

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Octal squib driver ASIC for safety application

Features

- 8 deployment drivers with SPI selectable firing current and times
- Capability to deploy the squib with 1.2 A (min)/2 ms, 1.75 A (min)/1.0 ms and 1.75 A (min)/0.65 ms between VRES of 7 V to 37 V
- Capability to deploy the squib with 1.5 A (min)/2 ms between VRES of 7 V to 25 V
- Firing capability to deploy all channels simultaneously
- Independently controlled high-side and lowside MOS for diagnosis
- Analog output available for resistance measurement
- Squib short to ground, short to battery and MOS diagnostic available on SPI register
- Capability to deploy the squib the low side MOS is shorted to ground
- 4 fire enable inputs
- 5.5 MHz SPI interface
- Low voltage internal reset
- 2 kV ESD capability on all pins
- Package: LQFP64

- Technology: ST proprietary BCD5 (0.65 µm)
- RoHS compliant

Description

The L9659 is intended to deploy up to 8 squibs. Squib drivers are sized to deploy 1.2 A minimum for 2 ms, 1.75 A minimum for 1 ms and 1.75 A minimum for 0.65 ms during load dump along with 1.5 A minimum for 2 ms for VRES voltages less than 25 V.

Full diagnostic capabilities of the squib interface are provided.

Table 1. Device summary

Order code	Amb. temp range, °C	Package	Packing
L9659	-40 to +95	LQFP64	Tray
L9659TR	-40 to +95	LQFP64	Tape and reel

Contents L9659

Contents

1	Block	diagrai	m and pin description	. 5
	1.1	Block di	agram	. 5
	1.2	Pin desc	cription	. 5
	1.3	Applicat	ion schematic	. 8
2	Electr	ical spe	ecifications	. 9
	2.1	Absolute	e maximum ratings	. 9
	2.2	Absolute	e maximum degraded operating ratings	10
	2.3	Operatir	ng ratings	10
	2.4	Electrica	al characteristics	11
		2.4.1	General	. 11
		2.4.2	Electrical characteristics - Squib deployment drivers and diagnostics	. 12
		2.4.3	SPI timing	. 17
3	Funct	ional de	escription	19
	3.1	Overvie	w	19
	3.2	General	functions	19
		3.2.1	Power on reset (POR)	19
		3.2.2	RESETB	19
		3.2.3	Reference resistor	20
		3.2.4	Loss of ground	
		3.2.5	VRESx capacitance	
		3.2.6	Supply voltages	
		3.2.7	Ground connections	
	3.3	•	eripheral interface (SPI)	
		3.3.1	SPI pin descriptions	21
	3.4	•	rivers	22
		3.4.1	Firing	
		3.4.2	Firing current measurement	
		3.4.3	Fire enable (FEN) function description	
		3.4.4	Squib diagnostics	
		3.4.5	SPI register definition for squib functions	31
4	Packa	ge info	rmation	49
5	Revisi	ion hist	ory	50

L9659 List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	5
Table 3.	Absolute maximum ratings	9
Table 4.	Absolute maximum degraded operating ratings	10
Table 5.	Operating ratings	
Table 6.	General - DC electrical characteristics	11
Table 7.	Squib deployment drivers and diagnostics - DC electrical characteristics	12
Table 8.	SPI timing - DC electrical characteristics	17
Table 9.	Features that are accessed/controlled for the SPI	21
Table 10.	SPI MOSI/MISO response	
Table 11.	How faults shall be interpreted	28
Table 12.	Diagnostic Mode HSS selection	30
Table 13.	Diagnostic mode 3 VRESx selection	30
Table 14.	MISO responses to various events	
Table 15.	Command description summary	32
Table 16.	Configuration mode 1	33
Table 17.	Configuration mode 2	
Table 18.	Deployment mode 1 bit definition	
Table 19.	Deployment mode 2 bit definition	36
Table 20.	Diagnostic selection	
Table 21.	Diagnostic mode LS FET selection	
Table 22.	Diagnostic mode HS FET selection	
Table 23.	Diagnostic mode HSS selection	41
Table 24.	Diagnostic mode VRESx selection	41
Table 25.	Channel selection	
Table 26.	MOSI diagnostic mode 1 bit definition	
Table 27.	DEPLOY_STATUSx flag and the DEPLOY_SUCCESSx flag conditions	
Table 28.	MOSI monitor mode 2 Bit definition	
Table 29.	Current measurement channel selections	
Table 30.	MOSI monitor mode 3 bit definition	
Table 31.	MOSI monitor mode 4 bit definition	48
Table 32.	Document revision history	50

List of figures L9659

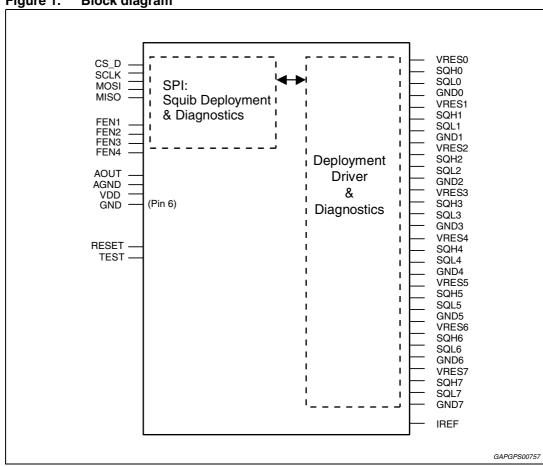

List of figures

Figure 1.	Block diagram	. 5
Figure 2.	Application schematic	. 8
Figure 3.	MOS settling time and turn-on time 2	16
Figure 4.	SPI timing diagram	18
Figure 5.	MISO loading for disable time measurement	18
Figure 6.	POR timing	19
Figure 7.	Deployment drivers diagram	23
Figure 8.	Driver activation timing diagram	24
Figure 9.	Squib diagnostics block diagram	
Figure 10		49

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

1.2 Pin description

Table 2. Pin description

Pin #	Pin name	Description	I/O type	Reset state
1	MISO	SPI data out	Output	Hi-Z
2	NC	No connect	-	-
3	FEN1	Fire enable for channels 0 and 1	Input	Pulldown
4	FEN2	Fire enable for channels 2 and 3	Input	Pulldown
5	RESETB	Reset pin	Input	Pullup
6	GND	Ground (analog & digital)	-	-
7	VDD	VDD supply voltage	Input	-

Table 2. Pin description (continued)

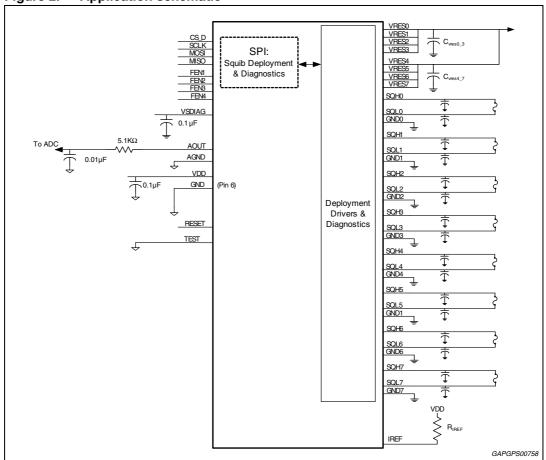

Pin #	Pin name	Description	I/O type	Reset state
8	FEN3	Fire enable for channels 4 and 5	Input	Pulldown
9	FEN4	Fire enable for channels 6 and 7	Input	Pulldown
10	NC	No connect	-	-
11	NC	No connect	-	-
12	CS_D	SPI chip select for deployment driver	Input	Pullup
13	MOSI	SPI data in	Input	Hi-Z
14	NC	No connect	-	-
15	NC	No connect	-	-
16	SCLK	SPI clock	Input	Hi-Z
17	GND4	Power ground for loop channel 4	-	-
18	SQL4	Low side driver output for channel 4	Output	Pulldown
19	SQH4	High side driver output for channel 4	Output	Hi-Z
20	VRES4	Reserve voltage for loop channel 4	Input	-
21	VRES5	Reserve voltage for loop channel 5	Input	-
22	SQH5	High side driver output for channel 5	Output	Hi-Z
23	SQL5	Low side driver output for channel 5	Output	Pulldown
24	GND5	Power ground for loop channel 5	-	-
25	GND6	Power ground for loop channel 6	-	-
26	SQL6	Low side driver output for channel 6	Output	Pulldown
27	SQH6	High side driver output for channel 6	Output	Hi-Z
28	VRES6	Reserve voltage for loop channel 6	Input	-
29	VRES7	Reserve voltage for loop channel 7	Input	-
30	SQH7	High side driver output for channel 7	Output	Hi-Z
31	SQL7	Low side driver output for channel 7	Output	Pulldown
32	GND7	Power ground for loop channel 7	-	-
33	TEST	Test pin	Input	Pulldown
34	VSDIAG	Supply for deployment driver diagnostics	Input	-
35	NC	No connect	-	-
36	Reserved	Factory testmode output	-	-
37	Reserved	Factory testmode output	-	-
38	NC	No connect	-	-
39	NC	No connect	-	-
40	NC	No connect	-	-
41	NC	No connect	-	-
42	NC	No connect	-	-

Table 2. Pin description (continued)

Pin #	Pin name	Description	I/O type	Reset state
43	NC	No connect	-	-
44	NC	No connect	-	-
45	NC	No connect	-	-
46	IREF	External current reference resistor	Output	-
47	AGND	Ground reference for AOUT	-	-
48	AOUT	Analog output for loop diagnostics	Output	Hi-Z
49	GND3	Power ground for loop channel 3	-	-
50	SQL3	Low side driver output for channel 3	Output	Pulldown
51	SQH3	High side driver output for channel 3	Output	Hi-Z
52	VRES3	Reserve voltage for loop channel 3	Input	-
53	VRES2	Reserve voltage for loop channel 2	Input	-
54	SQH2	High side driver output for channel 2	Output	Hi-Z
55	SQL2	Low side driver output for channel 2	Output	Pulldown
56	GND2	Power ground for loop channel 2	-	-
57	GND1	Power ground for loop channel 1	-	-
58	SQL1	Low side driver output for channel 1	Output	Pulldown
59	SQH1	High side driver output for channel 1	Output	Hi-Z
60	VRES1	Reserve voltage for loop channel 1	Input	-
61	VRES0	Reserve voltage for loop channel 0	Input	-
62	SQH0	High side driver output for channel 0	Output	Hi-Z
63	SQL0	Low side driver output for channel 0	Output	Pulldown
64	GND0	Power ground for loop channel 0	-	-

1.3 Application schematic

Figure 2. Application schematic

2 Electrical specifications

2.1 Absolute maximum ratings

The following maximum ratings are continuous absolute ratings; exceeding any one of these values may cause permanent damage to the integrated circuit.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DD} ⁽¹⁾	Supply voltage	- 0.3 to 5.5	V
V _{SDIAG}	Supply voltage for squib diagnostics	- 0.3 to 40	V
VRESx	VRES voltage (VRES0, VRES1, VRES2, VRES3, VRES4, VRES5, VRES6, VRES7)	- 0.3 to 40	V
SQHx	Squib high side drivers (SQH0, SQH1, SQH2, SQH3, SQH4, SQH5, SQH6, SQH7)	- 0.6 to 40	V
SQLx	Squib low side drivers (SQL0, SQL1, SQL2, SQL3, SQL4, SQL5, SQL6, SQL7)	- 0.3 to 40	V
TEST	Test pin	-0.3 to 40	V
V _I	Discrete input voltage (RESETB, CS_D, SCLK, MOSI, FEN1, FEN2, FEN3, FEN4, IREF)	- 0.3 to 5.5	V
V _O	Discrete output voltage (MISO, AOUT)	- 0.3 to 5.5	V
AGND	Analog output reference	-0.3 to 5.5	V
GNDx	Ground (GND0, GND1, GND2, GND3, GND4, GND5, GND6, GND7)	-0.3 to 5.5	V
T _j ⁽²⁾	Maximum steady-state junction temperature	150	°C
T _{amb}	Ambient temperature	-40 to 95	°C
T _{stg}	Storage temperature	-65 to 150	°C
R _{th j amb}	Thermal resistance junction to ambient (on FR-4 board)	46	°C/W
	eximum ratings are up to 48 hours; exceeding any one of these use permanent damage to the integrated circuit.	values for longer than a	total time of
V_{DD}	Supply voltage	- 0.3 to 6.0	V
V _I	Discrete input voltage (RESETB, CS_D, SCLK, MOSI, FEN1, FEN2, FEN3, FEN4, IREF)	- 0.3 to 6.0	V
V _O	Discrete output voltage (MISO, AOUT)	- 0.3 to 6.0	V
AGND	Analog output reference	-0.3 to 6.0	V
GNDx	Ground (GND0, GND1, GND2, GND3, GND4, GND5, GND6, GND7)	-0.3 to 6.0	V
T _j ⁽²⁾	Maximum steady-state junction temperature	150	°C
Tamb	Ambient temperature	-40 to 95	°C
T _{stg}	Storage temperature	-65 to 150	°C
R _{th j amb}	Thermal resistance junction to ambient (on FR-4 board)	46	°C/W

^{1.} Exceeding a $V_{\mbox{\scriptsize DD}}$ of 5.1V during a deployment may cause damage

^{2.} To allow for deployment the maximum steady state junction temperature cannot exceed 130°C. Under the operating ratings defined in section 2.3 the steady state junction temperature will not exceed 130°C.

2.2 Absolute maximum degraded operating ratings

Under the following deviations to the ratings indicated in *Section 2.3* the L9659 performance will be degraded and not meet the electrical characteristics outlined in *Section 2.4*. At minimum the SPI and diagnostics will function but not meet specified electrical parameters.

Table 4. Absolute maximum degraded operating ratings

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage 4.5 to 5.5		V
V _{SDIAG}	Supply voltage for squib diagnostics 7 to 40		V
V _{RES}	VRES voltage (VRES0, VRES1, VRES2, VRES3, VRES4, VRES5, VRES6, VRES7)		V
VI	Discrete input voltage (RESETB, DEPEN, CS_D, SCLK, MOSI, FEN1, FEN2, FEN3, FEN4, IREF)	- 0.3 to (VDD +0.3)	V
V _O	Discrete output voltage (MISO, AOUT)	-0.3 to (VDD + 0.3)	V
T _j	Junction temperature	-40 to 150	°C

Note:

The above is provided for informational purposes only and will result in degraded operation. Under the above conditions the SPI will be functional as well as diagnostics, though the electrical performance may not conform to the parameters outlined in Section 2.4. Firing requirements as indicated in Section 2.4 may not be met with the conditions above.

2.3 Operating ratings

Table 5. Operating ratings

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	4.9 to 5.1	V
V _{SDIAG}	Supply voltage for squib diagnostics 7 to 37		V
V _{RESx}	VRES voltage (VRES0, VRES1, VRES2, VRES3, VRES4, VRES5, VRES6, VRES7)	7 to 37	V
VI	Discrete input voltage (RESETB, CS_D, SCLK, MOSI, FEN1, FEN2, FEN3, FEN4, IREF)	- 0.3 to (V _{DD} +0.3)	V
V _O	Discrete output voltage (MISO, AOUT)	-0.3 to (VDD + 0.3)	V
T _{amb}	Ambient temperature	-40 to 95	°C
R _{Th j-amb}	Thermal resistance junction to ambient (on FR-4 board)	46	°C/W

Comments:

VSDIAG supply will provide power for squib resistance and HSS diagnostics

VDD will be used for all internal functions as well as short to battery/ground and high squib resistance diagnostics.

2.4 Electrical characteristics

2.4.1 General

 $4.9 \text{ V} \leq \text{V}_{DD} \leq 5.1 \text{ V}; \text{ 7 V} \leq \text{V}_{RESX} \leq 37 \text{ V}; \text{ 7 V} \leq \text{V}_{SDIAG} \leq 37 \text{ V}; \text{ FEN1} = \text{FEN2} = \text{FEN3} = \text{FEN4} = \text{V}_{DD}; \text{R}_{A} = \text{FEN2} = \text{FEN3} = \text{FEN4} = \text{FEN2} = \text{FEN3} = \text{FEN4} = \text{FEN4} = \text{FEN4} = \text{FEN5} = \text{FEN5}$

Table 6. General - DC electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Osc	Internal oscillator frequency	Tested with 10K , 1%, 100ppm Iref resistor	4.75	-	5.25	MHz
V _{RST1}	Internal voltage reset VDD after de-glitch time (tpor) See Figure 7	VDD level for L9659 to report reset condition -deployment drivers are disabled	4.0	-	4.5	V
V _{RST2}	Internal voltage reset VDD with no de-glitch time See	Guaranteed by design	2.1	-	3.0	
t _{POR}	POR De-glitch timer	Timer for VRST1	5	-	25	μs
		No squib diagnostics. No deployment.	-	-	15	
I _{DD}	Input current VDD	Resistance measurement diagnostics with no fault condition present.	-	-	17	mA
		Short to -0.3V on SQL; VRCM active	-	-	35	
		During deployment	-	-	15	
R _{IREF_H}	Resistance threshold IREF	-	-	-	60.0	kΩ
R _{IREF_L}	TICOSTATIOG TITICOTOTA TITIC	-	2.0	-	-	kΩ
V _{IH_RESETB}	Input voltage threshold RESETB	-	-	-	2.0	V
V _{IL_RESETB}		-	0.8	-	-	V
V _{HYS_RST}		-	100	-	300	mV
V _{IH_TEST}	Input voltage threshold TEST	Guaranteed by design	-	3.2	-	V
I _{TESTPD}	Input pull-down current TEST		1.0	-	2.5	mA
I _{AOUT_SHRT}	AOUT pin current limit	AOUT short to ground during squib resistance diagnostics	-	-	20	mA
I _{RESETPU}	Input pull-up current RESETB	RESETB = VIH to GND	-10	-	-50	μΑ
I _{RESx}	Quiescent current for VRESx during HSS test	Current per pin during HSS test excluding selected channel	-	-	10	μΑ
V _{IH}	Input voltage threshold	Input Logic = 1	-	-	2.0	V
V _{IL}	(MOSI, SCLK, CS_D)	Input Logic = 0	0.8	-	-	V
V _{HYST}	Input hysteresis (MOSI, SCLK, CS_D)		100	-	300	mV
ı	Input leakage current	VIN = VDD	-	-	1	μΑ
I _{LKGD}	MOSI, SCLK	VIN = 0 to VIH	-1	-	-	μΑ

Table 6. General - DC electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{PU_CS}	Input pull-up current CS_D	VIN = VIH to GND	-10	-	-50	μA
V _{OH}	Output voltage MISO	ΙΟΗ = -800μΑ	VDD- 0.8	-	-	V
V _{OL}		IOL = 1.6mA	-	-	0.4	V
I Tri_state current	Tri-state current MISO	MISO = VDD	-	-	1	μA
I _{HI_Z}	Iri-state current MISO	MISO = 0V	-1	-	-	μA

2.4.2 Electrical characteristics - Squib deployment drivers and diagnostics

 $\begin{array}{l} 4.9 \; \text{V} \leq \text{V}_{DD} \leq 5. \; 1\text{V}; \; 7 \; \text{V} \leq \text{V}_{RESX} \leq 37 \; \text{V}; \; 7 \; \text{V} \leq \text{V}_{SDIAG} \leq 37 \; \text{V}; \; \text{FEN1} = \text{FEN2} = \text{FEN3} = \text{FEN4} \\ = \text{V}_{DD}; \; \text{R}_{REF} = 10 \; \text{k}\Omega, \; \pm 1\%, \; 100 \; \text{PPM}; \; -40 \; ^{\circ}\text{C} \leq \text{T}_{A} \leq +95 \; ^{\circ}\text{C}; \; \text{C}_{V}\text{RES0}_{1} \geq 68 \text{nF}; \\ \text{C}_{V}\text{RES2}_{2} \geq 68 \text{nFC}_{V}\text{RES4}_{5} \geq 68 \text{nF}; \; \text{C}_{V}\text{RES6}_{7} \geq 68 \text{nF}; \; \text{unless other specified}. \end{array}$

Table 7. Squib deployment drivers and diagnostics - DC electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
General			•	•	•	
I _{LKGSQH}	Leakage current SQH VSDIAG = VDD = 0, VRES = 37V, VSQH = 0V		-	-	50	μΑ
I _{LKGVRES}	Bias current VRESX	VSDIAG = 18V; VDD = 5V; VRES = 37V; SQH shorted to SQL	-	-	10	μΑ
I _{LKGSQL}	Leakage current SQL	VSDIAG = VDD = 0, VSQL = 18V	-10	-	10	μΑ
I _{PD}	Pulldown current SQL	VSQL = 1.5V to 20V	3.3	-	4.1	mA
V _{BIAS}	Diagnostics Bias voltage	Nominal 3.6V	-5%	VDD* 0.72	+5%	V
Short to bat	tery/ground diagnostics - Rs	qb from 0Ω to Open				
I _{SVRCM}	Maximum diagnostics bias current limit	Short to battery or ground test active VSQH = 0V	5	-	20	mA
	Short to battery resistance threshold	Vbatt = 6.5V	1.92	-	3.42	ΚΩ
R_{STB}		Vbatt = 16V	8.61	-	13.98	ΚΩ
		Vbatt = 20V	11.42	-	18.42	ΚΩ
I _{STB}	Short to battery current threshold	-	0.9	-	1.42	mA
R _{STG}	Short to ground threshold	-	1.07	-	2.1	ΚΩ
I _{STG}	Short to ground current threshold	-	1.8	-	3.2	mA

Table 7. Squib deployment drivers and diagnostics - DC electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
[†] DIAGTIMEOUT	Diagnostic delay time	From/CS ↑ until Test Results are Valid, Output voltage change 0V to VDD * 0.72 C _{SQHx} = 0.12µF C _{SQLx} = 0.12µF	-	-	300	μs
High side sat	ing diagnostics	- OQLA				
I _{SRC_HSS}	Diagnostic current into selected VRESx pin during test	Normal conditions	710	-	950	μΑ
I _{HSS_8}	Current during diagnostic	All 8 VRESx pins tied together	710	-	1020	μΑ
R _{HSSNORM_th}	Normal resistance range when running high side safing diagnostics	All 8 VRESx pins tied together	1.4	-	2.5	ΚΩ
V _{HSSNORM_r}	Normal voltage range between VSDIAG and VRESx pin) when running high side safing diagnostics	All 8 VRESx pins tied together	1.0	-	2.5	V
V _{HSSSHORT_th}	Short voltage threshold between VSDIAG and VRESx pin)	All 8 VRESx pins tied together	0.5	-	1.0	V
V _{HSSOPEN_th}	Open voltage threshold between VSDIAG and VRESx pin)	All 8 VRESx pins tied together	2.5	-	4.0	V
^t DIAGTIMEOUT	Diagnostic delay time	From/CS ↑ until test results are valid, $C_{SQHx} = 0.12 \mu F$ $C_{SQLx} = 0.12 \mu F$	-	-	500	μs
Voltage meas	surement diagnostics (VRES	x)				
I _{RESx}	Max diagnostic current into V _{RESx} pin Normal Conditions -		-	-	50	μΑ
V _{VRESXLO_th}	Low voltage threshold for VRESx pin	-	5.0	-	7	V
V _{VRESXHI_th}	High voltage threshold for VRESx pin	-	13.7	-	18.0	V
t _{DIAGTIMEOUT}	Diagnostic delay time	tic delay time From/CS ↑ until test results are valid.		-	100	μs

Table 7. Squib deployment drivers and diagnostics - DC electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
MOS diagnos	stics		•		•	
I_MOS	MOS test max current	Normal conditions	-	-	I _{SVRCM}	mA
^t SHUTOFF	LS/HS MOS turn off under fault condition	Time is measured from the valid LS/ HS MOS current > 100mA to the LS/HS turn off	-	-	4	μs
t _{FETtimeout}	FET timeout	Normal Conditions	-	-	100	μs
High squib re	esistance diagnostics					
R _{SQHIZ}	High load resistance threshold	-	1.07	-	2.1	kΩ
I _{HR}	High resistance current threshold	-		I _{STG}	•	mA
^t DIAGTIMEOUT	MOS diagnostic delay time	From/CS ↑ until test results are valid, CsQHx= 0.12µF CsQLx= 0.12µF	-	-	300	μs
Squib resista	ance diagnostics					
V _{OH}	Output valtage AOLIT	High saturation voltage; I _{AOUT} = -500μA	VDD- 0.2	-	-	٧
V _{OL}	Output voltage AOUT	Low Saturation Voltage; I _{AOUT} = +500μA	-	-	0.2	V
Ι _Ζ	Tri-State Current AOUT	AOUT = VDD	-	-	1	μΑ
'2	TH State Surroll 71001	AOUT = 0V	-1	-		μΑ
$R_{SQBRANGE}$	Load resistance range	-	0	-	10.0	Ω
	Resistance measurement analog output tolerance	$0\Omega \le R_{SQB} < 3.5\Omega$	V _{AOUT} 0.095V	-	V _{AOUT} + 0.095V	V
V _{AOUT}	$V_{AOUT} = VDD \cdot \left[\frac{1}{9.75} + \left(0.08 \cdot \frac{R_{SQB}}{\Omega} \right) \right]$	$3.5\Omega \le R_{SQB} \le 10\Omega$	V _{AOUT} · 0.95V	-	V _{AOUT} · 1.05V	V
I _{SRC}	Resistance measurement current source	$V_{DD} = 5.0V; V_{SDIAG} = 7.0V$ to 37V	38	-	42	mA
I _{SINK}	Resistance measurement current sink	IPD OFF, VSQLx = 4 V	45	-	57	mA
I _{SLEW}	Rmeas current di/dt	30% - 70% of ISRC	2	-	11	mΑ/μs
V_{cmpr}	Voltage threshold on squib pin to shutdown ISRC	-	2.65	-	3.25	٧
t _{isrcshtdwn}	Shutdown time	Guaranteed by design	-	-	30	μs
VLSDrsqb	LSD (V_SQL) voltage during resistance measure	-	0.8	-	2.2	V

Table 7. Squib deployment drivers and diagnostics - DC electrical characteristics (continued)

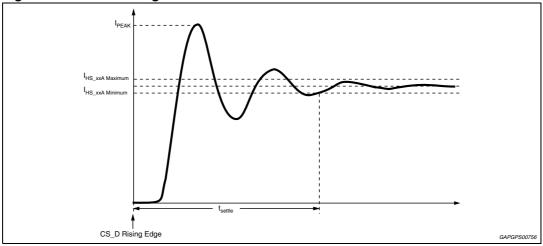

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{R_WAIT}	Rmeas wait time	Wait time before AOUT voltage is stable for ADC reading R AOUT= $5.1k\Omega$; $C_{AOUT}=10nF$	-	-	300	μs
FENx input p	ins					
t _{FENfilter}	Minimum pulse width	-	12	-	16	μs
I _{FENPD}	Internal pull-down current	VIN = VIL to VDD	20	-	50	μΑ
V _{FENLO}	Input low voltage threshold	-	0.8	-	-	V
V _{FENHI}	Input high voltage threshold	-	-	-	2.0	V
T _{FENLATCH}	FEN Latch timer	-	0	-	512	ms
t _{FLACC}	FEN latch timer accuracy	-	- 20%	-	20	%
Deployment of	drivers				•	
T _{RESOLUTION}	Diagnostic timing / resolution	I _{HS} ≥ I _{MEAS} ,	22.5	25	27.5	μs
T _{ACCURACY}	Diagnostic time acurracy	$0s \le T_{\text{MEASURE_TIME}} \le 3.7 \text{ms}$ $C_{\text{SQUIB_HI}} = 0.12 \mu \text{F}$ $C_{\text{SQUIB_LO}} = 0.12 \mu \text{F}$	-	-	2	LSB
I _{MEAS}	High side driver current limit detect threshold	Guaranteed by design	I _{HSX} x 0.90	-	I _{HSX} x 0.99	Α
R _{DSonTOTAL}	Total high and low side MOS on resistance	High side MOS + low side MOS D9:D8="11"; V _{RES} = 7V; I = 1.6A @95°C	-	-	2.0	Ω
R _{DSonHS}	High side MOS on resistance	D9:D8="11"; VRES = 7V;	-	0.3	0.8	Ω
R _{DSonLS}	Low side MOS on resistance	Tamb = 95°C; IVRES = 1.6A;	-	0.6	1.2	Ω
I _{HS_12A}		Configuration mode 1 bits D9:D8="00" SQHx shorted to ground; VRES = 7 to 37V	1.21	-	1.47	А
I _{HS_15A}	High side deployment current limit	Configuration Mode 1 bits D9:D8="01" SQHx shorted to ground; V _{RES} = 7 to 25V	1.51	-	1.85	Α
I _{HS_175A}		Configuration Mode 1 bits D9:D8="11" SQHx shorted to ground; V _{RES} = 7 to 37V	1.76	-	2.14	А
t _{ILIM}	Low side MOS shutdown under short to battery	V _{sqblo} =18V	90	-	110	μs
I _{LS}	Low side MOS current limit		2.2	-	4.0	Α

Table 7. Squib deployment drivers and diagnostics - DC electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{settle}	Firing current settling time	Time from fire command CS_D rising edge to where firing current remains within specified limits	-	-	150	μs
		$C_{SQUIB_HI} = 0$ to $0.12\mu F$ $C_{SQUIB_LO} = 0$ to $0.12\mu F$				
t _{DEPLOY-2ms}		$\begin{split} \text{VRES} &= 7 \text{Vto } 37 \text{@ I}_{\text{HS}_12\text{A}} \\ \text{VRES} &= 7 \text{Vto } 25 \text{@ I}_{\text{HS}_15\text{A}} \\ \text{For I}_{\text{HS}_12\text{A}} \text{ and I}_{\text{HS}_15\text{A}} \\ \text{Firing current measured} \\ \text{from CS}_D \text{ rising edge} \end{split}$	2.15	-	2.5	ms
t _{DEPLOY-1ms}	Deployment time	V _{RES} = 7Vto 37V For I _{HS_175A} Firing current measured from CS_D rising edge	1.15	-	1.40	ms
t _{DEPLOY-0.65ms}		V _{RES} = 7Vto 37V For I _{HS_175A} Firing current measured from CS_D rising edge	0.65	-	0.85	ms

Figure 3. MOS settling time and turn-on time 2

2.4.3 SPI timing

All SPI timing is performed with a 150 pF load on MISO unless otherwise noted

 $\begin{array}{l} 4.9V \leq V_{DD} \leq 5.1V; \ 7V \leq V_{RESX} \leq 37V; \ 7V \leq V_{SDIAG} \leq 37V; \ FEN1 = FEN2 = FEN3 = FEN4 = V_{DD}; \ R_REF = 10K\Omega, \ \pm 1\%, \ 100PPM; \ -40^{\circ}C \leq T_{A} \leq +95^{\circ}C; \ C_VRES0_1 \geq 68nF; \ C_VRES2_3 \geq 68nF; \ C_VRES4_5 \geq 68nF; \ C_VRES6_7 \geq 68nF; \ unless \ other \ specified. \end{array}$

Table 8. SPI timing - DC electrical characteristics

No.	Symbol	Parameter	Min.	Тур.	Max.	Unit
-	fop	Transfer frequency	dc	-	5.50	MHz
1	tsck	SCLK Period	181	-	-	ns
2	tLEAD	Enable Lead Time	65	-	-	ns
3	tLAG	Enable Lag Time	50	-	-	ns
4	tsclkhs	SCLK, High Time	65	-	-	ns
5	tsclkls	SCLK, Low Time	65	-	-	ns
6	tsus	MOSI, Input Setup Time	20	-	-	ns
7	tHS	MOSI, Input Hold Time	20	-	-	ns
8	tA	MISO, Access Time	-	-	60	ns
9	tDIS (1)	MISO, Disable Time	-	-	100	ns
10	tvs	MISO, Output Valid Time	-	-	60	ns
11	tHO ⁽¹⁾	MISO, Output Hold Time	0	-	-	ns
12	tro	Rise Time (Design Information)	-	-	30	ns
13	tFO	Fall Time (Design Information)	-	-	30	ns
14	tcsn	CS_D, Negated Time	640	-	-	ns
15	tCLKN	Time between CS rising edge and first transition of SCLK must be higher than tCLKN. It happens when multiple devices are connected to the same SCLK and MOSI but with different chip select.	500	-	-	ns

Parameters t_{DIS} and t_{HO} shall be measured with no additional capacitive load beyond the normal test fixture capacitance on the MISO pin. Additional capacitance during the disable time test erroneously extends the measured output disable time, and minimum capacitance on MISO is the worst case for output hold time.

Figure 4. SPI timing diagram

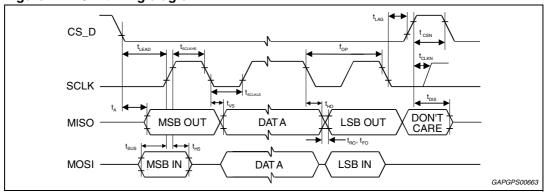
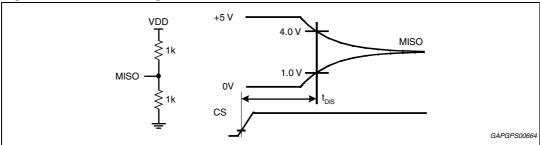
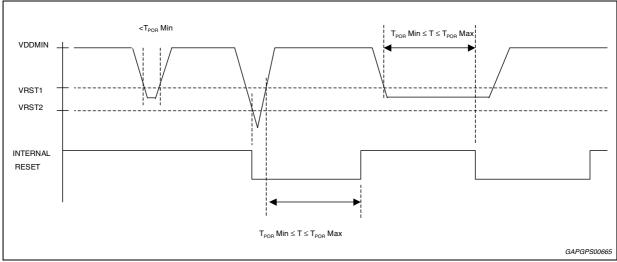



Figure 5. MISO loading for disable time measurement

3 Functional description

3.1 Overview


The L9659 is an integrated circuit to be used in air bag systems. Its main functions include deployment of air bags. The L9659 supports 8 deployment loops.

3.2 General functions

3.2.1 Power on reset (POR)

The ASIC has a power on reset (POR) circuit, which monitors VDD voltage. When VDD voltage falls below V_{RST1} for longer than or equal to t_{POR} , all outputs are disabled and all internal registers are reset to their default condition. A second reset level, V_{RST2} , also monitors VDD but uses no filter time and will disable all outputs and all internal registers are reset to their default condition when VDD falls below the reset threshold.

3.2.2 **RESETB**

The RESETB pin is active low. The effects of RESETB are similar to those of a POR event, except during a deployment. When a deployment is in-progress, the L9659 will ignore the RESETB signal.

However, it will shut itself down as soon as it detects a POR condition. When the deployment is completed and RESETB signal is asserted, the L9659 disables its outputs and reset its internal registers to their default states.

A de-glitch timer is provided for the RESETB pin. The timer protects this pin against spurious glitches. The L9659 neglects RESETB signal if it is asserted for shorter than tGLITCH. RESETB has an internal pull-up in case of an open circuit.

3.2.3 Reference resistor

IREF pin shall be connected to VDD supply through a resistor, RIREF. When the L9659 detects the resistor on IREF pin is larger than RIREF_H or smaller than RIREF_L, it goes into a reset condition. All outputs are disabled and all internal registers are reset to their default conditions.

3.2.4 Loss of ground

GND

When the GND pin is disconnected from PC-board ground, the L9659 goes in reset condition. All outputs are disabled and all internal registers are reset to their default conditions.

GND0-GND7

A loss of power-ground (GND0 – GND7) pin/s disables the respective low side driver/s on SQLx. However, the high side driver of the respective channel will still be able to be turned on. Thus under the scenario where the low side is shorted to ground the L9659 will be able to provide the programmed firing current for the specified time.

An open GNDx connection on any channel has no affect on the other channels. An open GNDx condition will be detected using the low side MOS diagnostics.

AGND

The AGND pin is a reference for AOUT pin. When AGND loses its connection, the voltage on AOUT pin is pulledup to VDD voltage and L9659 goes in reset condition. All outputs are disabled and all internal register are reset to their default conditions.

3.2.5 VRESx capacitance

To ensure all diagnostics function properly a typical capacitor of equal to or greater than 68nF is required close to the firing supply pins. Thus minimum of 4 capacitors are required with one placed close to the VRES0 and VRES1 pins and a second capacitor will be close to the VRES2 and VRES3 pins and a third capacitor will be close to the VRES4 and VRES5 pins and a forth capacitor will be close to the VRES6 and VRES7 pins.

3.2.6 Supply voltages

The primary current sources for the different functions of the ASIC are as follows:

- VRESx Firing currents along with HSS and HS FET diagnostic currents
- VSDIAG Squib resistance and HSS diagnostics
- VDD will be used for all internal functions as well as short to battery/ground and high squib resistance diagnostics.

3.2.7 Ground connections

GND pin (6) is not connected internally to other ground pins (AGND or power ground GNDx). A ground plane is needed to directly connect the GND pin. This ground plane needs to be isolated from the high current ground for the squib drivers to prevent voltage shifts.

AGND pin should be connected to ground plane too to minimize drop versus ground reference of ADC that capture AOUT voltage.

Doc ID 022048 Rev 2

3.3 Serial peripheral interface (SPI)

The L9659 contains one serial peripheral interfaces for control of the squib functions. The following table shows features that are accessed/controlled by the SPI.

Table 9. Features that are accessed/controlled for the SPI

Function	Pin names	Features accessed
Squib diagnostic and deployment SPI	SCLK MISO MOSI CS_D	All Squib Diagnostics; Squib related status information; Squib Arming and Firing; Software Reset; Component ID & Revision

The software reset accessed over SPI will reset squib functions. The L9659 has a counter to verify the number of clocks in SCLK. If the number of clocks in SCLK is not equal to 16 clocks while CS_D is asserted, it ignores the SPI message and sends a SPI fault response. L9659 computes SPI error length flag through counting the number of SCLK rising edges occurring when CS_D is active. If the first SCLK rising edge occurs when CS_D is inactive and the falling edge occurs when CS_D is low, it is considered as valid edge.

MOSI commands contain several bits not used, all those bits must be 0. Commands are not recognized valid if one or more not used bits are not 0.

3.3.1 SPI pin descriptions

Chip select (CS_D)

Chip-select inputs select the L9659 for serial transfers. CS_D can be asserted at any given time and are active low. When chip-select is asserted, the respective MISO pin is released from tri-state mode, and all status information is latched into the SPI shift register. While chip-select is asserted, register data is shifted into MOSI pin and shifted out of MISO pin on each subsequent SCLK. When chip-select is negated, MISO pin is tri-stated. To allow sufficient time to reload the registers; chip-select pin shall remain negated for at least tCSN. The chip-select inputs have current sinks which pull these pins to the negated state when there is an open circuit condition. These pins have TTL level compatible input voltages allowing proper operation with microprocessors using a 3.3 to 5.0 volt supply.

Serial clock (SCLK)

SCLK input is the clock signal input for synchronization of serial data transfer. This pin has TTL level compatible input voltages allowing proper operation with microprocessors using a 3.3 to 5.0 volt supply. When chip select is asserted, both the SPI master and L9659 will latch input data on the rising edge of SCLK. The L9659 shifts data out on the falling edge of SCLK.

Serial data output (MISO)

MISO output pins shall be in one tri-state condition when chip select is negated. When chip select is asserted, the MSB is the first bit of the word/byte transmitted on MISO and the LSB is the last bit of the word/byte transmitted. This pin supplies a rail to rail output, so if interfaced to a microprocessor that is using a lower VDD supply, the appropriate microprocessor input pin shall not sink more than IOH(min) and shall not clamp the MISO output voltage to less than VOH(min) while MISO pin is in a logic "1" state. When connecting to a micro using a lower supply, such as 3.3V, a resistor divider shall be used with high enough impedance to prevent excess current flow.

Serial data input (MOSI)

MOSI inputs take data from the master processor while chip select is asserted. The MSB shall be the first bit of each word/byte received on MOSI and the LSB shall be the last bit of each word/byte received.

This pin has TTL level compatible input voltages allowing proper operation with microprocessors using a 3.3 to 5.0 volt supply.

3.4 Squib drivers

3.4.1 Firing

The on-chip deployment drivers are designed to deliver 1.2A (min) for 2ms (min) and 1.75A (min) for 1ms (min)and 1.75A (min) for 0.65ms (min) with VRESx voltages between 7V and 37V. In addition the L9659 can provide 1.5A minimum for 2ms for VRESx voltages between 7V and 25V. The firing condition is selectable via the SPI. At the end of a deployment, a deploy success flag is asserted and can be read using the appropriate SPI command. Each VRESx and GNDx connection is used to accommodate 8 loops that can be deployed simultaneously.

Upon receiving a valid deployment condition, the respective SQHx and SQLx drivers are turned on. The only other activation of the SQHx and SQLx drivers is momentarily during a MOS diagnostic. Otherwise, SQHx and SQLx are inactive under any normal, fault, or transient conditions. Upon a successful deployment of the respective SQHx and SQLx drivers, a deploy command success flag is asserted via SPI. Refer to *Figure 8*. for the valid conditions and the deploy success flag timing.

The L9659 is protected against inadvertent turn on of the firing drivers unless the appropriate conditions are present. Non-typical conditions will not cause driver activation. This includes the case where VRESx and/or VSDIAG pins are connected to a supply up to 40V and VDD is between 0V and VDD min. Under these conditions the L9659 will ensure that driver activation will not occur. No flow of current shall be allowed through the SQHx and SQLx pins.

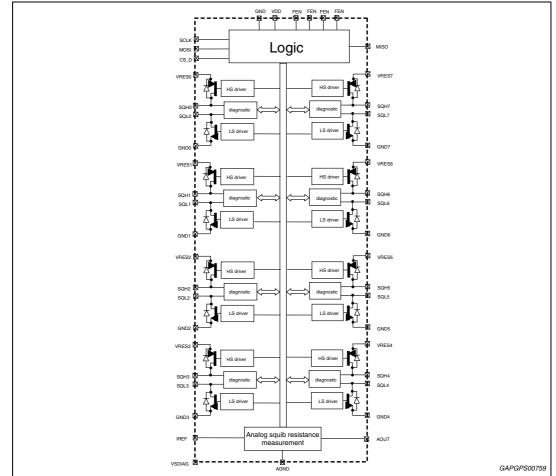


Figure 7. Deployment drivers diagram

Driver activation

The firing of a squib driver requires the appropriate FEN function to be active and two separate sixteen bit writes be made over the SPI. The FEN function is defined as the result of the FENx pin OR'd with the internal FENx latch. The FENx pin going high initiates the FEN function. With the FEN 1 function being active and the appropriate Arm and Fire commands sent then Squib_0 & 1 drivers would be activated. With the FEN 2 function being active and the appropriate Arm and Fire commands sent then Squib_2 & 3 drivers would be activated. With the FEN 3 function being active and the appropriate Arm and Fire commands sent then Squib_4 & 5 drivers would be activated. With the FEN 4 function being active and the appropriate Arm and Fire commands sent then Squib_6 & 7 drivers would be activated.

The first write is to ARM the drivers in preparation of receiving the fire command. The Arm command will stop on all channels any diagnostics that are active. Any combination of squibs can be armed. The second write is a FIRE command that must directly follow the Arm command and will activate the desired driver pairs assuming the FEN function is valid. If there is a parity mismatch the data bits will be ignored and the squib drivers will not have their status changed, and the two write sequence must then be started again. If there is a mismatch in channels selected then only those channels selected in both the Arm and Fire commands will be activated.

During the first write, when the drivers are armed, all diagnostic functions are cleared. The FIRE command must follow the ARM command along with the FEN function active for driver activation. If a command is between the ARM and FIRE command then the sequence must be restarted. An error response will be received for the Fire command if the ARM/FIRE sequence is not followed.

The ARM/FIRE commands and FEN function are independent from each other. The L9659 will begin the t_{DEPLOY} timer once a valid ARM/FIRE sequence has been received. If a valid ARM/FIRE command has been sent and the FEN function is inactive then the drivers will not be activated but the t_{DEPLOY} timer will start. If the FEN function becomes active before t_{DEPLOY} has expired then the drivers will become active for the full t_{DEPLOY} time. If the FEN does not become active before t_{DEPLOY} has expired then the sequence would need to be restarted. A diagram illustrating this is shown in Figure 8.

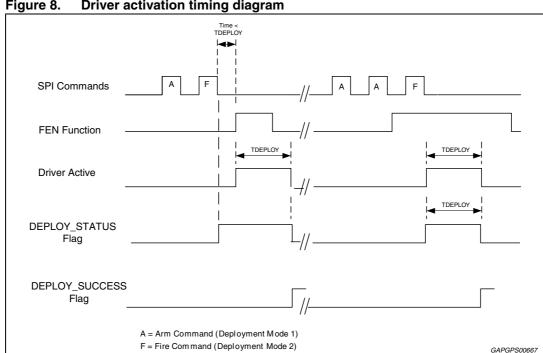


Figure 8. **Driver activation timing diagram**

Only the channels selected in the ARM and, directly following, the FIRE command will be able to be activated.

By reading the appropriate registers a status of the deployment is provided. If a valid Arm/Fire sequence has been provided the status flag will become active. This flag will remain active for as long as the T_{DEPLOY} timer is counting. Depending on the state of the FEN function the DEPLOY_STATUS flag will be active a minimum of TDEPLOY and a maximum of 2 x T_{DEPLOY}. If driver activation did occur (both a valid Arm/Fire sequence and the appropriate FEN function active within the appropriate time) then the DEPLOY SUCCESS flag will be active following the completion of the driver activation period. This flag will be active until cleared by software. If a valid Arm/Fire sequence did occur but the FEN function was never activated within the T_{DEPLOY} time then the DEPLOY_SUCCESS flag will remain '0'.

Once the Deploy Success Flag is set, it will inhibit the subsequent deployment command until a SPI command to clear this deployment success flag is received. Bits D7 through bit D0 are used to clear/keep the deploy success flag. When these bits are set to '1,' the flag

can be cleared. Otherwise, the state of these flags is not affected. The Success flag must be cleared to allow re-activation of the drivers.

During driver activation the respective high side (SQHx) and low side (SQLx) drivers will turn on for t_{DEPLOY} .

L9659 driver activation will not occur or, if firing is in process, will terminate under the following conditions:

- Power On Reset (POR)
- IREF resistance is larger than RIREF_H or smaller than RIREF_L
- Loss of ground condition on GND pin

The following conditions are ignored when driver activation is in-progress:

- RESETB
- Valid soft reset sequences
- SPI commands except as noted below. Response for ignored commands will be 0xD009
- FEN function

The following table shows the response when sending SPI commands during deployment.

Table 10. SPI MOSI/MISO response

SPI MOSI	SPI MISO	Response
Configuration Commands	SPI fault response	MOSI register mode messages will be ignored
Deployment Commands	Command mode	Execute for channels not in deployment; no effect to deploying channel
Diagnostic Commands	SPI fault response	MOSI diagnostic mode messages will be ignored
Monitor Commands	Status response	Execute for all channels

Note 1: SPI MISO sent in the next SPI transmission.

The L9659 can only deploy a channel when the FEN function is active. Once the drivers are active the L9659 will keep the drivers on for the required duration regardless of the FEN state. Once complete a status bit will be set to indicate firing is complete.

3.4.2 Firing current measurement

All channels have a 7 bit current measurement register that is used to measure the amount of time the current is above I_{MEAS} during firing. The maximum measurement for each channel is 3.175ms nominal based on a bit weight of 25µs. The current measurement register will not increment outside the deployment time. The current measurement will begin incrementing once the current has exceeded 95% of the nominal target value. The count will continue to increment from the stored value until either a clear command has been issued for that channel or all '1's are present in the corresponding channel measurement register. If all '1's are present for a channel's measurement register and another firing sequence has been issued the register will remain all '1's. Only if a clear command has been issued will that particular register be reset to all '0's. All other channels shall keep the stored measurement count. During firing the current measurement register cannot be cleared. After a clear command has been issued for a channel then the channel is ready to count if