

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Current Transducer LA 125-P/SP4

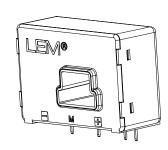
For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Electrical data

$I_{\scriptscriptstyle{PN}}$	Primary nominal cur	rent rms		125	5		Α
$I_{\scriptscriptstyle{PM}}$	Primary current, measuring range			0 ± 300			Α
$R_{\rm M}$	Measuring resistance		$T_{A} =$	$T_{A} = 70 ^{\circ}\text{C} \mid T_{A} = 85 ^{\circ}\text{C}$			
			$R_{\text{M m}}$	$_{\text{nin}}R_{_{ ext{M max}}}$		$_{nin} R_{Mmax}$	
	with ± 12 V	$@ \pm 125 A_{max}$	0	89	0	85	Ω
		@ ± 200 A max	0	29	0	25	Ω
	with ± 15 V	@ ± 125 A _{max}	0	134	0	130	Ω
		@ ± 200 A max	0	54	0	50	Ω
		@ ± 300 A _{max}	0	11	0	7	Ω
$I_{\scriptscriptstyle{\mathrm{SN}}}$	Secondary nominal current rms			62.5			mΑ
K_{N}	Conversion ratio			1 : 2000			
Ü	Supply voltage (± 5	%)		± 1	2 1	5	V
$I_{_{ m C}}$	Current consumption	า		16	(@±1	15 V) + $I_{ m S}$	mΑ

Accuracy - Dynamic performance data

X	Accuracy @ I_{PN} , T_{A} = 25 °C @ ± 15 V (± 5 %)	± 0.60		%
	@ ± 12 15 V (± 5 %)	± 0.80		%
$\boldsymbol{\varepsilon}_{\!\scriptscriptstyle L}$	Linearity error	< 0.15		%
_		Тур	Max	
$I_{\scriptscriptstyle m O}$	Offset current @ I_P = 0, T_A = 25 °C		± 0.20	mΑ
I_{\scriptscriptstyleOM}	Magnetic offset current ¹⁾ @ $I_P = 0$ and specified R_M ,			
	after an overload of 3 x I_{PN}		± 0.25	mΑ
$I_{\scriptscriptstyle{ extsf{OT}}}$	Temperature variation of I_{\odot} - 25 °C + 85 °C	± 0.20	± 0.50	mΑ
	- 40 °C 25 °C	± 0.30	± 0.80	mΑ
$t_{\sf ra}$	Reaction time	< 500		ns
t _r	Step response time $^{2)}$ to 90 % of I_{PN}	< 1		μs
d <i>i</i> /dt	di/dt accurately followed 4)	> 200		A/µs
BW	Frequency bandwidth 4) (- 1 dB)	DC 1	100	kHz


General data

$T_{_{\rm A}}$	Ambient operating temperature		- 40 + 85	°C
$T_{\rm s}$	Ambient storage temperature		- 45 + 100	°C
$R_{\rm s}$	Secondary coil resistance	@ $T_A = 70 ^{\circ}C$	76	Ω
Ü		@ $T_A = 85 ^{\circ}\text{C}$	80	Ω
m	Mass		55	g
	Standard		EN 50155: 1995	

Notes: 1) Result of the coercive field of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- ³⁾ The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer.

$I_{_{\mathrm{PN}}}$ = 125 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special features

- $K_N = 1:2000$
- T_A° = -40 °C .. + 85 °C
- Potted.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Traction.

Current Transducer LA 125-P/SP4

Isolation characteristics				
$U_{_{\rm d}}$	Rms voltage for AC insulation test, 50 Hz, 1 min	4.5	kV	
ū		8.4 1)	kV	
		Min		
$d_{_{\mathrm{Cp}}}$	Creepage distance	8.8	mm	
$oldsymbol{d}_{ extsf{CP}} \ oldsymbol{d}_{ extsf{CI}}$	Clearance	8.8	mm	
CTI	Comparative Tracking Index (group IIIa)	175		

Note: 1) Voltage measured with a primary bar in low position in the through hole.

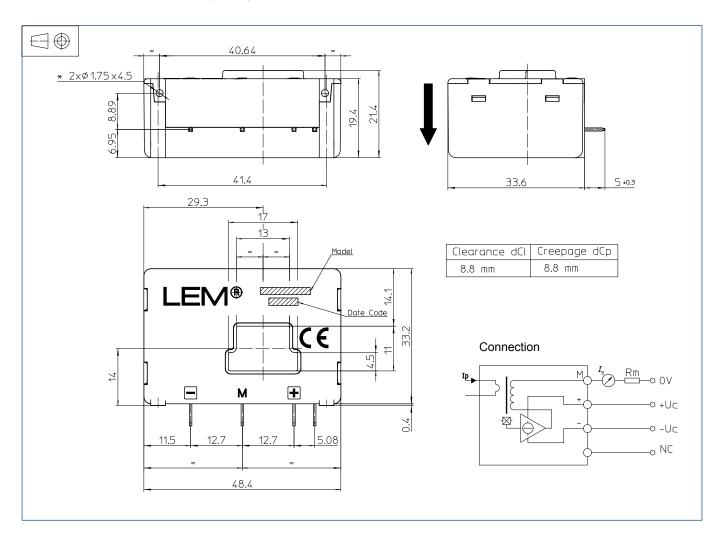
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 125-P/SP4 (in mm)

Mechanical characteristics

Recommended PCB hole

General tolerance ± 0.2 mm
 Primary through-hole or 13 × 4.5 mm

• Fastening & Connection of secondary 4 pins

0.63 x 0.56 mm 0.9 mm

• Supplementary fastening 2 holes Ø 1.75 mm

Recommended PCB hole 2.4 mm
Recommended screws PT KA 22 x 6
Recommended fastening torque 0.5 N·m

Remarks

- $I_{\rm S}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.