

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Current Transducer LA 25-P

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Electrical data

$I_{_{\mathrm{PN}}}$ $I_{_{\mathrm{PM}}}$	Primary nominal rms Primary current, mea				25 0	± 55		A A
$R_{\rm M}$	Measuring resistance		$T_{A} = 70 ^{\circ}\text{C} T_{A} = 85 ^{\circ}\text{C}$					
				$R_{ m Mmin}$	$R_{ m Mmax}$	$R_{\text{M min}}$	$R_{ m Mmax}$	
	with ± 12 V	$@ \pm 25 A_{max}$		10	280	60	275	Ω
		@ \pm 55 A _{max}		10	80	60	75	Ω
	with ± 15 V	@ ± 25 A _{max}		50	400	135	395	Ω
		@ ± 55 A _{max}		50	140	135	135	Ω
$I_{\scriptscriptstyle{SN}}$	Secondary nominal i				25			mΑ
$K_{\rm N}$	Conversion ratio				1:1	1000		
$U_{\rm c}$	Supply voltage (± 5	%)			± 12	2 15		V
$I_{_{ m C}}$	Current consumption	1			10 (@±15	V) + $I_{ m S}$	mA

Accuracy - Dynamic performance data

Χ	Accuracy @ I_{PN} , $T_A = 25 ^{\circ}C$ @ $\pm 15 ^{\circ}V (\pm 5 ^{\circ}W)$	± 0.95		%
	@ ± 12 15 V (± 5 %)	± 1.25		%
$\boldsymbol{\varepsilon}_{\!\scriptscriptstyle L}$	Linearity error	< 0.15		%
_		Тур	Max	
$I_{\scriptscriptstyle extsf{O}}$	Offset current @ I_P = 0, T_A = 25 °C		± 0.2	mA
I_{\scriptscriptstyleOM}	Magnetic offset current ¹⁾ @ $I_P = 0$ and specified R_M ,			
	after an overload of 3 $ imes$ I_{PN}		± 0.3	mΑ
$I_{\scriptscriptstyle{ extsf{OT}}}$	Temperature variation of I_{\odot} 0 °C + 70 °C	± 0.1	± 0.5	mΑ
	- 25 °C + 85 °C	± 0.1	± 0.6	mΑ
$t_{\sf ra}$	Reaction time	< 500		ns
$t_{\rm r}$	Step response time to 90 % of $I_{\rm PN}$	< 1		μs
d <i>i</i> ∕d <i>t</i>	di/dt accurately followed	> 200		A/µs
BW	Frequency bandwidth (- 1 dB)	DC 2	200	kHz

General data

T_{A} T_{S}	Ambient operating temperature Ambient storage temperature		- 25 + 85 - 40 + 90	°C
R _s	Resistance of secondary winding	@ T _A = 70 °C	80	Ω
5	, ,	@ T _A = 85 °C	85	Ω
m	Mass	- "	24	g
	Standard		EN 50178: 1997	

Note: 1) Result of the coercive field of the magnetic circuit.

$I_{_{\mathrm{PN}}} = 25 \, \mathrm{A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.

Current Transducer LA 25-P

Insulation coordination			
$U_{_{ m d}}$	Rms voltage for AC insulation test, 50 Hz, 1 min	3	kV
\hat{U}_{W}^{u}	Impulse withstand voltage 1.2/50 µs	5.7	kV
••		Min	
$d_{_{\mathrm{Cp}}}$	Creepage distance	5	mm
$oldsymbol{d}_{ extsf{CP}}$	Clearance	5	mm
CTI	Comparative tracking index (group I)	600	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1		
$oldsymbol{d}_{ extsf{Cp}},oldsymbol{d}_{ extsf{Cl}},\hat{oldsymbol{U}}_{ extsf{W}}$	Rated insulation voltage	Nominal voltage		
Basic insulation	500 V	500 V		
Reinforced insulation	250 V	250 V		

Safety

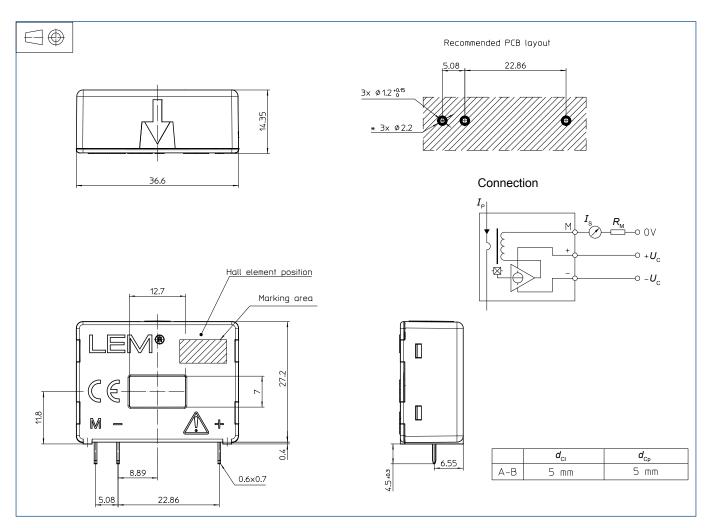
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 25-P (in mm)

Mechanical characteristics

General tolerance ± 0.2 mm
 Primary through-hole 12.7 × 7 mm
 Fastening & connection of secondary 3 pins 0.6 × 0.7 mm
 Recommended PCB hole Ø 1.2 mm

Remarks

- $I_{\rm S}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site:
 Products/Product Documentation.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.