} = VID - R_{FB} \cdot I_{DROOP} = VID - R_{FB} \cdot \frac{DCR}{R_{G}} \cdot I_{OUT} = VID - R_{LL} \cdot I_{OUT}$$

where R_{LL} is the resulting load-line resistance implemented by the multi-phase section. The R_{FB} resistor can be then designed according to the R_{LL} specifications as follows:

Equation 4

$$R_{FB} = R_{LL} \cdot \frac{R_{G}}{DCR}$$

6.4 Multi-phase section: IMON information

IMON is the analog information related to the current delivered by the VR which has a voltage digitized for VR12 current reporting. The pin sources a copy of the droop current:

Equation 5

$$I_{MON} = I_{DROOP} = \frac{DCR}{R_G} \cdot I_{OUT}$$

See Section 6.2 for details about current reading.

The lout register contains analog-to-digital conversion of the voltage present on the IMON pin considering the following relationships:

- a) $V_{MON} = I_{MON} \cdot R_{IMON}$, where R_{IMON} is the resistor connected between IMON and GND.
- b) IMON=1.24 V corresponds to IMAX. R_{IMON} is designed according to this relationship.
- c) IMON=1.55 V sets the OC protection.

6.5 Single-phase section: current reading

The single-phase section performs the same differential current reading across DCR as the multi-phase section. According to *Section 6.2*, the current that flows from the SCSN pin is then given by the following equation (see *Figure 6*):

Equation 6

$$I_{SCSN} = \frac{DCR}{R_{SG}} \cdot I_{SOUT} = I_{SDROOP}$$

6.6 Single-phase section: defining load-line

This method introduces a dependence of the output voltage on the load current recovering part of the drop due to the output capacitor ESR in the load transient. Introducing a dependence of the output voltage on the load current, a static error, proportional to the output current, causes the output voltage to vary according to the sensed current.

Figure 6 shows the current sense circuit used to implement the load-line. The current flowing across the inductor DCR is read through R_{SG} . R_{SG} programs a trans-conductance gain and generates a current I_{SDROOP} proportional to the current delivered by the single-phase section that is then sourced from the SFB pin. R_{SFB} gives the final gain to program the desired load-line slope (*Figure 5*).

The output characteristic vs. load current is then given by:

Equation 7

$$V_{SOUT} = VID - R_{SFB} \cdot I_{SDROOP}$$
$$VID - R_{SFB} \cdot \frac{DCR}{R_{SG}} \cdot I_{SOUT} = VID - R_{SLL} \cdot I_{SOUT}$$

where R_{SLL} is the resulting load-line resistance implemented by the single-phase section. The R_{SFB} resistor can be then designed according to the R_{SLL} as follows:

Equation 8

$$R_{SFB} = R_{SLL} \cdot \frac{R_{SG}}{DCR}$$

6.7 Dynamic VID transition support

The L6758A manages dynamic VID transitions that allow the output voltage of both sections to be modified during normal device operation for power management purposes. OV, UV signals are masked during every DVID transition and they are re-activated with proper delay to prevent from false triggering.

When changing dynamically the regulated voltage (DVID), the system needs to charge or discharge the output capacitor accordingly. This means that an extra-current I_{DVID} needs to be delivered (especially when increasing the output regulated voltage) and it must be considered when setting the overcurrent threshold of both sections. This current results:

Equation 9

$$I_{\text{DVID}} = C_{\text{OUT}} \cdot \frac{dV_{\text{OUT}}}{dT_{\text{VID}}}$$

where dV_{OUT} / dT_{VID} depends on the specific command issued (20 mV/µsec. for SetVID_Fast and 5 mV/µsec. for SetVID_Slow).

Overcoming the OC threshold during the dynamic VID causes the device to latch and disable.

As soon as the controller receives a new valid command to set the VID level for one (or both) of the two sections, the reference of the involved section steps up or down according to the target-VID with the programmed slope until the new code is reached. If a new valid command is issued during the transition, the device updates the target-VID level and performs the dynamic transition up to the new code. OV, UV are masked during the transition and re-activated with proper delay after the end of the transition to prevent from false triggering.

6.8 DVID optimization: REF/SREF

High slew rate for dynamic VID transitions cause overshoot and undershoot on the regulated voltage causing a violation in the microprocessor requirement. To compensate this behavior and to remove any over/undershoot in the transition, each section features DVID optimization circuit.

The reference used for the regulation is available on the REF/SREF pin (see *Figure 7*). Connect an R_{REF}/C_{REF} to GND (R_{SREF}/C_{SREF} for the single-phase) to optimize the DVID behavior. Components may be designed as follows (multi-phase, same equations apply to single-phase):

Equation 10

$$C_{\text{REF}} = C_{\text{F}} \cdot \left(1 - \frac{\Delta V_{\text{OSC}}}{k_{\text{V}} \cdot V_{\text{IN}}}\right)$$
$$R_{\text{REF}} = \frac{R_{\text{F}} \cdot C_{\text{F}}}{C_{\text{REF}}}$$

where Δ Vosc is the PWM ramp and k_V the gain for the voltage loop (see *Section 11*).

During a DVID transition, the REF pin moves according to the command issued (SetVIDFast, SetVIDSlow); the current requested to charge/discharge the R_{REF}/C_{REF}

