Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ## Rear door actuator driver #### **Features** | Туре | Outputs ⁽¹⁾ | R _{on} ⁽²⁾ | I _{OUT} | ٧s | |------------------|------------------------|--------------------------------|------------------|------| | | OUT1 | 150 m Ω | 7.4 A | | | L9951
L9951XP | OUT2 | 200 m Ω | 5 A | | | | OUT3 | 200 m Ω | 5 A | 28 V | | | OUT4 | $800~\text{m}\Omega$ | 1.25 A | | | | OUT5 | $800~\text{m}\Omega$ | 1.25 A | | - 1. See block diagram. - 2. Typical values. - One half bridge for 7.4 A load ($R_{on} = 150 \text{ m}\Omega$) - Two half bridges for 5 A load ($R_{on} = 200 \text{ m}\Omega$) - Two highside drivers for 1.25 A load $(R_{on} = 800 \text{ m}\Omega)$ - Programmable softstart function to drive loads with higher inrush currents (i.e.current > 7.4A, >5A, >1.25A) - Very low current consumption in standby mode $(I_S < 3\mu A, typ. T_i \le 85^{\circ}C)$ - All outputs short circuit protected - Current monitor output for all highside drivers - All outputs over temperature protected - Open-load diagnostic for all outputs - Overload diagnostic for all outputs - Programmable PWM control of all outputs - Charge pump output for reverse polarity protection ## **Applications** Rear door actuator driver with bridges for door lock and safe lock and two 5W or 10W - light bulbs. ## **Description** The L9951 and L9951XP are microcontroller driven, multifunctional rear door actuator drivers for automotive applications. Up to two DC motors and two grounded resistive loads can be driven with three half bridges and two hide side drivers. The integrated standard serial peripheral interface (SPI) controls all operation modes (forward, reverse, brake and high impedance). All diagnostic information is available via the SPI. Table 1. Device summary | Package | Order codes | | | |-------------|-------------|---------------|--| | rackage | Tube | Tape and reel | | | PowerSO-36 | L9951 | L9951TR | | | PowerSSO-36 | L9951XP | L9951XPTR | | September 2013 Doc ID 14173 Rev 9 1/36 Contents L9951 / L9951XP ## **Contents** | 1 | Bloc | k diagram and pin description | . 6 | |---|-------|---|-----| | 2 | Elect | rical specifications | . 9 | | | 2.1 | Absolute maximum ratings | . 9 | | | 2.2 | ESD protection | . 9 | | | 2.3 | Thermal data | . 9 | | | 2.4 | Temperature warning and thermal shutdown | 10 | | | 2.5 | Electrical characteristics | 10 | | | 2.6 | SPI - electrical characteristics | 14 | | 3 | Appl | ication information | 19 | | | 3.1 | Dual power supply: VS and VCC | 19 | | | 3.2 | Standby - mode | 19 | | | 3.3 | Inductive loads | 19 | | | 3.4 | Diagnostic functions | 19 | | | 3.5 | Over-voltage and under-voltage detection | 20 | | | 3.6 | Temperature warning and thermal shutdown | 20 | | | 3.7 | Open-load detection | 20 | | | 3.8 | Over load detection | 20 | | | 3.9 | Current monitor | 20 | | | 3.10 | PWM input | 21 | | | 3.11 | Cross-current protection | 21 | | | 3.12 | Programmable softstart function to drive loads with higher inrush current | 21 | | 4 | Func | tional description of the SPI | 22 | | | 4.1 | Serial Peripheral Interface (SPI) | 22 | | | 4.2 | Chip Select Not (CSN) | 22 | | | 4.3 | Serial Data In (DI) | 22 | | | 4.4 | Serial Data Out (DO) | 23 | | | 4.5 | Serial clock (CLK) | 23 | | | 4.6 | Input data register | 23 | | | 4.7 | Status register | 23 | | | | | | L9951 / L9951XP Contents | | 4.8 | Test mode | |---|------|--| | 5 | Pacl | kages thermal data | | 6 | Pacl | kage and packing information | | | 6.1 | ECOPACK [®] packages 29 | | | 6.2 | PowerSO-36 [™] package information | | | 6.3 | PowerSSO-36™ package information | | | 6.4 | PowerSO-36™ packing information | | | 6.5 | PowerSSO-36 [™] packing information | | 7 | Revi | sion history | List of tables L9951 / L9951XP ## List of tables | Device summary | . 1 | |--|---| | | | | Absolute maximum ratings | . 9 | | | | | Thermal data | . 9 | | Temperature warning and thermal shutdown | 10 | | Supply | 10 | | Overvoltage and undervoltage detection | 11 | | Current monitor output | 11 | | Charge pump output | 12 | | | | | Delay time from standby to active mode | 14 | | Inputs: CSN, CLK, PWM1/2 and DI | 14 | | DI timing | 14 | | DO | 15 | | | | | EN, CSN timing | 16 | | | | | | | | | | | PowerSO-36™ mechanical data | 29 | | | | | Document revision history | 35 | | | Device summary Pin definitions and functions Absolute maximum ratings ESD protection Thermal data. Temperature warning and thermal shutdown Supply. Overvoltage and undervoltage detection Current monitor output Charge pump output OUT 1 - OUT 5 Delay time from standby to active mode. Inputs: CSN, CLK, PWM1/2 and DI DI timing DO DO timing EN, CSN timing. Test mode. SPI - Input data and status register 0 SPI - Input data and status register 1 PowerSO-36™ mechanical data PowerSSO-36™ mechanical data Document revision history | L9951 / L9951XP List of figures # **List of figures** | ⊦igure 1. | Block diagram | 6 | |------------|--|------| | Figure 2. | Configuration diagram (top view) | | | Figure 3. | SPI - transfer timing diagram | . 16 | | Figure 4. | SPI - input timing | . 16 | | Figure 5. | SPI - DO valid data delay time and valid time | . 17 | | Figure 6. | SPI - DO enable and disable time | . 17 | | Figure 7. | SPI - driver turn-on/off timing, minimum CSN HI time | . 18 | | Figure 8. | SPI - timing of status bit 0 (fault condition) | . 18 | | Figure 9. | Example of programmable softstart function for inductive loads | . 21 | | Figure 10. | Packages thermal data | . 28 | | Figure 11. | PowerSO-36™ package dimensions | . 29 | | Figure 12. | PowerSSO-36™ package dimensions | | | Figure 13. | PowerSO-36 TM tube shipment (no suffix) | | | Figure 14. | PowerSO-36 TM tape and reel shipment (suffix "TR") | . 33 | | Figure 15. | PowerSSO-36 TM tube shipment (no suffix) | . 34 | | Figure 16. | PowerSSO-36 TM tape and reel shipment (suffix "TR") | . 34 | # 1 Block diagram and pin description Figure 1. Block diagram Table 2. Pin definitions and functions | Pin | Symbol | Function | |------------------------------------|------------|--| | | - , | Ground . | | 1, 18, 19,
36 | GND | Reference potential. Note: For the capability of driving the full current at the outputs all pins of GND must be externally connected. | | 6, 7, 14,
15, 23, 24,
29, 32 | VS | Power supply voltage (external reverse protection required). For EMI reason a ceramic capacitor as close as possible to GND is recommended. Note: for the capability of driving the full current at the outputs all pins of VS must be externally connected. | | 3, 4, 34 | OUT1 | Half-bridge output 1. The output is built by a high side and a low side switch, which are internally connected. The output stage of both switches is a power DMOS transistor. Each driver has an internal reverse diode (bulk-drain-diode: high side driver from output to VS, low side driver from GND to output). This output is over-current and open-load protected. Note: for the capability of driving the full current at the outputs all pins of OUT1 must be externally connected. | | 8 | DI | Serial data input. The input requires CMOS logic levels and receives serial data from the microcontroller. The data is a 16bit control word and the least significant bit (LSB, bit 0) is transferred first. | | 9 | CM/PWM | Current monitor output/PWM input. Depending on the selected multiplexer bits (bit 9, 10, 11) of Input Data Register this output sources an image of the instant current through the corresponding high side driver with a ratio of 1/10.000. This pin is bidirectional. The microcontroller can overwrite the current monitor signal to provide a PWM input for all outputs. Testmode: If CSN is raised above 7.5V the device will enter the test mode. In test mode this output can be used to measure some internal signals (see <i>Table 18</i>). | | 10 | CSN | Chip select not input / Testmode . This input is low active and requires CMOS logic levels. The serial data transfer between L9951 and micro controller is enabled by pulling the input CSN to low level. If an input voltage of more than 7.5V is applied to CSN pin the L9951 will be switched into a test mode. | | 11 | DO | Serial data output . The diagnosis data is available via the SPI and this tristate-output. The output will remain in tristate, if the chip is not selected by the input CSN (CSN = high). | | 12 | VCC | Logic supply voltage . For this input a ceramic capacitor as close as possible to GND is recommended. | | 13 | CLK | Serial clock input . This input controls the internal shift register of the SPI and requires CMOS logic levels. | Table 2. Pin definitions and functions (continued) | Pin | Symbol | Function | |--------|------------|--| | 16, 17 | OUT2 | Half-bridge output 2 (see OUT1 - pin 3, 4). Note: for the capability of driving the full current at the outputs all pins of OUT2 must be externally connected. | | 20, 21 | OUT3 | Half-bridge output 3 (see OUT1 - pin 3, 4). Note: for the capability of driving the full current at the outputs all pins of OUT3 must be externally connected. | | 26 | СР | Charge Pump Output. This output is provided to drive the gate of an external n-channel power MOS used for reverse polarity protection (see <i>Figure 1</i>). | | 27 | EN | Enable input. If Enable input is forced to GND the device will enter Standby-Mode. The outputs will be switched off and all registers will be cleared | | 33, 35 | OUT4, OUT5 | High side driver output 4, 5. The output is built by a high side switch and is intended for resistive loads, hence the internal reverse diode from GND to the output is missing. For ESD reason a diode to GND is present but the energy which can be dissipated is limited. The high side driver is a power DMOS transistor with an internal reverse diode from the output to VS (bulk-drain-diode). The output is over-current and open-load protected. | Figure 2. Configuration diagram (top view) ## 2 Electrical specifications ## 2.1 Absolute maximum ratings Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics sure program and other relevant quality document Table 3. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |--|---|-------------------------------|------| | V. | DC supply voltage | -0.3 to 28 | V | | V _S | Single pulse t _{max} < 400ms | 40 | V | | V _{CC} | Stabilized supply voltage, logic supply | -0.3 to 5.5 | V | | $V_{DI,}V_{DO},V_{CLK},V_{CSN,}V_{EN}$ | Digital input / output voltage | -0.3 to V _{CC} + 0.3 | V | | V _{CM} | Current monitor output | -0.3 to V _{CC} + 0.3 | V | | V _{CP} | Charge pump output | -25 to V _S + 11 | V | | I _{OUT1,2,3} | Output current | ±10 | Α | | I _{OUT4,5} | Output current | ±5 | Α | ## 2.2 ESD protection Table 4. ESD protection | Parameter | Value | Unit | |--------------------------|--------------------|------| | All pins | ± 4 ⁽¹⁾ | kV | | Output pins: OUT1 - OUT5 | ± 8 ⁽²⁾ | kV | ^{1.} HBM according to CDF-AEC-Q100-002. #### 2.3 Thermal data Table 5. Thermal data | Symbol | Parameter | Value | Unit | |--------|--------------------------------|------------|------| | Tj | Operating junction temperature | -40 to 150 | °C | ^{2.} HBM with all unzapped pins grounded. ## 2.4 Temperature warning and thermal shutdown Table 6. Temperature warning and thermal shutdown | Symbol | Parameter | | Min. | Тур. | Max. | Unit | |----------------------|--|------------------------------|------|------|------|------| | T _{jTW ON} | Temperature warning threshold junction temperature | T _j
increasing | | | 150 | °C | | T _{jTW OFF} | Temperature warning threshold junction temperature | T _j
decreasing | 130 | | | °C | | T _{jTW HYS} | Temperature warning hysteresis | | | 5 | | °K | | T _{jSD ON} | Thermal shutdown threshold junction temperature | T _j
increasing | | | 170 | °C | | T _{jSD OFF} | Thermal shutdown threshold junction temperature | T _j
decreasing | 150 | | | °C | | T _{jSD HYS} | Thermal shutdown hysteresis | | | 5 | | °K | ## 2.5 Electrical characteristics V_S = 8 to 16 V, V_{CC} = 4.5 to 5.3 V, T_j = -40 to 150 °C, unless otherwise specified. The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. Table 7. Supply | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |----------------|---|---|------|------|------|------| | V _S | Operating supply voltage range | | 7 | | 28 | V | | | V _S DC supply current | V _S = 13V, V _{CC} = 5.0V
active mode
OUT1 - OUT5 floating | | 7 | 20 | mA | | I _S | V _S quiescent supply current | $V_S = 13V$, $V_{CC} = 0V$
standby mode
OUT1 - OUT5 floating
$T_{test} = -40^{\circ}C$, 25°C | | 3 | 10 | μΑ | | | | T _{test} = 130°C | | 6 | 20 | μΑ | Table 7. Supply (continued) | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |----------------------------------|--|--|------|------|------|------| | | V _{CC} DC supply current | $V_S = 13V$, $V_{CC} = 5.0V$
$CSN = V_{CC}$
active mode | | 1 | 3 | mA | | I _{CC} | V _{CC} quiescent supply current | V_S = 13V, V_{CC} = 5.0V
$CSN = V_{CC}$
standby mode
OUT1 - OUT5 floating | | 1 | 3 | μΑ | | I _S + I _{CC} | Sum quiescent supply current | V_S = 13V, V_{CC} = 5.0V
CSN = V_{CC}
standby mode
OUT1 - OUT5 floating | | 7 | 23 | μΑ | Table 8. Overvoltage and undervoltage detection | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |-----------------------|---------------------------|--|------|------|------|------| | V _{SUV ON} | VS UV-threshold voltage | V _S increasing | 6.0 | | 7.2 | V | | V _{SUV OFF} | VS UV-threshold voltage | V _S decreasing | 5.4 | | 6.5 | V | | V _{SUV hyst} | VS UV-hysteresis | V _{SUV ON} - V _{SUV OFF} | | 0.55 | | V | | V _{SOV OFF} | VS OV-threshold voltage | V _S increasing | 18 | | 24.5 | V | | V _{SOV ON} | VS OV-threshold voltage | V _S decreasing | 17.5 | | | V | | V _{SOV hyst} | VS OV-hysteresis | V _{SOV OFF} - V _{SOV ON} | | 0.5 | | V | | V _{POR OFF} | Power-on-reset threshold | V _{CC} increasing | | | 4.4 | V | | V _{POR ON} | Power-on-reset threshold | V _{CC} decreasing | 3.1 | | | V | | V _{POR hyst} | Power-on-reset hysteresis | V _{POR OFF} - V _{POR ON} | | 0.3 | | V | Table 9. Current monitor output | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |---------------------|--|--|------|--------------|--------------|------| | V_{CM} | Functional voltage range | $V_{CC} = 5V$ | 0 | | 4 | V | | I _{CM,r} | Current monitor output ratio:
I _{CM} / I _{OUT1,2,3,4,5} | 0V ≤ V _{CM} ≤ 4V, VCC=5V | | 1:10000 | | - | | I _{CM acc} | Current monitor accuracy | $\begin{array}{l} 0\text{V} \leq \text{VCM} \leq 4\text{V}, \\ \text{V}_{\text{CC}} = 5\text{V}, \\ \text{I}_{\text{OUT1-5,low}} = 500\text{mA} \\ \text{I}_{\text{OUT1,high}} = 6\text{A} \\ \text{I}_{\text{OUT2,3,high}} = 4.9\text{A} \\ \text{I}_{\text{OUT4,5,high}} = 1.2\text{A} \\ \text{(FS=full scale=600 } \mu\text{A}) \end{array}$ | | 4% +
1%FS | 8% +
2%FS | - | Table 10. Charge pump output | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |-----------------|--|---|------|------|------|------| | | V _{CP} Charge pump output voltage | $V_S = 8V$, $I_{CP} = -60 \mu A$ | 6 | | 13 | V | | V _{CP} | | $V_S = 10V$, $I_{CP} = -80\mu A$ | 8 | | 13 | V | | | | V _S ≥12V, I _{CP} = -100μA | 10 | | 13 | V | | I _{CP} | Charge pump output current | $V_{CP} = V_{S} + 10V$
$V_{S} = 13.5V$ | 100 | 150 | 300 | μΑ | **Table 11. OUT 1 - OUT 5** | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |---|--|---|------|------|------|------| | | | $V_S = 13.5 \text{ V}, T_j = 25 \text{ °C},$
$I_{OUT1} = \pm 3 \text{ A}$ | | 150 | 200 | mΩ | | R _{ON OUT1} | On-resistance to supply or GND | $V_S = 13.5 \text{ V}, T_j = 125 \text{ °C},$
$I_{OUT1} = \pm 3 \text{ A}$ | | 225 | 300 | mΩ | | | | $V_S = 8.0 \text{ V}, T_j = 25 \text{ °C},$
$I_{OUT1} = \pm 3 \text{ A}$ | | 150 | 200 | mΩ | | | | $V_S = 13.5 \text{ V}, T_j = 25 \text{ °C},$
$I_{OUT2,3} = \pm 3 \text{ A}$ | | 200 | 270 | mΩ | | R _{ON OUT2}
R _{ON OUT3} | On-resistance to supply or GND | $V_S = 13.5 \text{ V}, T_j = 125 \text{ °C},$
$I_{OUT2,3} = \pm 3 \text{ A}$ | | 300 | 400 | mΩ | | | | $V_S = 8.0 \text{ V}, T_j = 25 \text{ °C},$
$I_{OUT2,3} = \pm 3 \text{ A}$ | | 200 | 270 | mΩ | | | | $VS = 13.5 \text{ V}, T_j = 25 \text{ °C},$
$I_{OUT4,5} = \pm 0.8 \text{ A}$ | | 800 | 1100 | mΩ | | r _{ON OUT4,}
r _{ON OUT5} | On-resistance to supply or GND | $V_S = 13.5 \text{ V}, T_j = 125 \text{ °C},$
$I_{OUT4,5} = \pm 0.8 \text{ A}$ | | 1250 | 1700 | mΩ | | | | $V_S = 8.0 \text{ V}, T_j = 25 \text{ °C},$
$I_{OUT4,5} = \pm 0.8 \text{ A}$ | | 800 | 1100 | mΩ | | I _{OUT1} | Output current limitation to supply or GND | Sink and source | 7.4 | | 15.5 | Α | | I _{OUT2} ,
 I _{OUT3} | Output current limitation to supply or GND | Sink and source | 5.0 | | 10.5 | А | | I _{OUT4} ,
 I _{OUT5} | Output current limitation to GND | Source | 1.25 | | 2.6 | Α | | t _{d ON H} | Output delay time,
highside driver on | V _S = 13.5 V,
corresponding lowside
driver is not active | 20 | 40 | 90 | μs | | t _{d OFF H} | Output delay time,
highside driver off | V _S = 13.5 V | 80 | 200 | 300 | μѕ | | t _{d ON L} | Output delay time, lowside driver on | V _S = 13.5 V,
corresponding highside
driver is not active | 20 | 60 | 80 | μs | Table 11. OUT 1 - OUT 5 (continued) | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |-------------------------|---|--|------|------|------|------| | t _{d OFF L} | Output delay time, lowside driver off | V _S = 13.5 V | 80 | 150 | 300 | μs | | t _{D HL} | Cross current protection time, source to sink | t _{d ON L} - t _{d OFF H,} | | 200 | 400 | μs | | t _{D LH} | Cross current protection time, sink to source | t _d ON H ^{- t} d OFF L | | 200 | 400 | μs | | I_{QLH} | Switched-off output current highside drivers of | V _{OUT1-5} = 0V, standby mode | 0 | -2 | -5 | μΑ | | | OUT1-5 | V _{OUT1-5} = 0V, active mode | -40 | -15 | 0 | μΑ | | I _{QLL} | Switched-off output current lowside drivers of | $V_{OUT1-3} = V_{S}$, standby mode | 0 | 50 | 100 | μΑ | | | OUT1-3 | V _{OUT1-3} = V _S , active mode | -40 | -15 | 0 | μΑ | | I _{OLD1} | Open-load detection current of OUT1 | | 70 | 160 | 240 | mA | | I _{OLD23} | Open-load detection current of OUT2, OUT3 | | 70 | 160 | 240 | mA | | I _{OLD45} | Open-load detection
current of OUT4 and
OUT5 | | 5 | 15 | 40 | mA | | t _{dOL} | Minimum duration of open-load condition to set the status bit | | 500 | | 3000 | μs | | t _{ISC} | Minimum duration of over-current condition to switch off the driver | | 10 | | 100 | μs | | dV _{OUT1} /dt | Slew rate of OUT1 | $V_S = 13.5 \text{ V}$
$I_{load} = \pm 1.5 \text{ A}$ | 0.1 | 0.2 | 0.4 | V/µs | | dV _{OUT23} /dt | Slew rate of OUT2, OUT3 | $V_S = 13.5 \text{ V}$
$I_{load} = \pm 1.5 \text{ A}$ | 0.1 | 0.2 | 0.4 | V/µs | | dV _{OUT45} /dt | Slew rate of OUT4, OUT5 | $V_S = 13.5 \text{ V}$
$I_{load} = -0.8 \text{ A}$ | 0.1 | 0.2 | 0.4 | V/µs | ### 2.6 SPI - electrical characteristics (V_S = 8 to 16 V, V_{CC} = 4.5 to 5.3 V, T_j = - 40 to 150 °C, unless otherwise specified. The voltages are referred to GND and currents are assumed positive, when the current flows into the pin). Table 12. Delay time from standby to active mode | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |------------------|-----------------------|--|------|------|------|------| | t _{set} | Internal startup time | Switching from standby
to active mode. Time
until not Ready Bit goes
low. | | 80 | 300 | μs | Table 13. Inputs: CSN, CLK, PWM1/2 and DI | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |---------------------|--|------------------------------|------|------|------|------| | V _{inL} | Input low level | $V_{CC} = 5V$ | 1.5 | 2.0 | | V | | V _{inH} | Input high level | $V_{CC} = 5V$ | | 3.0 | 3.5 | V | | V _{inHyst} | Input hysteresis | $V_{CC} = 5V$ | 0.5 | | | V | | I _{CSN in} | Pull up current at input CSN | $V_{CSN} = 3.5V V_{CC} = 5V$ | -50 | -25 | -10 | μΑ | | I _{CLK in} | Pull down current at input CLK | V _{CLK} = 1.5V | 10 | 25 | 50 | μΑ | | I _{DI in} | Pull down current at input DI | V _{DI} = 1.5V | 10 | 25 | 50 | μΑ | | I _{EN in} | Pull down resistance at input EN | | 100 | 210 | 480 | kΩ | | C in | Input capacitance at input CLK, DI and PWM | $V_{CC} = 0$ to 5.3V | | 10 | 15 | pF | Note: Value of input capacity is not measured in production test. Parameter guaranteed by design. Table 14. DI timing⁽¹⁾ | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |------------------------|--|----------------------|------|------|------|------| | t _{CLK} | Clock period | V _{CC} = 5V | 1000 | | | ns | | t _{CLKH} | Clock high time | V _{CC} = 5V | 400 | | | ns | | t _{CLKL} | Clock low time | V _{CC} = 5V | 400 | | | ns | | t _{set CSN} | CSN setup time, CSN low before rising edge of CLK | V _{CC} = 5V | 400 | | | ns | | t _{set CLK} | CLK setup time, CLK high before rising edge of CSN | V _{CC} = 5V | 400 | | | ns | | t _{set DI} | DI setup time | V _{CC} = 5V | 200 | | | ns | | t _{hold time} | DI hold time | V _{CC} = 5V | 200 | | | ns | Table 14. DI timing⁽¹⁾ (continued) | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |-------------------|---|----------------------|------|------|------|------| | t _{r in} | Rise time of input signal DI,
CLK, CSN | V _{CC} = 5V | | | 100 | ns | | t _{f in} | Fall time of input signal DI, CLK, CSN | V _{CC} = 5V | | | 100 | ns | ^{1.} See Figure 3 and Figure 4 Note: DI timing parameters tested in production by a passed/failed test: Tj= -40°C/+25°C: SPI communication @2MHZ. Tj= +125°C: SPI communication @1.25MHZ. Table 15. DO | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |---------------------|----------------------------|---|-------------------------|-------------------------|------|------| | V_{DOL} | Output low level | $VCC = 5 \text{ V}, I_D = -4\text{mA}$ | | 0.2 | 0.4 | V | | V _{DOH} | Output high level | VCC = 5 V, I _D = 4 mA | V _{CC}
-0.4 | V _{CC}
-0.2 | | ٧ | | I _{DOLK} | Tristate leakage current | $V_{CSN} = V_{CC},$
$0V < V_{DO} < V_{CC}$ | -10 | | 10 | μΑ | | C _{DO} (1) | Tristate input capacitance | $V_{CSN} = V_{CC},$ $0V < V_{CC} < 5.3V$ | | 10 | 15 | pF | ^{1.} Value of input capacity is not measured in production test. Parameter guaranteed by design. Table 16. DO timing⁽¹⁾ | | _ · · · · · · · · · · · · · · · · · · · | | | | | | | | |--|---|---|------|------|------|------|--|--| | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | | | | t _{r DO} | DO rise time | $C_L = 100 \text{ pF}, I_{load} = -1 \text{ mA}$ | | 80 | 140 | ns | | | | t _{f DO} DO fall time | | C _L = 100 pF, I _{load} = 1mA | | 50 | 100 | ns | | | | t _{en DO tri L} DO enable time from tristate to low level | | C _L = 100 pF, I _{load} = 1mA
pull-up load to V _{CC} | | 100 | 250 | ns | | | | t _{dis} DO L tri | DO disable time from low level to tristate | $C_L = 100 \text{ pF}, I_{load} = 4 \text{ mA}$
pull-up load to V_{CC} | | 380 | 450 | ns | | | | t _{en DO tri H} DO enable time from tristate to high leve | | C _L =100 pF, I _{load} = -1mA
pull-down load to GND | | 100 | 250 | ns | | | | t _{dis DO H tri} | DO disable time from high level to tristate | C _L = 100 pF, I _{load} = -4mA
pull-down load to GND | | 380 | 450 | ns | | | | t _{d DO} DO delay time | | $V_{DO} < 0.3 V_{CC}, V_{DO} > 0.7 V_{CC},$
$C_L = 100 pF$ | | 50 | 250 | ns | | | ^{1.} See Figure 5 and Figure 6. Table 17. EN, CSN timing⁽¹⁾ | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |---|-----------|---|------|------|------|------| | t _{EN_CSN_LO} Minimum EN high before sending first SPI frame, i.e. CSN going low | | Transfer of SPI-command to input register | | 20 | 50 | μs | | t _{CSN_HI,min} Minimum CSN HI time between two SPI frames | | Transfer of SPI-command to input register | | 2 | 4 | μs | ^{1.} See Figure 7 Figure 3. SPI - transfer timing diagram Figure 4. SPI - input timing CLK t_{fin} 0.8 VCC 0.5 VCC 0.2 VCC t_{rDO} 0.8 VCC 0.2 Figure 5. SPI - DO valid data delay time and valid time Figure 7. SPI - driver turn-on/off timing, minimum CSN HI time ## 3 Application information ## 3.1 Dual power supply: V_S and V_{CC} The power supply voltage V_S supplies the half bridges and the high side drivers. An internal charge-pump is used to drive the high side switches. The logic supply voltage V_{CC} (stabilized 5V) is used for the logic part and the SPI of the device. Due to the independent logic supply voltage the control and status information will not be lost, if there are temporary spikes or glitches on the power supply voltage. In case of power-on (V_{CC} increases from under voltage to $V_{POR\ OFF} = 4.0V$, typical) the circuit is initialized by an internally generated power-on-reset (POR). If the voltage V_{CC} decreases under the minimum threshold ($V_{POR\ ON}$ =3.6V, typical), the outputs are switched to tristate (high impedance) and the status registers are cleared. ## 3.2 Standby - mode The standby mode of the L9951 is activated by switching the EN input do GND. All latched data will be cleared and the inputs and outputs are switched to high impedance. In the standby mode the current at V_S (V_{CC}) is less than 3 μ A (1 μ A) for CSN = high (DO in tristate). If EN is switched to 5V the device will enter the active mode. In the active mode the charge-pump and the supervisor functions are activated. ### 3.3 Inductive loads Each half bridge is built by an internally connected high side and a low side power DMOS transistor. Due to the built-in reverse diodes of the output transistors, inductive loads can be driven at the outputs OUT1 to OUT3 without external free-wheeling diodes. The high side drivers OUT4 to OUT5 are intended to drive resistive loads. Hence only a limited energy (E<0.5mJ) can be dissipated by the internal ESD-diodes in freewheeling condition. For inductive loads (L > 50μ H) an external free-wheeling diode connected to GND and the corresponding output is needed. ## 3.4 Diagnostic functions All diagnostic functions (over/open-load, power supply over-/undervoltage, temperature warning and thermal shutdown) are internally filtered and the condition has to be valid for at least 32µs (open-load: 1ms, respectively) before the corresponding status bit in the status registers will be set. The filters are used to improve the noise immunity of the device. Open-load and temperature warning function are intended for information purpose and will not change the state of the output drivers. On contrary, the over load and thermal shutdown condition will disable the corresponding driver (over load) or all drivers (thermal shutdown), respectively. Without setting the over-current recovery bit in the Input Data Register to logic high, the microcontroller has to clear the over-current status bit to reactivate the corresponding driver. Each driver has a corresponding over-current recovery bit. If this bit is set, the device will automatically switch-on the outputs again after a short recovery time. The duty cycle in over-current condition can be programmed by the SPI interface (12% or 25%). With this feature the device can drive loads with start-up currents higher than the over-current limits (e.g. inrush current of lamps, cold resistance of motors and heaters). ## 3.5 Over-voltage and under-voltage detection If the power supply voltage V_S rises above the over-voltage threshold $V_{SOV\ OFF}$ (typical 21V), the outputs OUT1 to OUT5 are switched to high impedance state to protect the load and the internal charge-pump is turned-off. When the voltage V_S drops below the undervoltage threshold $V_{SUV\ OFF}$ (UV-switch-OFF voltage), the output stages are switched to the high impedance to avoid the operation of the power devices without sufficient gate driving voltage (increased power dissipation). If the supply voltage V_S recovers to normal operating voltage the output stages return to the programmed state (input register 0: bit 12=0). If the undervoltage / overvoltage recovery disable bit is set, the automatic turn-on of the drivers is deactivated. The microcontroller needs to clear the status bits to reactivate the drivers. ## 3.6 Temperature warning and thermal shutdown If junction temperature rises above $T_{j\,TW}$ a temperature warning flag is set and is detectable via the SPI. If junction temperature increases above the second threshold $T_{j\,SD}$, the thermal shutdown bit will be set and power DMOS transistors of all output stages are switched off to protect the device. In order to reactivate the output stages the junction temperature must decrease below T_{jSD} - $T_{jSD\,HYS}$ and the thermal shutdown bit has to be cleared by the microcontroller. ## 3.7 Open-load detection The open-load detection monitors the load current in each activated output stage. If the load current is below the open-load detection threshold for at least 1 ms (t_{dOL}) the corresponding open-load bit is set in the status register. Due to mechanical/electrical inertia of typical loads a short activation of the outputs (e.g. 3ms) can be used to test the open-load status without changing the mechanical/electrical state of the loads. #### 3.8 Over load detection In case of an over-current condition a flag is set in the status register in the same way as open-load detection. If the over-current signal is valid for at least $t_{\rm ISC}$ =32 μ s, the over-current flag is set and the corresponding driver is switched off to reduce the power dissipation and to protect the integrated circuit. If the over-current recovery bit of the output is zero the microcontroller has to clear the status bits to reactivate the corresponding driver. #### 3.9 Current monitor The current monitor output sources a current image at the current monitor output which has a fixed ratio (1/10000) of the instantaneous current of the selected high side driver. The bits 9, 10 and 11 of the input data register 0 control which of the outputs OUT1 to OUT5 will be multiplexed to the current monitor output. The current monitor output allows a more precise analysis of the actual state of the load rather than the detection of an open- or overload condition. For example this can be used to detect the motor state (starting, free-running, stalled). Moreover, it is possible to regulate the power of the defroster more precise by measuring the monitor current. #### 3.10 **PWM** input Each driver has a corresponding PWM enable bit which can be programmed by the SPI interface. If the PWM enable bit is set, the outputs OUT1 to OUT5 are controlled by the logically AND-combination of the signal applied to the PWM input and the output control bit in input data register1. #### 3.11 **Cross-current protection** The three half-brides of the device are cross-current protected by an internal delay time. If one driver (LS or HS) is turned-off the activation of the other driver of the same half bridge will be automatically delayed by the cross-current protection time. After the cross-current protection time is expired the slew-rate limited switch-off phase of the driver will be changed to a fast turn-off phase and the opposite driver is turned-on with slew-rate limitation. Due to this behavior it is always guaranteed that the previously activated driver is totally turned-off before the opposite driver will start to conduct. #### 3.12 Programmable softstart function to drive loads with higher inrush current Loads with start-up currents higher than the over-current limits (e.g. inrush current of lamps, start current of motors and cold resistance of heaters) can be driven by using the programmable softstart function (i.e. overcurrent recovery mode). Each driver has a corresponding over-current recovery bit. If this bit is set, the device will automatically switchon the outputs again after a programmable recovery time. The duty cycle in over-current condition can be programmed by the SPI interface to be about 12% or 25%. The PWM modulated current will provide sufficient average current to power up the load (e.g. heat up the bulb) until the load reaches operating condition. The device itself cannot distinguish between a real overload and a non linear load like a light bulb. A real overload condition can only be qualified by time. As an example the microcontroller can switch on light bulbs by setting the over-current Recovery bit for the first 50ms. After clearing the recovery bit the output will be automatically disabled if the overload condition still exits. Example of programmable softstart function for inductive loads Figure 9. ## 4 Functional description of the SPI ## 4.1 Serial Peripheral Interface (SPI) This device uses a standard SPI to communicate with a microcontroller. The SPI can be driven by a microcontroller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. For this mode, input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. This device is not limited to microcontroller with a build-in SPI. Only three CMOS-compatible output pins and one input pin will be needed to communicate with the device. A fault condition can be detected by setting CSN to low. If CSN = 0, the DO-pin will reflect the status bit 0 (fault condition) of the device which is a logical-or of all bits in the status registers 0 and 1. The microcontroller can poll the status of the device without the need of a full SPI-communication cycle. Note: In contrast to the SPI-standard the least significant bit (LSB) will be transferred first (see Figure 3). ## 4.2 Chip Select Not (CSN) The input pin is used to select the serial interface of this device. When CSN is high, the output pin (DO) will be in high impedance state. A low signal will activate the output driver and a serial communication can be started. The state when CSN is going low until the rising edge of CSN will be called a communication frame. If the CSN-input pin is driven above 7.5V, the L9951 will go into a test mode. In the test mode the DO will go from tristate to active mode. ## 4.3 Serial Data In (DI) The input pin is used to transfer data serial into the device. The data applied to the DI will be sampled at the rising edge of the CLK signal and shifted into an internal 16 bit shift register. At the rising edge of the CSN signal the contents of the shift register will be transferred to Data Input Register. The writing to the selected Data Input Register is only enabled if exactly 16 bits are transmitted within one communication frame (i.e. CSN low). If more or less clock pulses are counted within one frame the complete frame will be ignored. This safety function is implemented to avoid an activation of the output stages by a wrong communication frame. Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected ICs is recommended. Note: ## 4.4 Serial Data Out (DO) The data output driver is activated by a logical low level at the CSN input and will go from high impedance to a low or high level depending on the status bit 0 (fault condition). The first rising edge of the CLK input after a high to low transition of the CSN pin will transfer the content of the selected status register into the data out shift register. Each subsequent falling edge of the CLK will shift the next bit out. ## 4.5 Serial clock (CLK) The CLK input is used to synchronize the input and output serial bit streams. The data input (DI) is sampled at the rising edge of the CLK and the data output (DO) will change with the falling edge of the CLK signal. ## 4.6 Input data register The device has two input registers. The first bit (bit 0) at the DI-input is used to select one of the two input registers. All bits are first shifted into an input shift register. After the rising edge of CSN the contents of the input shift register will be written to the selected input data register only if a frame of exact 16 data bits are detected. Depending on bit 0 the contents of the selected status register will be transferred to DO during the current communication frame. Bit 1-8 control the behavior of the corresponding driver. The bits 9,10 and 11 are used to control the current monitor multiplexer. Bit 15 is used to reset all status bits in both status registers. The bits in the status registers will be cleared after the current communication frame (rising edge of CSN). ## 4.7 Status register This devices uses two status registers to store and to monitor the state of the device. Bit 0 is used as a fault bit and is a logical-NOR combination of bits 1-14 in both status registers. The state of this bit can be polled by the microcontroller without the need of a full SPI-communication cycle (see *Figure 8*.). If one of the over-current bits is set, the corresponding driver will be disabled. If the over-current recovery bit of the output is not set the microcontroller has to clear the over-current bit to enable the driver. If the thermal shutdown bit is set, all drivers will go into a high impedance state. Again the microcontroller has to clear the bit to enable the drivers. #### 4.8 Test mode The test mode can be entered by rising the CSN input to a voltage higher than 7.5V. In the test mode the inputs CLK, DI, PWM and the internal 2MHz CLK can be multiplexed to data output DO for testing purpose. Furthermore the over-current thresholds are reduced by a factor of 4 to allow EWS testing at lower current. The internal logic prevents that the Hi-Side and Low-Side driver of the same half-bridge can be switched-on at the same time. In the test mode this combination is used to multiplex the desired signals to the CM output according to table 18 and 19. Table 18. Test mode | LS1 HS1 | LS2 HS2 | LS3 HS3 | DO | LS1 HS1 | LS2 HS2 | LS3 HS3 | СМ | |-------------|-------------|-------------|---------|-------------|-------------|-------------|----------| | ! (both HI) | ! (both HI) | ! (both HI) | NoError | ! (both HI) | ! (both HI) | ! (both HI) | N.C | | both HI | ! (both HI) | ! (both HI) | DI | both HI | ! (both HI) | ! (both HI) | Tsense1 | | ! (both HI) | both HI | ! (both HI) | CLK | ! (both HI) | both HI | ! (both HI) | Tsense2 | | both HI | both HI | ! (both HI) | INT_CLK | both HI | both HI | ! (both HI) | Tsense3 | | ! (both HI) | ! (both HI) | both HI | PWM | ! (both HI) | ! (both HI) | both HI | Tsense4 | | | | | | both HI | ! (both HI) | both HI | N.C | | | | | | ! (both HI) | both HI | both HI | 5μA Iref | | | | | | both HI | both HI | both HI | Vbandgap | Table 19. SPI - Input data and status register 0 | Input register 0 (write) | | | Status register 0 (read) | | | |--------------------------|--|---|--------------------------------|---|--| | Bit | Name | Comment | Name | Comment | | | 15 | Reset bit | If reset bit is set both status registers will be cleared after rising edge of CSN input. | Always 1 | A broken VCC-or SPI-
connection of the L9951 can
be detected by the
microcontroller, because all 16
bits low or high is not a valid
frame. | | | 14 | Disable open-
load | If the disable open-load bit is set, the open-load status bits will be ignored for the NonErrorBit calculation. | V _S
over-voltage | In case of an over-voltage or undervoltage event the corresponding bit is set and the outputs are deactivated. | | | 13 | OC recovery duty cycle | This bit defines in combination with the over-current recovery bit (input register 1) the duty cycle in over-current condition of an activated driver. If | V _S
undervoltage | If VS voltage recovers to normal operating conditions outputs are reactivated | | | | 0: 12% 1: 25% | temperature warning bit is
set, L9951 will always use
the lower duty cycle | | automatically. | | | 12 | Overvoltage/
under-voltage
recovery
disable | If this bit is set the microcontroller has to clear the status register after undervoltage/overvoltage event to enable the outputs. | Thermal
shutdown | In case of an thermal shutdown all outputs are switched off. The microcontroller has to clear the TSD bit by setting the reset bit to reactivate the outputs. | | Table 19. SPI - Input data and status register 0 (continued) | | Input re | gister 0 (write) | Status register 0 (read) | | | | |-----|--------------------------------|---|---------------------------|--|--|--| | Bit | Name | Comment | Name | Comment | | | | 11 | | Following current image (1/10.000) of the HS driver will be multiplexed to CM output: | Temperature warning | This bit is for information purpose only. It can be used for a thermal management by the microcontroller to avoid a thermal shutdown. | | | | 10 | Current monitor
select bits | Bit 11 Bit 10 Bit 9 Output 0 0 0 OUT1 0 0 1 OUT2 0 1 0 OUT3 0 1 1 OUT4 1 0 0 OUT5 | Not ready bit | After switching the device from standby mode to active mode an internal timer is started to allow charge pump to settle before the outputs can be activated. This bit is cleared automatically after start up time has finished. Since this bit is controlled by internal clock it can be used for synchronizing testing events (e.g. measuring filter times). | | | | 9 | | | 0 | Not used | | | | 8 | OUT5 - HS
on/off | | OUT5-HS
over - current | | | | | 7 | OUT4 - HS
on/off | If a bit is set the selected output driver is switched on. If the corresponding PWM | OUT4-HS
over - current | In case of an over-current event the corresponding status bit is set and the output driver | | | | 6 | OUT3 - HS
on/off | enable bit is set (Input
Register 1) the driver is only
activated if PWM input | OUT3-HS
over - current | is disabled. If the over-current recovery enable bit is set | | | | 5 | OUT3 - LS
on/off | signal is high. The outputs of OUT1-OUT3 are half | OUT3-LS
over - current | (Input Register 1) the output will be automatically reactivated after a delay time | | | | 4 | OUT2 - HS
on/off | bridges. If the bits of HS-
and LS-driver of the same
half bridge are set, the
internal logic prevents that
both drivers of this output
stage can be switched on | OUT2-HS
over - current | resulting in a PWM modulated current with a programmable duty cycle (Bit 13). | | | | 3 | OUT2 - LS
on/off | | OUT2-LS
over - current | If the over-current recovery bit is not set the microcontroller | | | | 2 | OUT1 - HS
on/off | simultaneously in order to avoid a high internal current | OUT1-HS
over - current | has to clear the over-current bit (reset bit) to reactivate the output driver. | | | | 1 | OUT1 - LS
on/off | from VS to GND. | OUT1-LS
over - current | , | | | | 0 | 0 | | No error bit | A logical NOR-combination of
all bits 1 to 14 in both status
registers. If bit 14 (disable
open-load) is set, the open-
load status will be ignored. | | | **47/**