

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Current Transducer LA 25-NP

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary

$I_{DN} = 5-6-8-12-25 \text{ At}$

ectrical	-1-4-

I _{PN}	Primary nominal current rms Primary current, measuring range			25 0 ± 36			At At
R _M	Measuring resistance @		$T_{A} = 1$	$T_{\Delta} = 70^{\circ}C$ $T_{\Delta} = 85^{\circ}C$			
•••			\mathbf{R}_{Mmin}	\mathbf{R}_{Mmax}	R _{M min}	$R_{\text{M max}}$	
	with ± 15 V	@ \pm 25 At _{max}	100	320	100	315	Ω
		@ ± 36 At max	100	190	100	185	Ω
I _{SN}	Secondary nominal			25	5		mΑ
K _N	Conversion ratio			1-	2-3-4-5	5 : 1000	
V _c	Supply voltage (± 5 %)			± 15			V
I _C	Current consumptio	n		10) + I _s		mA

Accuracy - Dynamic performance data

X	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$		± 0.5		%
$\mathbf{E}_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Linearity error		< 0.2		%
_			Тур	Max	
Io	Offset current 1) @ $I_p = 0$, $T_A = 25$	°C	± 0.05	± 0.15	mΑ
I _{OM}	Magnetic offset current 2) @ I _P =	0 and specified $\mathbf{R}_{_{\mathrm{M}}}$,			
	after an o	overload of 3 x I _{PN}	± 0.05	± 0.15	mΑ
I_{OT}	Temperature variation of ${ m I}_{ m O}$	0°C + 25°C	± 0.06	± 0.25	mΑ
		+ 25°C + 70°C	± 0.10	± 0.35	mA
		- 25°C + 85°C		± 0.5	mA
		- 40°C + 85°C		± 1.2	mΑ
t _r	Response time 3) to 90 % of I _{PN} s	tep	< 1		μs
di/dt	di/dt accurately followed		> 50		A/µs
BW	Frequency bandwidth (- 1 dB)		DC 1	50	kHz

General data

$egin{array}{c} oldsymbol{T}_{A} \ oldsymbol{T}_{S} \ oldsymbol{R}_{P} \end{array}$	Ambient operating temperature Ambient storage temperature Primary coil resistance per turn	@ T _A = 25°C	- 40 + 85 - 45 + 90 < 1.25	°C °C mΩ
$R_{_{\mathrm{S}}}$	Secondary coil resistance	0 T _A = 70°C	110	Ω
		0 T _A = 85°C	115	Ω
$R_{_{\rm IS}}$	Isolation resistance @ 500 V, T _A	= 25°C	> 1500	$M\Omega$
m	Mass		22	g
	Standards		EN 50178: 19	997

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Isolated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- · AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

Application domain

Industrial.

- Notes: 1) Measurement carried out after 15 mn functioning
 - 2) The result of the coercive field of the magnetic circuit
 - 3) With a di/dt of 100 A/µs.

Current Transducer LA 25-NP

Isolation characteristics						
$\mathbf{V}_{_{\mathrm{d}}}$	Rms voltage for AC insulation test, 50 Hz, 1 min	2.5	kV			
v w	Impulse withstand voltage 1.2/50 µs	9	kV			
		Min				
dCp	Creepage distance	10.63	mm			
dCI	Clearance	10.63	mm			
CTI	Comparative Tracking Index (group IIIa)	175				

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1	
dCp, dCl, $\hat{\mathbf{V}}_{_{\mathrm{w}}}$	Rated insulation voltage	Nominal voltage	
Basic insulation	1700 V	1700 V	
Reinforced insulation	600 V	600 V	

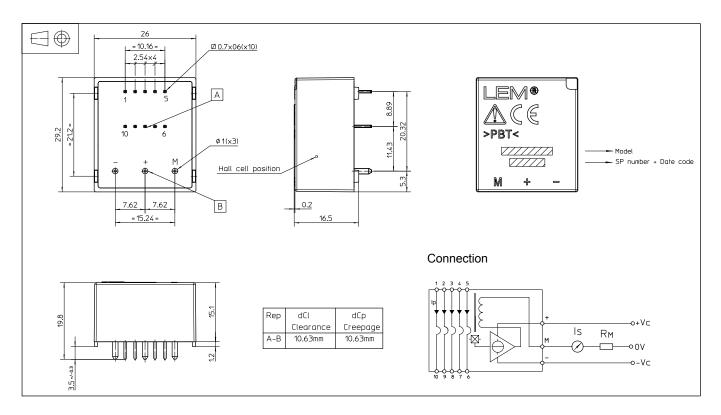
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 25-NP (in mm)

	current	Nominal	Turns ratio	Primary	Primary insertion	Recommended
nominal	maximum		K _N			connections
I _{PN} [A]	I _P [A]	I _{SN} [IIIA]		IX _P [11122]	- _P [μι ι]	
25	36	25	1 / 1000	0.3	0 033	5 4 3 2 1 IN O-O-O-O
25	30	20	17 1000	0.5	0.023	O-O-O-O OUT 6 7 8 9 10
10	10	24	2 / 1000	1 1	0.00	5 4 3 2 1 IN O-Q O-O-O
12	10	24	27 1000	1.1	0.09	O-O O-O-O OUT 6 7 8 9 10
	10	0.4	0 / 1000	0.5	2.24	5 4 3 2 1 IN O-Q Q O-O
8	12	24	3 / 1000	2.5	0.21	0-0 0 0-0 OUT 6 7 8 9 10
_	_	_				5 4 3 2 1 IN Q 0—Q Q 0
6	9	24	4 / 1000	4.4	0.37	0 0-0 0 OUT 6 7 8 9 10
						5 4 3 2 1 IN O O O O
5	7	25	5 / 1000	6.3	0.58	0 0 0 0 OUT 6 7 8 9 10
	1 _{PN} [A] 25 12 8	I _{PN} [A] I _P [A] 25 36 12 18 8 12 6 9	I _{PN} [A] I _P [A] I _{SN} [mA] 25 36 25 12 18 24 8 12 24 6 9 24	Initial Indication Indication I _{PN} [A] I _P [A] 25 36 25 1 / 1000 12 18 24 2 / 1000 8 12 24 3 / 1000 6 9 24 4 / 1000	Initial Indication In Ind	Instruction Indication Indication In Problem (Problem) Indication In

Mechanical characteristics

- General tolerance
- Fastening & connection of primary
- Fastening & connection of secondary
- Recommended PCB hole
- ± 0.2 mm
- 10 pins 0.7 x 0.6 mm
- 3 pins Ø 1 mm
- 1.2 mm

Remarks

- I_S is positive when I_P flows from terminals 1, 2, 3, 4, 5 to terminals 10, 9, 8, 7, 6.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

Page 3/3