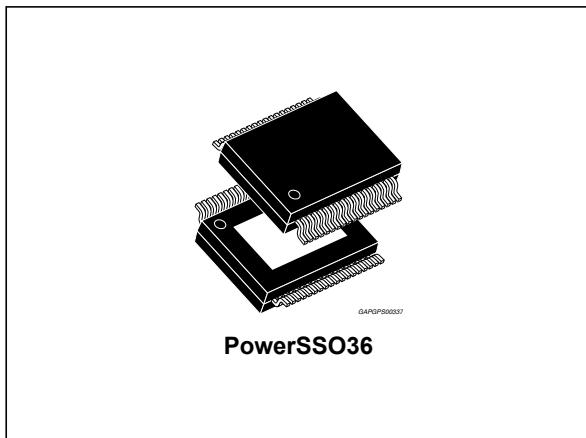


Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Automotive octal low side driver or quad low side plus quad high side driver

Datasheet - production data

Features

- AEC-Q100 qualified
- Eight integrated PowerMOS configurable as:
 - 8 low side ON-OFF with $R_{ON(max)} = 0.3 \Omega$ @ $T_j = 175^\circ\text{C}$
 - High/low side PWM with $R_{ON(max)} = 0.6 \Omega$ @ $T_j = 175^\circ\text{C}$ and 4 Low side with $R_{ON(max)} = 0.3 \Omega$ @ $T_j = 175^\circ\text{C}$
- Operating battery supply voltage 5 V to 18 V
- Operating V_{dd} supply voltage 4.75 V to 5.25 V
- Logic inputs TTL/CMOS-compatible
- Output voltage clamping 37 V typ. in low-side configuration
- SPI interface for outputs control and for diagnosis data communication
- Additional PWM inputs for 8 outputs
- Over temperature protection
- Open load, short to GND, short to VB
- Overcurrent diagnostics in latched or unlatched mode for each channel
- Controlled SR for improved EMC behavior

Description

The L9301 is a SPI (Serial Peripheral Interface) controlled octal channel with 4 high/low and 4 low side drivers with the possibility to use four integrated PowerMOS as recirculation diodes for PWM load driving.

L9301 contains 12 PowerMOS: 4 configurable High/Low side drivers with $R_{onmax} = 0.6 \Omega$ (DRN1-4, SRC1-4), 4 low side drivers with $R_{onmax} = 0.6 \Omega$ (OUT1-4) and 4 low side drivers with $R_{onmax} = 0.3 \Omega$ (OUT5-8).

The power DRN/SRC1-4 and OUT1-4 can be connected in parallel outside the device in order to get 4 low-side drivers with $R_{onmax} = 0.3 \Omega$: DRN1//DRN2, DRN3//DRN4, OUT1//OUT2, OUT3//OUT4.

In this way there is a total of 8 LS channels for ON-OFF mode with $R_{onmax} = 0.3 \Omega$.

There is also the possibility to connect the OUT1-4 and OUT5-8 in order to drive in PWM mode a load connected to VB or GND without the necessity of a freewheeling diode. In this case the $R_{onmax} = 0.6 \Omega$.

The above configuration can be driven by parallel input or SPI command.

Through the SPI it is possible to configure the device parameters like configuration, Slew-rate, Overcurrent threshold, to send the drivers commands and to read back the diagnosis results.

Table 1. Device summary

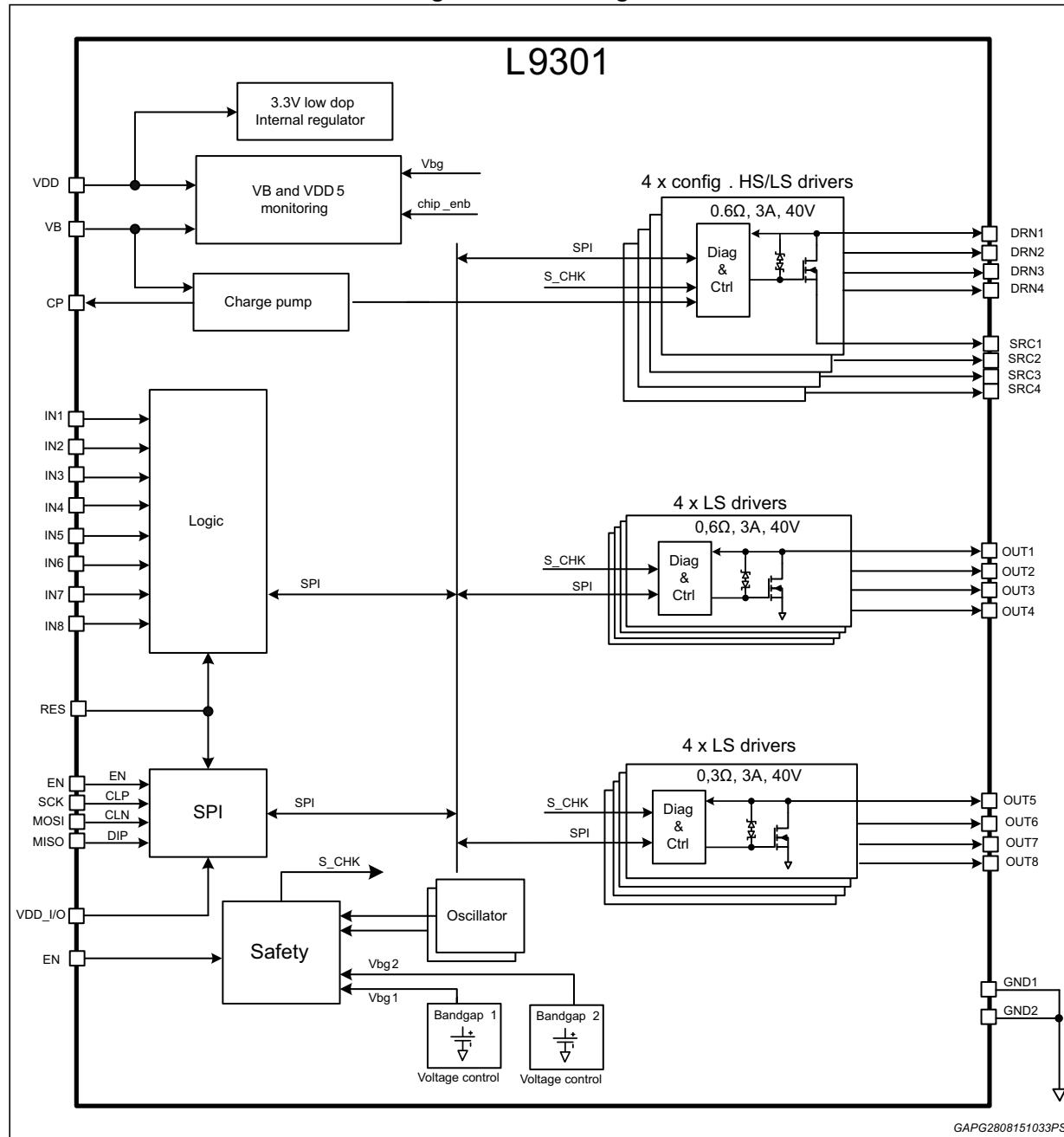
Order code	Package	Packing
L9301-TR	PowerSSO36	Tape & Reel

Contents

1	Block diagram	6
2	Pin description	7
3	Electrical specifications	9
3.1	Absolute maximum ratings	9
3.2	ESD protection	9
3.3	Operating range	10
3.4	Thermal data	10
4	Supply pins	11
4.1	VDD	11
4.2	VB	11
4.3	VDD_IO	12
5	Discrete inputs	13
5.1	Output enable EN	13
5.2	Output enable input IN1 to IN8	13
5.3	Reset input	14
6	Configuration	15
7	Configuration 1: 8 low side drivers	16
7.1	Configuration 2: 4 low-side PWM mode and 4 low-side drivers	17
7.2	Configuration 3: 4 high-side PWM mode and 4 low-side drivers	18
7.3	Configuration 4: 4 configurable drivers and 8 low-side drivers	19
8	Configurable high/low side driver	20
8.1	Electrical characteristics DRN/SRC1-4	20
8.2	Driver diagnostic	22
8.2.1	Thermal protection	22
8.2.2	Overcurrent protection	22
8.2.3	Output status	22

8.2.4	Charge Pump (CP)	22
8.2.5	DLOSS	23
8.2.6	OFF state diagnostic	23
8.2.7	Over current (OC) comparator self-test	25
8.2.8	Electrical characteristics related to diagnosis	25
9	Low side driver	27
9.1	Electrical characteristics OUT1-4	27
9.2	Electrical characteristics OUT5-8	28
9.3	Driver diagnostic	29
9.3.1	Thermal protection	29
9.3.2	Overcurrent protection	29
9.3.3	Output status	29
9.3.4	OFF state diagnostic	30
9.3.5	DLOSS	30
9.3.6	OC comparator self-test	31
9.3.7	Electrical characteristics related to diagnosis	31
10	Combined diagnosis (configuration 1, 2 & 3)	33
11	BIST	34
12	Clock monitor	35
13	SPI	36
13.1	CS, SCK, MOSI	36
13.2	MISO	37
13.3	SPI frame	38
13.4	SPI registers	39
13.5	SPI timings	45
14	Package information	46
14.1	PowerSSO-36 (exposed pad) package information	46
14.2	PowerSSO-36 (exp. pad) marking information	49
15	Revision history	50

List of tables


Table 1.	Device summary	1
Table 2.	Pin description	7
Table 3.	Absolute maximum ratings	9
Table 4.	ESD protection	9
Table 5.	Operating range	10
Table 6.	Thermal data	10
Table 7.	Thermal resistance	10
Table 8.	VDD	11
Table 9.	VB	12
Table 10.	Output enable input IN1 to IN8	13
Table 11.	Electrical characteristic of EN, IN1...8, RES pin	14
Table 12.	Configuration	15
Table 13.	Configurable high/low side drivers 1-4 electrical characteristics	20
Table 14.	Charge pump	23
Table 15.	LS diagnostic	24
Table 16.	HS diagnostic	24
Table 17.	Electrical characteristics related to diagnosis	25
Table 18.	Low-side drivers OUT1-4 electrical characteristics	27
Table 19.	Low-side drivers OUT5-8 electrical characteristics	28
Table 20.	LS diagnostic	30
Table 21.	Electrical characteristics related to diagnosis	31
Table 22.	Configuration 2	33
Table 23.	Configuration 3	33
Table 24.	Clock monitor	35
Table 25.	CS, SCK, MOSI	36
Table 26.	MISO	37
Table 27.	SPI timing characteristics	45
Table 28.	PowerSSO-36 (exposed pad) package mechanical data	47
Table 29.	Document revision history	50

List of figures

Figure 1.	Block diagram	6
Figure 2.	Pin connection diagram	7
Figure 3.	Device assembled on 2s2p PCB with high density vias in contact with a metal plate	10
Figure 4.	Configuration 1: 8 Low side drivers	16
Figure 5.	Configuration 2: 4 low-side PWM mode and 4 low-side drivers	17
Figure 6.	Configuration 3: 4 high-side PWM mode and 4 low-side drivers	18
Figure 7.	Configuration 4: 4 configurable drivers and 8 low-side drivers	19
Figure 8.	Configurable high/low side driver diagram	20
Figure 9.	LS configuration diagnostic	23
Figure 10.	HS configuration diagnostic	24
Figure 11.	Low side driver diagram	27
Figure 12.	LS configuration diagnostic	30
Figure 13.	SPI timing diagram	45
Figure 14.	PowerSSO-36 (exposed pad) package outline	46
Figure 15.	PowerSSO-36 (exp. pad) marking information	49

1 Block diagram

Figure 1. Block diagram

2 Pin description

Figure 2. Pin connection diagram

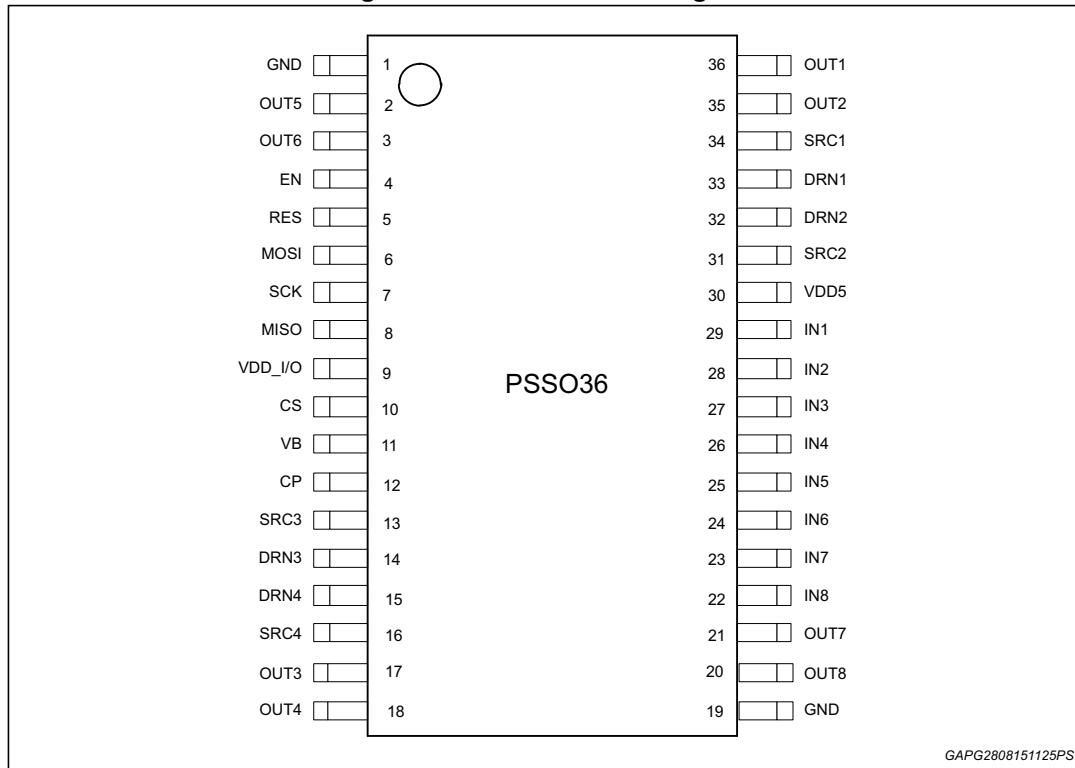


Table 2. Pin description

Pin	Symbol	Function
1	GND	Power ground of OUT1,2,5,6
2	OUT5	Output 5
3	OUT6	Output 6
4	EN	Enable
5	RES	Reset input (active low)
6	MOSI	SPI data in
7	SCK	SPI serial clock input
8	MISO	SPI data out
9	VDD_I/O	Microcontroller logic interface voltage
10	CS	SPI chip select (active low)
11	VB	Battery supply voltage
12	CP	Charge pump
13	SRC3	Source pin of configurable driver #3
14	DRN3	Drain pin of configurable driver #3

Table 2. Pin description (continued)

Pin	Symbol	Function
15	DRN4	Drain pin of configurable driver #4
16	SRC4	Source pin of configurable driver #4
17	OUT3	Output 3
18	OUT4	Output 4
19	GND	Power ground of OUT3,4,7,8
20	OUT8	Output 8
21	OUT7	Output 7
22	IN8	Discrete input used to PWM output driver #8
23	IN7	Discrete input used to PWM output driver #7
24	IN6	Discrete input used to PWM output driver #6
25	IN5	Discrete input used to PWM output driver #5
26	IN4	Discrete input used to PWM output driver #4
27	IN3	Discrete input used to PWM output driver #3
28	IN2	Discrete input used to PWM output driver #2
29	IN1	Discrete input used to PWM output driver #1
30	VDD5	5 Volt supply input
31	SRC2	Source pin of configurable driver #2
32	DRN2	Drain pin of configurable driver #2
33	DRN1	Drain pin of configurable driver #1
34	SRC1	Source pin of configurable driver #1
35	OUT2	Output 2
36	OUT1	Output 1
EP	GND	Exposed pad: connected to GND

3 Electrical specifications

3.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value [DC voltage]	Unit
VB	Supply voltage	-0.3 to 35	V
VDD, VDD_I/O	Stabilized supply voltage	-0.3 to 18 ⁽¹⁾	V
V _{CS} , V _{SCK} , V _{MOSI} , V _{MISO} , V _{EN} , V _{IN1-8} , V _{RES}	Logic input/output voltage range	-0.3 to 18 ⁽¹⁾	V
OUT1-8	-	-1 to VCL	V
SRC1-4	-	-1 to VB	V
DRN1-4	-	-1 to VCL	V
CP	-	-0.3 to (VB+CP_DELTA)	V
GND	-	-0.3 to +0.3	V

1. Short to 18 V for 100 h max.

Note: A suitable device to clamp the voltage during 'load dump' event to a value ≤ 35 V must be present at application level.

3.2 ESD protection

Table 4. ESD protection

Parameter	Value	Unit
ESD according to Human Body Model (HBM), Q100-002 for pins ⁽¹⁾ ; (100 pF/1.5 k Ω)	± 4000	V
ESD according to Human Body Model (HBM), Q100-002 for all other pins; (100 pF/1.5 k Ω)	± 2000	V
ESD according to Charged Device Model (CDM), Q100-011 Corner pins	± 750	V
ESD according to Charged Device Model (CDM), Q100-011 Non-corner pins	± 500	V

1. VB, DRN1-4, SRC1-4, OUT1-8.

3.3 Operating range

Table 5. Operating range

Symbol	Parameter	Min.	Max.	Unit
VB	Supply voltage	VB_UV	18	V
VDD	Stabilized supply voltage	VDD_UV	VDD_OV	V
VDD_IO	Logic output supply voltage	3.0	5.5	V

3.4 Thermal data

Table 6. Thermal data

Symbol	Parameter	Min.	Typ.	Max.	Unit
T _{amb} ⁽¹⁾	Operating ambient temperature	-40	-	125	°C
T _{stg}	Storage temperature	-40	-	150	°C
T _j	Junction temperature	-40	-	175	°C
T _{sd}	Thermal shutdown temperature	180	-	195	°C
T _{sd-hys}	Thermal shutdown temperature hysteresis	-	10	-	°C

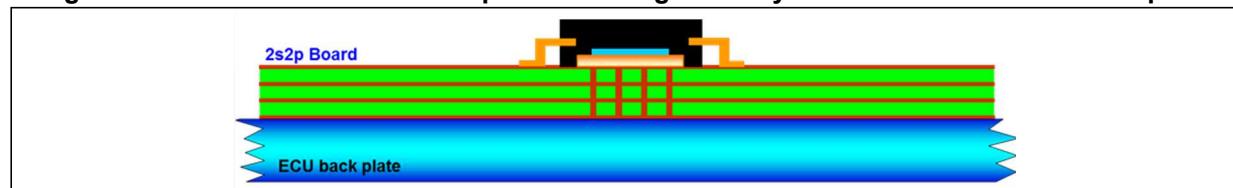

1. For information only, in any case T_j limits must not exceed.

Table 7. Thermal resistance

Symbol	Parameter	Working conditions	Value	Unit
R _{th j-amb}	Junction to ambient	2s2p (4L) board; Natural convection ⁽¹⁾	27	°C/W
		2s2p (4L) board on ECU metal plate ⁽²⁾	8	°C/W
R _{th j-bottom case}	Junction to bottom case	Bottom cold plate ⁽³⁾	1	°C/W
R _{th j-top case}	Junction to top case	Top cold plate ⁽⁴⁾	21	°C/W
Psi _{j-top case}	Psi Junction to top case	2s2p (4L) board; Natural convection ⁽¹⁾	2	°C/W

1. Jedec STD. JESD51.
2. Package assembled on 2s2p (4L) board. The board bottom side is in contact with a metal plate as per typical automotive application (ECU system). See [Figure 3](#).
3. Thermal resistance between the die and the bottom case surface in ideal contact and measured by cold plate as per Jedec best practice guidelines (JESD51).
4. Thermal resistance between the die and the top case surface in ideal contact and measured by cold plate as per Jedec best practice guidelines (JESD51).

Figure 3. Device assembled on 2s2p PCB with high density vias in contact with a metal plate

4 Supply pins

4.1 VDD

An external $+5.0 \pm 0.25$ VDC supply provided from an external source is the primary power source to the L9301. This supply is used as the power source for all of its internal logic circuitry and other miscellaneous functions.

The VDD is monitored for under and over voltage and a dedicated SPI flag of each event is set to report those conditions. The device behavior in case of VDD fault detection can be defined using the proper configuration bit that allows to choose if the OUT must be disabled or not.

Table 8. VDD

Pin	Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
VDD	VDD_UV	VDD undervoltage detection threshold	VDD decreasing	4.5	-	4.7	V
	VDD_uv_filt	VDD undervoltage filter time for output disable	Tested by scan	90	-	145	μs
	VDD_OV	VDD overvoltage detection threshold	VDD increasing	5.25	-	5.5	V
	VDD_ov_filt	VDD overvoltage filter time for output disable	Tested by scan	90	-	145	μs

4.2 VB

This input is the supply for the on board charge pump and it shall be connected to protected battery line. In case of high-side configuration, to get the specified R_{on} value this pin must be connected to the same VB where the loads are connected. If it is present an additional voltage drop between the two VB, the $R_{ds(on)}$ of that given output will be higher than the specified maximum.

The VB is monitored for under and over voltage and a dedicated SPI flag of each event is set to report those conditions. The device behavior in case of VB fault detection can be defined using the proper configuration bit that allows to choose if the OUT must be disabled or not.

Table 9. VB

Pin	Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
VB	VB_UV	VB undervoltage detection threshold	VB decreasing	3.5	-	4	V
	VB_UV_on	VB undervoltage detection threshold	VB increasing	4	-	4.5	V
	VB_UV_hys	VB undervoltage hysteresis	-	0.1	-	1	V
	VB_UV_filt	VB undervoltage filtering time	Tested by scan	90	-	145	us
	VB_OV	VB overvoltage detection threshold	VB increasing	19	-	22	V
	VB_OV_on	VB overvoltage detection threshold	VB decreasing	19	-	21	V
	VB_UV_hys	VB overvoltage hysteresis	-	0.1	-	1	V
	VB_OV_filt	VB overvoltage filtering time	Tested by scan	90	-	145	μs

4.3 VDD_IO

This pin is used to supply the discrete MISO output stage of L9301 and must be connected to the same voltage used to supply the peripherals of the processor interfaced to L9301.

5 Discrete inputs

5.1 Output enable EN

The EN pin is the general output enable which allows the μ C to immediately switch off the output in case of need. Output driving is allowed only if this pin is driven to high level. The device configuration can be changed only with EN pin driven to low level.

An internal pull down is present on the pin.

5.2 Output enable input IN1 to IN8

These inputs allow the outputs, depending on the configuration selected, to be enabled without the use of the SPI. The SPI command and the IN1-8 input are logically OR'd together.

A logic '1' on this input will enable the correspondent output no matter what the status of the SPI command register is. A logic '0' on this input will disable this output if the SPI command register is not commanding this output on. These pins can be left 'open' if the internal power stages are controlled only via the SPI. This input has a nominal $100\text{ k}\Omega$ pull down resistor to GND, which will pull this pin to ground if an open circuit condition occurs. This input is ideally suited for loads that are pulse width modulated (PWM'd). This allows PWM control without the use of the SPI inputs.

Table 10. Output enable input IN1 to IN8

EN	RESET	INx	OUTx/DRNx/SRCx
X	0	X	OFF
0	X	X	OFF
1	1	0	OFF
1	1	1	ON

5.3 Reset input

When this input goes low it resets all the internal registers and switches off all the output stages. This input has a nominal 100 kΩ resistor connected from this pin to the internal 3.3 V regulator, which will pull this pin to 3.3 V if an open circuit condition occurs.

Table 11. Electrical characteristic of EN, IN1...8, RES pin

Pin	Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
IN1...8, EN, RES	V_IH	Logic input high voltage	-	1.75		VDD+0.3	V
	V_IL	Logic input low voltage	-	-0.3		0.75	V
	V_Ihys	Logic input hysteresis	-	100		1000	mV
IN1...8, EN	Ri_pd	Pull down resistor	Tested at 1.5 V	50	100	150	kΩ
RES	Ri_pu	Pull up resistor	Tested at 1.5 V, $R = (3.3-1.5)/I_{measure}$	50	100	150	kΩ

6 Configuration

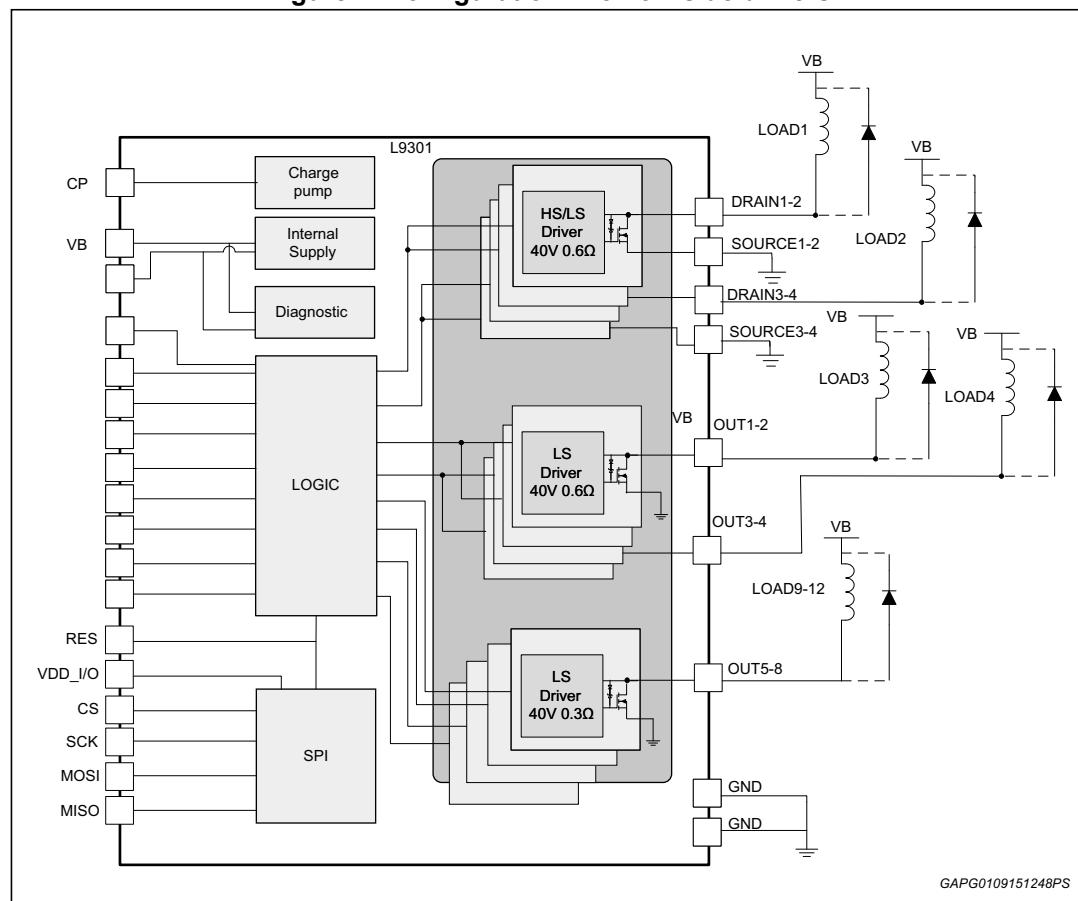
The selected configuration can be configured by SPI, there are 2 bits dedicated to configuration selection:

Table 12. Configuration

Bit1	Bit0	Configuration	Input → Output	Description
0	0	1	IN1-4 → DRN1-4, OUT1-4 IN5-8 → OUT5-8	8 low side channels with $R_{dson} = 0.3 \Omega$
0	1	2	IN1-4 → OUT1-4 IN5-8 → OUT5-8	4 low side channels with $R_{dson} = 0.6 \Omega$ 4 low side channels with $R_{dson} = 0.3 \Omega$
1	0	3	IN1-4 → SRC1-4, IN5-8 → OUT5-8	4 high side channels with $R_{dson} = 0.6 \Omega$ 4 low side channels with $R_{dson} = 0.3 \Omega$
1	1	4	IN1-4 → OUT1-4, IN5-8 → OUT5-8, SPI → DRN/SRC1-4	4 low side channels with $R_{dson} = 0.6 \Omega$ 4 low side channels with $R_{dson} = 0.3 \Omega$ 4 low/high side ch. with $R_{dson} = 0.6 \Omega$

The configuration is enabled only when EN pin is logic 0.

In configuration 4, the output DRN/SRC1-4 can be controlled by SPI only; for those outputs the selection between high side and low side configuration can be done through the dedicated bit (bit8 of Device general configuration register).


7 Configuration 1: 8 low side drivers

In this configuration there are 8 low side drivers available that can be driven by SPI or by the parallel input: IN1-4 control both DRAIN1-4 and OUT1-4 that must be turned on and off simultaneously while IN5-8 control OUT5-8.

The corresponding relations are:

- IN1: OUT1 & OUT2;
- IN2: OUT3 & OUT4;
- IN3: DRN1 & DRN2;
- IN4: DRN3 & DRN4

Figure 4. Configuration 1: 8 Low side drivers

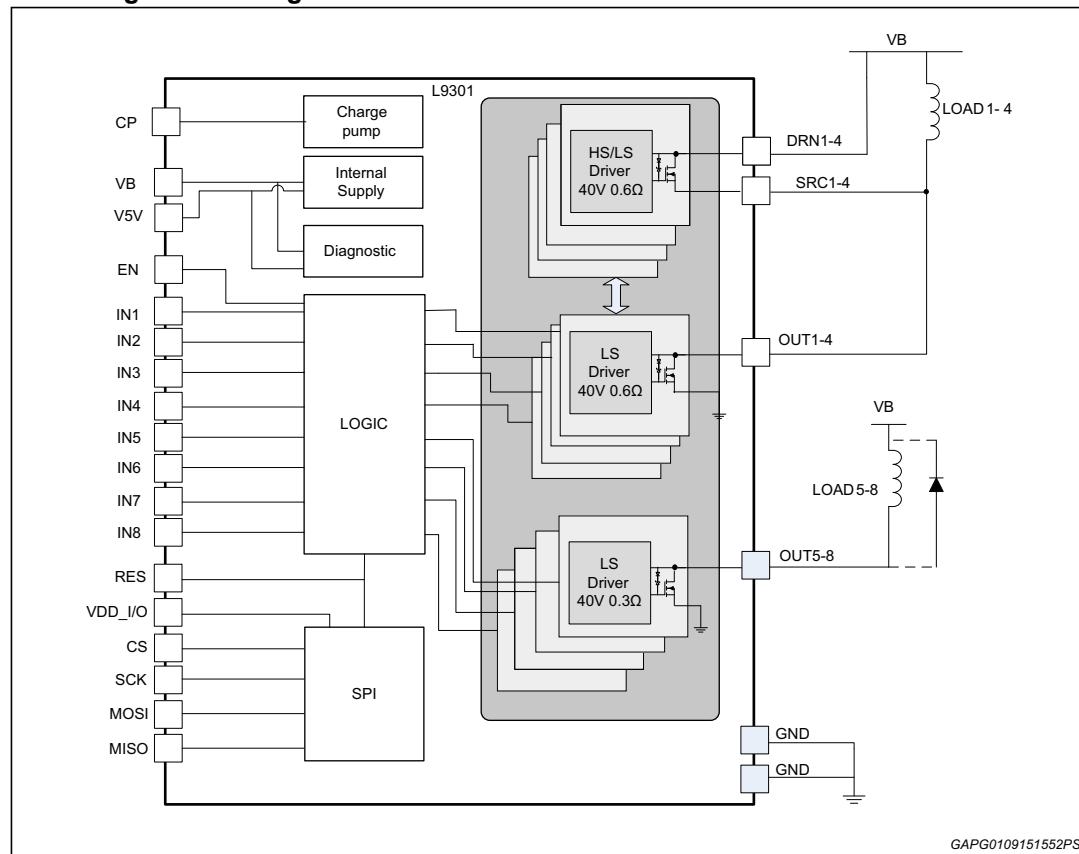
7.1 Configuration 2: 4 low-side PWM mode and 4 low-side drivers

In this configuration there are 4 low side drivers with integrated free-wheeling diodes and 4 low side drivers available. All the channels can be driven by SPI or by the parallel input. To enable the OUT1-4 driving, the PWM enable SPI bit for OUT1-4 and SRC1-4 must be set.

The IN1-4 control the low side power OUT1-4 used to drive the LOAD1-4 and the device should assure that when the low-side is switched off, the high-side, acting as a free-wheeling diode, must be turned on. To avoid cross conduction the LS VGS voltage is monitored.

When OUT1-4 are commanded ON either by INx or SPI, the L9301 switches off the HS first, then with 2 μ s delay after detecting HS VGS low, it switches on LS.

When OUT1-4 are commanded OFF either by INx or SPI, the L9301 switches off the LS first, then with 2 μ s delay after detecting LS VGS low, it switches on the HS.


IN5-8 control OUT5-8

The selected configuration must be configured by SPI.

The corresponding relations are:

- IN1: OUT1 \leftrightarrow SRC2;
- IN2: OUT2 \leftrightarrow SRC1;
- IN3: OUT3 \leftrightarrow SRC4;
- IN4: OUT4 \leftrightarrow SRC3

Figure 5. Configuration 2: 4 low-side PWM mode and 4 low-side drivers

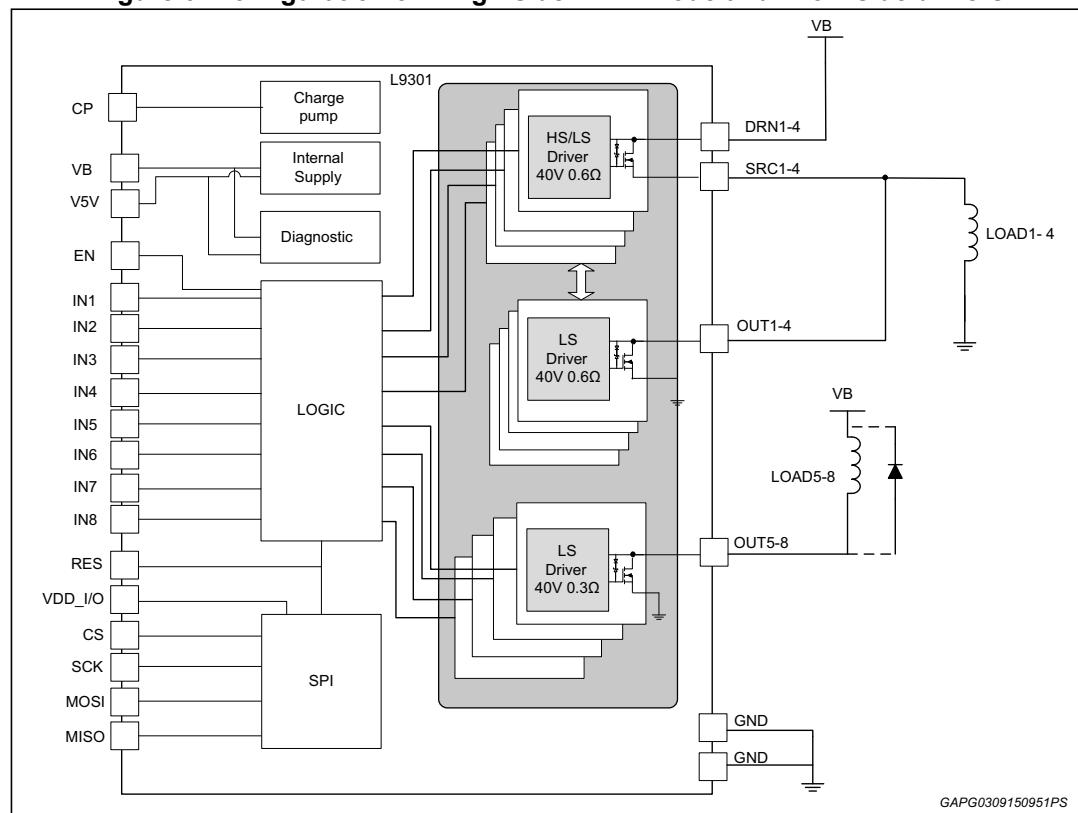
7.2 Configuration 3: 4 high-side PWM mode and 4 low-side drivers

In this configuration there are 4 high side drivers with integrated free-wheeling diodes and 4 low side drivers available. All the channels can be driven by SPI or by the parallel input. To enable the SRC1-4 driving, the PWM enable SPI bit for SRC1-4 and OUT1-4 must be set.

The IN1-4 control the high side power SRC1-4 used to drive the LOAD1-4 and the device should assure that when the high-side is switched off, the low-side, acting as a free-wheeling diode, must be turned on. To avoid cross conduction the HS VGS voltage is monitored.

When SRC1-4 is commanded ON either by INx or SPI, the L9301 switches off the HS first, then with 2 μ s delay after detecting HS VGS low, it switches on LS.

When SRC1-4 is commanded OFF either by INx or SPI, the L9301 switches off the HS first, then with 2 μ s delay after detecting HS VGS low, it switches on the LS.

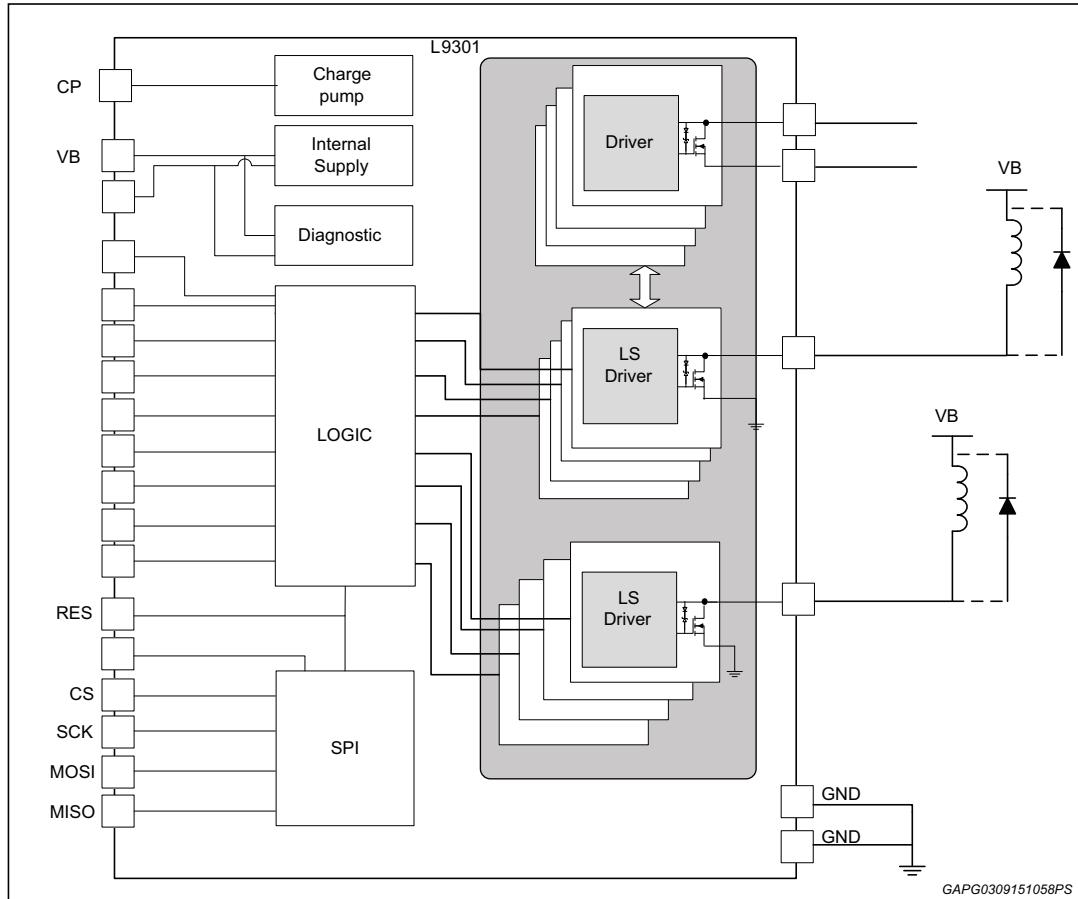

IN5-8 control OUT5-8

The selected configuration must be configured by SPI.

Note: The corresponding relations are:

- IN1: SRC1 \leftrightarrow OUT2;
- IN2: SRC2 \leftrightarrow OUT1;
- IN3: SRC3 \leftrightarrow OUT4;
- IN4: SRC4 \leftrightarrow OUT3

Figure 6. Configuration 3: 4 high-side PWM mode and 4 low-side drivers

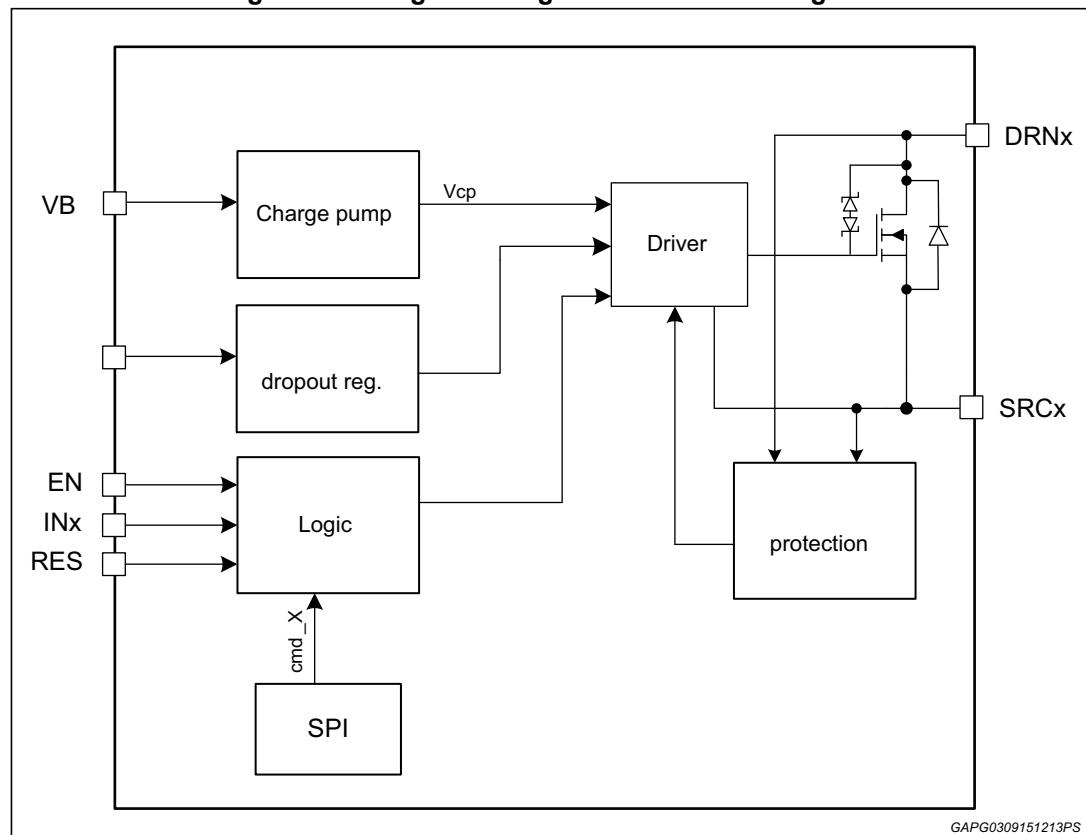

7.3 Configuration 4: 4 configurable drivers and 8 low-side drivers

In this configuration there are 4 HS/LS drivers and 8 low side drivers available. All the LS can be driven by SPI or by the parallel input.

The IN1-8 control OUT1-8 while the configurable driver can only be controlled by SPI.

- The four configurable drivers (DRN1-4, SRC1-4) can be configured separately as LS or HS using the dedicated SPI bit.

Figure 7. Configuration 4: 4 configurable drivers and 8 low-side drivers



8 Configurable high/low side driver

The channels 1 to 4 can be configured as high or low side. In the low side configuration an internal clamp is present.

In high side configuration, the DRNx are connected to VB pin in PCB. To guarantee the OC (over current) function, the DRNx voltage is within the range of (VB-1 V, VB+1 V).

Figure 8. Configurable high/low side driver diagram

8.1 Electrical characteristics DRN/SRC1-4

$5 \text{ V} \leq \text{VB} < 18 \text{ V}$; $-40^\circ\text{C} \leq T_j \leq 175^\circ\text{C}$ unless otherwise specified.

Table 13. Configurable high/low side drivers 1-4 electrical characteristics

Pin	Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
DRN1-4 SRC1-4	$R_{DS\text{-}on_HLS}$	-	HS/LS configuration $\text{VB} = 13.5 \text{ V}$; $I_{\text{load}} = 1 \text{ A}$	-	-	0.6	Ω

Table 13. Configurable high/low side drivers 1-4 electrical characteristics (continued)

Pin	Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
DRN1-4 SRC1-4	I _{OUT_LK_HLS}	Output leakage current	HS configuration DRNx = 13.5 V; SRCx = 0 V	-	-	10	µA
			LS configuration DRNx = 13.5 V; SRCx = 0 V	-	-	10	µA
	V _{S/R_HLS}	Voltage S/R on/off	HS/LS configuration VB 13.5 V Load: 8 Ω, 10 nF – From 80% to 30% of DRNx(SRCx)	2	4	6	V/µs
			HS/LS configuration VB 13.5 V Load: 8 Ω, 10 nF – From 80% to 30% of DRNx(SRCx)	5	10	15	V/µs
	T _{turn-on_HLS}	Turn-on delay time	HS configuration VB 13.5 V From command to 10% SRCx Load: 8 Ω, 10 nF	-	-	3	µs
			LS configuration VB 13.5 V From command to 90% DRNx Load: 8 Ω, 10 nF	-	-	3	µs
	T _{turn-off_HLS}	Turn-off delay time	HS configuration VB 13.5 V From command to 90% SRCx Load: 8 Ω, 10 nF	-	-	3	µs
			LS configuration VB 13.5 V From command to 10% DRNx Load: 8 Ω, 10 nF	-	-	3	µs
	V _{CL_LS}	Output clamping voltage	LS configuration I _{load} = 0.6 A T = 130 °C	34	37.5	41	V
			LS configuration I _{load} = 0.6 A, T = -40 °C and 25 °C	35	37.5	41	
	E _{clampSP_LS}	Clamp repetitive pulse energy ATE test	LS configuration I _{load} = 0.7 A, T _j = 150 °C, 100 k pulses	-	-	5	mJ
	E _{clampSP_LS}	Clamp single pulse energy ATE test	LS configuration I _{load} = 0.7 A, T _j = 150 °C	-	-	10	

8.2 Driver diagnostic

8.2.1 Thermal protection

Each solenoid channel has a dedicated temperature sensor that continuously monitors the temperature of the PowerMOS.

In case the shutdown temperature T_{sd} is reached the related channel is turned off and the dedicated diagnostic bits are set. t_{sdl_x} is the bit that latches the thermal shut down and it is cleared after sending dedicated SPI to clear the bit, t_{sd_x} is the other thermal shut down bit and once it is set by thermal shut down condition it is cleared only when the T_j decreases below the thermal shut down threshold (hysteresis). If the microcontroller, when the device is still in temperature shut down condition ($t_{sd_x} = 1$), clears the t_{sdl_x} and tries to turn on the output, the actuation is not performed and the t_{sdl_x} will be set again. To avoid these multiple interrupts the microcontroller can poll the t_{sd_x} bit and enable the next actuation only when the bit is zero.

To re-switch on the channel after thermal shut down, the SPI needed to switch off the channel is required.

8.2.2 Overcurrent protection

An overcurrent protection is present for each driver DRN/SRC1...4. The overcurrent threshold is selectable through oc_thres_x (where x indicates the channel). In case of overcurrent the output driver is turned off, the related SPI command bit is set to 0 and a dedicated diagnostic bit is set oc_x where x indicates the channel where the fault occurred.

If bit $oc_restart = 0$, to restart the channel the microcontroller has to clear the fault bit (reading the fault register), and to write to 1 the SPI command bit or to provide a rising edge on the parallel input command.

If bit $oc_restart = 1$, the restart function is activated. The slew rate of the channel in fault condition is automatically set to the higher value to limit dissipation issue then to restart the channel the microcontroller has to write to 1 the SPI command bit or to provide a rising edge on the parallel input command. The diagnostic bit oc_x can be cleared only by writing it to 0 in the corresponding driver status register by SPI however the channel can be restarted as described above.

8.2.3 Output status

During the ON phase, the output voltage is compared with the VTopen threshold voltage in order to verify if the output status is aligned with the ON command:

- in case of low side usage if the DRNx voltage is above the VTopen threshold a dedicated bit is set to indicate the anomaly
- in case of high side usage if the SRCx voltage is below the VTopen threshold a dedicated bit is set to indicate the anomaly

8.2.4 Charge Pump (CP)

The charge pump is enabled when the selected configuration includes high side drivers (like configuration 2, 3, 4). In configuration 1 the charge pump is internally shorted to VB.

On the CP pin it's required to connect a 100 nF capacitor toward the VB line.

The charge pump is ON if $VB > UV$ threshold & $VDD > UV$ threshold

The charge pump is OFF if $VB < UV$ threshold or $VDD < UV$ threshold. The CP voltage is equal to $VB - Vbe$.

When the CP is ON, the low CP diagnosis is enabled. When any HS is switched on but CP voltage is not high enough to switch on HS, low CP fault is detected. A SPI bit allows configuring the actions to be taken in case of low CP fault.

Table 14. Charge pump

Pin	Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
CP	CP_DELTA	Delta voltage CP-VB	VB>5V	3	-	6	V

8.2.5 DLOSS

When the L9301 is configured with low side and external diodes are used for freewheeling, there is the possibility through a dedicated SPI bit to enable the 'diode loss' diagnosis that is used to detect if the external diode is no more connected checking if during the OFF phase the internal clamp is activated. Another SPI bit allows configuring the actions to be taken in case of DLOSS fault.

When the L9301 is configured as high side and internal/external diodes are used for freewheeling, there is the possibility through a dedicated SPI bit to enable the 'diode loss' diagnosis that is used to detect if the diode is no more connected checking if during the OFF phase the HS is forced to switch on. Another SPI bit allows configuring the actions to be taken in case of DLOSS fault.

In addition, diode loss on LS (including configurable channels configured as LS) is only detected when VBOV is not present.

8.2.6 OFF state diagnostic

The device provides the off-state diagnostic for each channel.

In low-side configuration the short to ground and open load faults can be detected. The fault is reported in a SPI register.

Figure 9. LS configuration diagnostic

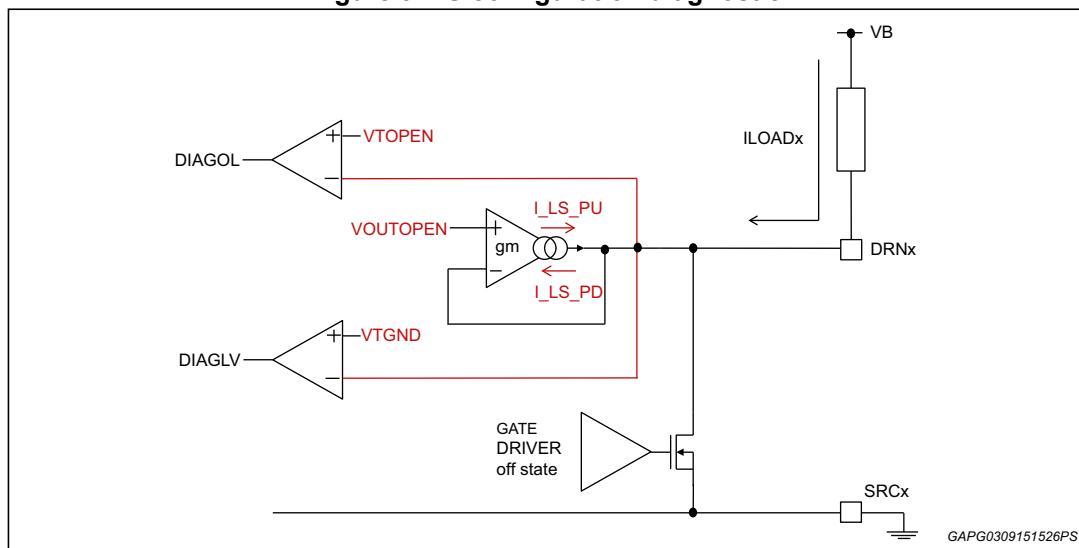


Table 15. LS diagnostic

DIAGOL	DIAGLV	FAULT DETECTION
0	0	no fault
0	1	not possible
1	0	open load
1	1	short to ground

In high-side configuration the short to battery and open load faults can be detected. The fault is reported in a SPI register.

Figure 10. HS configuration diagnostic

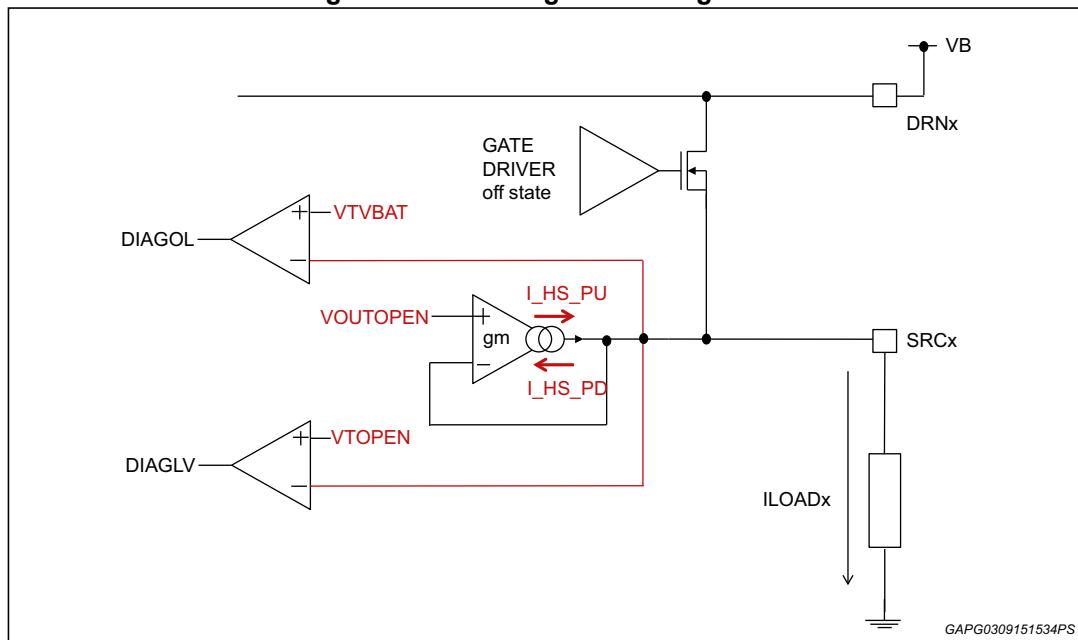


Table 16. HS diagnostic

DIAGOL	DIAGLV	FAULT DETECTION
0	0	short to ground
0	1	not possible
1	0	open load
1	1	no fault

The diagnostic blanking time is configurable through the dedicated diagoff_blank_sel bit.

The OFF diagnosis is triggered at driver OFF CMD and will not be refreshed after clearing the flags. To recover the OFF diagnosis in OFF stage, send SPI to disable OFF diagnosis and then enable it.

8.2.7 Over current (OC) comparator self-test

L9301 provides driver OC (over current) comparator self-test function. During OFF phase, the OC comparator still works and the expected result is '1' due to high drain-source voltage. If L9301 detects OC '0' during OFF phase, the SPI bit `oc_comparator_f` is set to '1'.

For DRN1-4, when they are configured as LS, a Short To Ground (STG) fault will not trigger OC '1', so L9301 will report both STG and OC comparator self-test fail, when they are configured as HS, a short-to-battery (STB) fault will not trigger OC '1', so L9301 will report both STB and OC comparator self-test fail.

8.2.8 Electrical characteristics related to diagnosis

Table 17. Electrical characteristics related to diagnosis

Pin	Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
DRN1-4 SRC1-4	$T_{Over_temperature_blanking}$	Over temperature blanking time	Tested by scan	1	-	1.5	μs
	$T_{Over_temperature_filter}$	Over temperature filter time	Tested by scan	2	-	5	μs
	$T_{Charge_pump_low}$	Charge pump low filter time	Tested by scan	3	-	5	μs
	$T_{Charge_pump_low_blanking}$	Charge pump low blanking time	Tested by scan	25	-	40	μs
	$T_{diode_loss_filter_time}$	Diode loss filter time	Tested by scan	3	-	5	μs
	$R_{open_load_HLS}$	Min. resistor value open load detection	Not tested	10	-		$k\Omega$
	I_{OC_HLS}	Over current threshold 1	-	1	2	3	A
	I_{OC_HLS}	Over current threshold 2	-	3	4	5	A
	$T_{FLT_OC_HLS}$	Over current filtering time	Tested by scan	3	-	5	μs
	$T_{FLT_diagoff_HLS}$	Filtering open load and short to GND diag. off	Tested by scan	55	-	80	μs
	$T_{d_blank0_HLS}$	Diagnosis blanking time after switch-off	Tested by scan	900	-	1300	μs
	$T_{d_blank1_HLS}$	Diagnosis blanking time after switch-off	Tested by scan	450	-	650	μs
V_{TOPEN_HS}	Open load threshold voltage	HS configuration		1.9	2.1	2.3	V
		LS configuration		2.7	2.9	3.1	V