: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LA1787M

Monolithic Linear IC

Single-Chip Tuner IC for Car Radios

Overview

The LA1787M integrates all six blocks required in a car radio tuner on a single chip.

Functions

- FM front end
- FM IF
- FM/AM switch
- Noise canceller
- MRC
- AM up-conversion

Features

- Improved noise reduction methods
— The FM front end provides excellent 3-signal characteristics equivalent to those of the LA1193M.
- Superlative listenability due to improved medium and weak field noise canceller characteristics.
- Improved separation characteristics
- Anti-birdie filter
— Improved AM and FM thermal characteristics
- Excellent FM signal meter linearity
- Modified N.C. circuit for improved noise rejection
- Improved AM adjacent channel interference characteristics ($\Delta 40 \mathrm{kHz}$)
- Double conversion AM tuner (up conversion) Reduces the number of external components required as compared to earlier double conversion tuners, in particular, no crystal is required (when used in conjunction with the LC72144).
- Sample-to-sample variation reduction circuit built into the FM IF circuit.
(Fixed resistors are used for the SD, keyed AGC, mute on adjustment, ATT, SNC, and HCC functions.)
- Improved FM separation temperature characteristics
- The LA1787 inherits the block arrangement of the LA1780M and supports pin-compatible designs.

Package Dimensions

unit : mm (typ)
QIP64E(14X14)

Specifications

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{CC}} 1 \mathrm{max}$	Pins 6,40, and 61	9	V
	$\mathrm{~V}_{\mathrm{CC}} 2 \mathrm{max}$	Pins $7,45,54,59$, and 60	V	
Allowable power dissipation	$\mathrm{Pd} \max$	$\mathrm{Ta} \leq 55^{\circ} \mathrm{C}$	mW	
Operating temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

Operating Conditions at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}	Pins $6,7,40,45,54,59,60$, and 61	8	V
	$\mathrm{~V}_{\mathrm{CC}} \mathrm{ST}$ IND	Pin 26	V	V
Operating supply voltage range	V_{CC} op		7.5 to 9.0	V

Operating Characteristics at $\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathbf{8 . 0} \mathrm{V}$, in the specified test cricuit for the FM IF input

Parameter	Symbol	Conditions	Ratings			unit
			min	typ	max	
[FM Characteristics] At the FM IF input						
Current drain	ICco-FM	No input, I 40 + I 45 + $\mathrm{I} 54+\mathrm{I} 59+\mathrm{I} 60$ + I 61	60	94	110	mA
Demodulation output	V_{O}-FM	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 1 \mathrm{kHz}, 100 \% \mathrm{mod}$, The pin 15 output	205	310	415	mVrms
Pin 31 demodulation output	V_{O}-FM31	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 1 \mathrm{kHz}, 100 \% \mathrm{mod}$, The pin 31 output	190	295	380	mVrms
Channel balance	CB	The ratio between pins 15 and 16 at $10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 1 \mathrm{kHz}$	-1	0	+1	dB
Total harmonic distortion	THD-FM mono	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 1 \mathrm{kHz}, 100 \%$ mod, pin 15		0.3	1	\%
Signal-to-noise ratio: IF	S/N-FM IF	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 1 \mathrm{kHz}, 100 \%$ mod, pin 15	75	82		dB
AM suppression ratio: IF	AMR IF	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 1 \mathrm{kHz}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}, 30 \% \mathrm{AM}$, pin 15	55	68		dB
Muting attenuation	Att-1	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 1 \mathrm{kHz}$. The pin 15 attenuation when V 33 goes from 0 to 2 V	5	10	15	dB
	Att-2	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 1 \mathrm{kHz}$. The pin 15 attenuation when V 33 goes from 0 to $2 \mathrm{~V}^{* 1}$	15	20	25	dB
	Att-3	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 1 \mathrm{kHz}$. The pin 15 attenuation when V 33 goes from 0 to 2 V *2	28	33	38	dB
Separation	Separation	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, \mathrm{~L}+\mathrm{R}=90 \%$, pilot $=10 \%$. The pin 15 output ratio	30	40		dB
Stereo on level	ST-ON	The pilot modulation such that $\mathrm{V} 26<0.5 \mathrm{~V}$	1.2	2.4	4.4	\%
Stereo off level	ST-OFF	The pilot modulation such that $\mathrm{V} 26>3.5 \mathrm{~V}$	0.6	1.6		\%
Main total harmonic distortion	THD-Main L	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, \mathrm{~L}+\mathrm{R}=90 \%$, pilot $=10 \%$. The pin 15 signal		0.3	1.2	\%
Pilot cancellation	PCAN	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu \text {, pilot }=10 \% \text {. }$ The pin 15 signal/the pilot level leakage. DIN audio	20	30		dB
SNC output attenuation	AttSNC	$\begin{aligned} & 10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, \mathrm{~L}-\mathrm{R}=90 \%, \text { pilot }=10 \% . \\ & \text { V28 = } 3 \mathrm{~V} \rightarrow 0.6 \mathrm{~V} \text {, pin } 15 \end{aligned}$	1	5	9	dB
HCC output attenuation	AttHCC-1	$\begin{aligned} & 10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 10 \mathrm{kHz}, \mathrm{~L}+\mathrm{R}=90 \% \text {, pilot }=10 \% . \\ & \mathrm{V} 29=3 \mathrm{~V} \rightarrow 0.6 \mathrm{~V} \text {, pin } 15 \end{aligned}$	0.5	4.5	8.5	dB
	AttHCC-2	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu, 10 \mathrm{kHz}, \mathrm{~L}+\mathrm{R}=90 \% \text {, }$ $\text { pilot }=10 \% . \mathrm{V} 29=3 \mathrm{~V} \rightarrow 0.1 \mathrm{~V} \text {, pin } 15$	6	10	14	dB
Input limiting voltage	Vi-lim	$100 \mathrm{~dB} \mu, 10.7 \mathrm{MHz}, 30 \%$ modulation. The IF input such that the input reference output goes down by 3 dB	33	40	47	dB μ
Muting sensitivity	Vi-mute	The IF input level (unmodulated) when $\mathrm{V} 33=2 \mathrm{~V}$	27	35	43	dB μ
SD sensitivity	SD-sen1 FM	The IF input level (unmodulated) (over 100 mV rms) such that the IF counter buffer output goes on	54	62	70	dB μ
	SD-sen2 FM		54	62	70	dB μ
IF counter buffer output	$\mathrm{V}_{\text {IFBUFF-FM }}$	$10.7 \mathrm{MHz}, 100 \mathrm{~dB} \mu$, unmodulated. The pin 23 output	130	200	270	mVrms
Signal meter output	$V_{S M} \mathrm{FM}-1$	No input. The pin 24 DC output, unmodulated	0.0	0.1	0.3	V
	$\mathrm{V}_{\text {SM }}$ FM-2	$50 \mathrm{~dB} \mu$. The pin 24 DC output, unmodulated	0.4	1.0	1.5	V
	$\mathrm{V}_{\text {SM }}$ FM-3	$70 \mathrm{~dB} \mu$. The pin 24 DC output, unmodulated	2.0	2.7	3.5	V
	$\mathrm{V}_{\text {SM }}$ FM-4	$100 \mathrm{~dB} \mu$. The pin 24 DC output, unmodulated	4.7	5.5	6.2	V
Muting bandwidth	BW-mute	$100 \mathrm{~dB} \mu$. The bandwidth when $\mathrm{V} 33=2 \mathrm{~V}$, unmodulated	150	220	290	kHz
Mute drive output	$\mathrm{V}_{\text {MUTE-100 }}$	$100 \mathrm{~dB} \mu, 0 \mathrm{~dB} \mu$. The pin 33 DC output, unmodulated	0.00	0.03	0.20	V

LA1787M

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			unit
			min	typ	max	
[FM FE Mixer Input						
N-AGC on input	V_{N}-AGC	83 MHz , unmodulated. The input such that the pin 2 voltage is 2.0 V or below	81	88	95	dB μ
W-AGC on input	$\mathrm{V}_{\mathrm{w}} \mathrm{AGC}$	83 MHz , unmodulated. The input such that the pin 2 voltage is 2.0 V or below. (When the keyed AGC is set to 4.0 V .)	104	110	116	dB μ
Conversion gain	A.V	$83 \mathrm{MHz}, 80 \mathrm{~dB} \mu$, unmodulated. The FE CF output	19	30	48	mVrms
Oscillator buffer output	V ${ }_{\text {OScbuFFFm }}$	No input	85	110	165	mVrms
[NC Block] NC input (pin 30)						
Gate time	τ GATE1	$\mathrm{f}=1 \mathrm{kHz}$, for a $1-\mu \mathrm{s}, 100-\mathrm{mV}$ p-o pulse		55		$\mu \mathrm{s}$
Noise sensitivity	SN	The level of a $1=k H z, 1-\mu \mathrm{s}$ pulse input that starts noise canceller operation. Measured at pin 30.		40		mVp-o
$N C$ effect	SN-NC	The pulse rejection effect provided by the noise canceller. For a repeated $1-\mu \mathrm{s}$ wide pulse, frequency $=10 \mathrm{kHz}$, 150 mV p -o. The ratio of the FM mode pin 15 output referenced to the AM mode pin 15 output (effective value)	5			
[Multipath Rejection Circuit] MRC input (pin 27)						
MRC output	VMRC	$\mathrm{V} 24=5 \mathrm{~V}$	2.2	2.3	2.4	V
MRC operating level	MRC-ON	The pin 32 input level at $f=70 \mathrm{kHz}$ such that pin 24 goes to 5 V and pin 27 goes to 2 V	10	15	20	mVrms
[AM Characteristics] AM ANT input						
Practical sensitivity	S/N-30	$1 \mathrm{MHz}, 30 \mathrm{~dB} \mu, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}, 30 \%$ modulation, pin 15	20			dB
Detector output	V_{O}-AM	$1 \mathrm{MHz}, 74 \mathrm{~dB} \mu, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}, 30 \%$ modulation, pin 15	130	195	270	mVrms
Pin 31 detector output	V_{O}-AM31	$1 \mathrm{MHz}, 74 \mathrm{~dB} \mu, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}, 30 \%$ modulation, pin 31	110	175	230	mVms
AGC F.O.M.	$\mathrm{V}_{\text {AGC-FOM }}$	$1 \mathrm{MHz}, 74 \mathrm{~dB} \mu$, referenced to the output, the input amplitude such that the output falls by 10 dB . Pin 15	51	56	61	dB
Signal-to-noise ratio	S/N-AM	$1 \mathrm{MHz}, 74 \mathrm{~dB} \mu, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}, 30 \%$ modulation	47	52		dB
Total harmonic distortion	THD-AM	$1 \mathrm{MHz}, 74 \mathrm{~dB} \mu, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}, 80 \%$ modulation		0.3	1	\%
Signal meter output	$V_{\text {SM }}$ AM-1	No input	0.0	0.2	0.5	V
	$\mathrm{V}_{\text {SM }} \mathrm{AM}-2$	$1 \mathrm{MHz}, 130 \mathrm{~dB} \mu$, unmodulated	4.8	6	7.3	V
Oscillator buffer output	Voscbuff am1	No input, the pin 15 output	185	230		mVrms
Wide band AGC sensitivity	W-AGCsen1	1.4 MHz , the input when $\mathrm{V} 46=0.7 \mathrm{~V}$	92	98	104	dB μ
	W-AGCsen2	1.4 MHz , the input when $\mathrm{V} 46=0.7 \mathrm{~V}$ (seek mode)	83	89	95	dB μ
SD sensitivity	SD-sen1 AM	1 MHz , the ANT input level such that the IF counter output turns on.	24	30	36	dB μ
	SD-sen2 AM	1 MHz , the ANT input level such that the SD pin goes to the on state.	24	30	36	dB μ
IF buffer output	VIFBUFF-AM	$1 \mathrm{MHz}, 74 \mathrm{~dB} \mu$, unmodulated. The pin 23 output	200	290		mVrms

Note: These measurements must be made using the either the IC-51-0644-824 or KS8277 IC socket (manufactured by Yamaichi Electronics).

* 1. When the resistor between pin 58 and ground is $200 \mathrm{k} \Omega$.
* 2. When the resistor between pin 58 and ground is $30 \mathrm{k} \Omega$.

Function List

FM Front End (Equivalent to the Sanyo LA1193)

- Double input type double balanced mixer
- Pin diode drive AGC output
- MOSFET second gate drive AGC output
- Keyed AGC adjustment pin
- Differential IF amplifier
- Wide band AGC sensitivity setting pin, and narrow band AGC sensitivity setting pin
- Local oscillator

FM IF

- IF limiter amplifier
- S-meter output (also used for AM) 6-stage pickup
- Multipath detection pin (shared FM signal meter)
- Quadrature detection
- AF preamplifier
- AGC output
- Band muting
- Weak input muting
- Soft muting adjustment pin
- Muting attenuation adjustment pin
- IF counter buffer output (also used for AM)
- SD (IF counter buffer on level) adjustment pin
- SD output (active high) (also used for AM)

Noise Canceller

- High-pass filter (first order)
- Delay circuit based low-pass filter (fourth order)
- Noise AGC
- Pilot signal compensation circuit
- Noise sensitivity setting pin
- Function for disabling the noise canceller in AM mode

Multiplex Functions

- Adjustment-free VCO circuit
- Level follower type pilot canceller circuit
- HCC (high cut control)
- Automatic stereo/mono switching
- VCO oscillation stop function (AM mode)
- Forced monaural
- SNC (stereo noise controller)
- Stereo display pin
- Anti-birdie filter

AM

- Double balanced mixer (1st, 2nd)
- IF amplifier
- Detection
- RF AGC (narrow/wide)
- Pin diode drive pin
- IF AGC
- Signal meter output (also used for FM)
- Local oscillator circuits (first and second)
- Local oscillator buffer output
- IF counter buffer output (also used by the FM IF)
- SD (IF counter buffer on level) adjustment pin
- SD output (active high) (also used for AM)
- Wide AGC
- Detection output frequency characteristics adjustment pin (low cut, high deemphasis)
- AM stereo buffer

MRC (multipath noise rejection circuit)

AM/FM switching output (linked to the FM V_{CC})

LA1787M

Operating Characteristics and Symbols Used in the Test Circuit Diagrams

Switches (SW)
Switch on $=1, S W$ off $=0$
There are two switches that use signal transfer.

- SW2: switches between the mixer input and the IF input.
- SW4: switches between noise canceler input and IF output + noise canceler input.

Types of SG used

PG1 (AC1)	Used for noise canceler testing. A pulse generator and an AF oscillator are required.
AC2	Used for FM front end testing. Outputs an 83 MHz signal.
AC3	Used for FM IF, noise canceler, and MPX testing. Outputs a 10.7 MHz signal. Stereo modulation must be possible.
AC4	Used for AM testing. Outputs 1 MHz and 1.4 MHz signals.
AC5	Used with the MRC. Can also be used for AF and OSC.

Power supply

V_{CC}	8 V		
$\mathrm{~V}_{\mathrm{CC}} 1$	5 V		SD, stereo, seek/stop
$\mathrm{V}_{\mathrm{CC}} 2$	$0.1 \mathrm{~V} / 0.7 \mathrm{~V} / 2 \mathrm{~V} / 4 \mathrm{~V}$	These levels must be variable.	Keyed AGC, Mute ATT
$\mathrm{V}_{\mathrm{CC}} 3$	$0.1 \mathrm{~V} / 0.6 \mathrm{~V} / 2 \mathrm{~V}$		

- Switches

	Parameter	ON	OFF
SW1	AM/FM switching. The FE V CC is supplied to pin 62.	FM	AM
SW2	FM IF switching. Pin 51/FE output	FE IF OUT (A)	AC3 (B)
SW3	For conversion gain testing	Conversion gain measurement (A)	Other/purposes
SW4	For switching between noise canceler input and IF output + noise canceler.	AC1 (A)	Other/purposes
SW5	High-speed SD	High-speed SD	Other/purposes
SW6	SEEK/STOP (IF BUFF ON/OFF)	STOP	Seek (IF buffer output)
SW7	MUTE ATT 200 $\mathrm{k} \Omega$	MUTE $200 \mathrm{k} \Omega$	OFF
SW8	MUTE ATT 30 $\mathrm{k} \Omega$	MUTE 30 $\mathrm{k} \Omega$	OFF
SW9	For pilot cancellation testing	When pilot cancellation is used	When pilot cancellation is not used
SW10	Mute off (pin 33)	MUTE OFF	

- Trimmers (variable resistors)

VR1	Separation adjustment
VR2	Pilot cancellation adjustment

Test Points

- DC voltages

VD1	FM RF AGC voltage	Pin 2
VD2	AM/FM SD, AM Tweet, FM stereo indicator	Pin 26
VD3	AM/FM S-meter	Pin 24
VD4	MRC output	Pin 27
VD5	Mute drive output	Pin 33
VD6	AM antenna damping voltage	Pin 46
VD7	N.C. Gate time	Pin 8

- AC voltages

VA1	AM/FM OSC Buff	Pin 4
VA2	First IF output	Pin $53 \rightarrow$ CF \rightarrow pin 51 load level $(10.7 \mathrm{MHz})$
VA3	IF counter buffer	Pin $23(10.7 \mathrm{MHz} / 450 \mathrm{kHz})$
VA4	MPX OUT Left ch	Pin $15(\mathrm{AF})$
VA5	MPX OUT Right ch	Pin $16(\mathrm{AF})$

Pin Descriptions

Pin No.	Function	Description	Equivalent circuit
1	Antenna damping drive	An antenna damping current flows when the RF AGC voltage (pin 2) reaches $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{D}}$.	
2	RF AGC	Used to control the FET second gate.	
3	F.E.GND		
4	OSC	Oscillator connection	
7	AM OSC	AM first oscillator This circuit can oscillator up to the SW band. An ALC circuit is included.	

LA1787M

Pin No.	Function	Description	Equivalent circuit
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	Noise AGC sensitivity AGC adjustment	After setting up the medium field (about $50 \mathrm{~dB} \mu$) sensitivity with the noise sensitivity setting pin (pin 8), set the weak field (about 20 to $30 \mathrm{~dB} \mu$) sensitivity with the AGC adjustment pin (pin 9)	
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	Memory circuit connection	Recording circuit used during noise canceller operation.	
13	Pilot input	Pin 13 is the PLL circuit input pin.	
14	N.C, MPX, MRC, GND	Ground for the N.C., MPX, and MRC circuits.	

LA1787M

Continued from preceding page

Pin No.	Function	Description	Equivalent circuit
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	MPX output (left) MPX output (right)	Deemphasis $50 \mu \mathrm{~s}: 0.015 \mu \mathrm{~F}$ $75 \mu \mathrm{~s}: 0.022 \mu \mathrm{~F}$	
17	Pilot canceller signal output	Adjustment is required since the pilot signal level varies with the sample-to-sample variations in the IF output level and other parameters.	
18	Pilot canceller signal output	Pin 18 is the output pin for the pilot canceller signal.	

LA1787M

Continued from preceding page

Pin No. | Function |
| :---: |
| Separation |
| adjustment pin |
| PHASE COMP. |
| PHASE COMP. |
| VCO |

Continued on next page.

LA1787M

Continued from preceding page.

Continued from preceding page

Pin No.	Function	Description	Equivalent circuit
27	MRC control voltage time constant	The MRC detector time constant is determined by a 100Ω resistor and C2 when discharging and by the $2-\mu \mathrm{A}$ current and C 2 when charging.	
28	SNC control input	The sub-output is controlled by a 0 to 1-V input.	A13572
29	HCC control input	The high band frequency output is controlled by a 0 to $1-\mathrm{V}$ input. It can also be controlled by the MRC output. Use a resistor of at least $100 \mathrm{k} \Omega$ when controlling with the pin 32 FM S-meter signal.	

Continued on next page.

LA1787M

Continued from preceding page.

Continued on next page

Pin No.	Function	Description	Equivalent circuit
$\begin{aligned} & 34 \\ & 35 \\ & 36 \\ & 37 \end{aligned}$	AGC QD output QD input $\mathrm{V}_{\text {REF }}$	-The resistor R_{1} determines the width of the band muting function. Increasing the value of R_{1} narrows the band. Reducing the value of R_{1} widens the band. -Null voltage When tuned, the voltage between pins 34 and $37, \mathrm{~V}_{34-37}$, will be 0 V . The band muting function turns on when $\left\|V_{34-37}\right\| \geq 0.7 \mathrm{~V}$. $V_{37}=4.9 \mathrm{~V}$	
38	FM SD ADJ	A 130- $\mu \mathrm{A}$ current flows from pin 38 and, in conjunction with the external resistance R, determines the comparison voltage.	
39	Keyed AGC AM stereo buffer	The keyed AGC operates when the voltage created by dividing the pin 24 S-meter output voltage by the 6.4 and $3.6 \mathrm{k} \Omega$ resistors becomes lower than the voltage determined by the resistor between pin 39 and ground. This pin also is used as the AM stereo IF buffer pin.	

LA1787M

Continued from preceding page

Pin No. | Function |
| :--- |
| HCC capacitor |
| Pilot detector |
| AM L.C. pin |
| The HCC frequency characteristics |
| are determined by the external |
| capacitor connected at this pin. |
| Inserting a 1-M 2 |
| pin resistor between |
| to mono mode. |

Continued on next page

Continued from preceding page

Pin No.	Function	Description	Equivalent circuit
44	IF AGC	G1; Used for time constant switching during seeks. - Reception $\tau=2.2 \mu \mathrm{~F} \times 300 \mathrm{k} \Omega$ - Seek $\tau=2.2 \mu \mathrm{~F} \times 10 \Omega$ The external capacitors are connected to V_{Cc}. This is because the IF amplifier operates referenced to V_{CC}.	
45	IF output	The IF amplifier load	
46	AM antenna damping drive output Wide band AGC input	$\mathrm{I} 46=6 \mathrm{~mA}$ (maximum) This is the antenna damping current.	A13585

LA1787M

Continued from preceding page.

Pin No. \begin{tabular}{l}
Function

FM muting on level

adjustment

 IF input

Modify the value of the external

resistor to adjust the muting on

lever
\end{tabular}

Pin No.	Function	Description	Equivalent circuit
$\begin{aligned} & 53 \\ & 56 \end{aligned}$	IF amplifier output IF amplifier input	- Input and output pin or the first IF amplifier - Inverting amplifier $\mathrm{V} 56=2 \mathrm{~V}$ Input impedance: $\mathrm{R}_{\mathrm{IN}}=330 \Omega$ $\mathrm{V} 53=5.3 \mathrm{~V}$ Output impedance $R_{\text {OUT }}=330 \Omega$	
$\begin{aligned} & 54 \\ & 49 \end{aligned}$	Mixer output: $130 \mu \mathrm{~A}$ Mixer input	The mixer coil connected to the pin 54 mixer output must be wired to V_{CC} (pin 40). The pin 49 mixer input impedance is 330Ω	
55 58	W-AGC IN AM SD ADJ N-AGC IN Muting attenuation adjustment pin	Pins 55 and 58 include built-in DC cut capacitors. The AGC on level is determined by the values of the capacitors C1 and C2. Pin 55 functions as the SD sensitivity adjustment pin in AM mode. The output current 155 is $50 \mu \mathrm{~A}$, and V55 varies depending on the value of the external resistor. The SD function operates by comparing V55 with the S-meter voltage.	

Continued on next page.

Test Conditions

Parameter	Symbol	Switch states									
		SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8	SW9	SW10
Current drain	$\mathrm{ICCO}^{\text {-FM }}$	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Demodulation output	V_{O}-FM	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Pin 31 demodulation output	V_{O}-FM31	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Channel balance	CB	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Total harmonic distortion (FM)	THD-FMmono	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Signal-to-noise ratio: IF	S/N-FM IF	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
AM suppression ratio: IF	AMR IF	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Muting attenuation	Att-1	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
	Att-2	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
	Att-3	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Separation	Separation	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Stereo on level	ST-ON	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Stereo off level	ST-OFF	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Main total harmonic distortion	THD-Main L	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Pilot cancellation	PCAN	ON	b	OFF	b	-	ON	OFF	OFF	OFF/ON	-
SNC output attenuation	AttSNC	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
HCC output attenuation 1	AttHCC-1	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
HCC output attenuation 2	AttHCC-2	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Input limiting voltage	Vi-lim	ON	b	OFF	b	-	ON	OFF	OFF	ON	ON
Muting sensitivity	Vi-mute	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
SD sensitivity 1	SD-sen1 FM	ON	b	OFF	b	OFF	OFF	OFF	OFF	ON	-
SD sensitivity 2	SD-sen2 FM	ON	b	OFF	b	ON	OFF	OFF	OFF	ON	-
IF counter buffer output	$\mathrm{V}_{\text {IFBUFF-FM }}$	ON	b	OFF	b	OFF	OFF	OFF	OFF	ON	-
Signal meter output (FM)	$V_{S M} \mathrm{FM}-1$	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
	$V_{\text {SM }}$ FM-2	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
	$V_{\text {SM }}$ FM-3	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
	$V_{\text {SM }}$ FM-4	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Muting bandwidth	BW-mute	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
Mute drive output	$\mathrm{V}_{\text {MUTE-100 }}$	ON	b	OFF	b	-	ON	OFF	OFF	ON	-
N-AGC on input	$\mathrm{V}_{\text {NAGC }}$	ON	a	ON	b	-	ON	OFF	OFF	-	-
W-AGC on input	$V_{\text {WAGC }}$	ON	a	ON	b	-	ON	OFF	OFF	-	-
Conversion gain	A.V	ON	a	ON	b	-	ON	OFF	OFF	-	-
Oscillator buffer output	Voscbufffm	ON	a	ON	b	-	ON	OFF	OFF	-	-
Gate time 1	τ GATE1	ON	-	OFF	a	-	ON	OFF	OFF	-	-
Noise sensitivity	SN	ON	-	OFF	a	-	ON	OFF	OFF	-	-
NC effect	SN-NC	ON/OFF	-	OFF	a	-	ON	OFF	OFF	-	-
MRC output	$\mathrm{V}_{\text {MRC }}$	ON	-	OFF	b	-	ON	OFF	OFF	-	-
MRC operating level	MRC-ON	ON	-	OFF	b	-	ON	OFF	OFF	-	-
Practical sensitivity	S/N-30	OFF	-	OFF	b	ON	ON	-	-	-	-
Detection output	V_{O}-AM	OFF	-	OFF	b	ON	ON	-	-	-	-
Pin 31 detection output	V_{O}-AM31	OFF	-	OFF	b	ON	ON	-	-	-	-
AGC F.O.M.	$\mathrm{V}_{\text {AGC-FOM }}$	OFF	-	OFF	b	ON	ON	-	-	-	-
Signal-to-noise ratio	S/N-AM	OFF	-	OFF	b	ON	ON	-	-	-	-
Total harmonic distortion (AM)	THD-AM	OFF	-	OFF	b	ON	ON	-	-	-	-
Signal meter output (AM)	$\mathrm{V}_{\text {SM }} \mathrm{AM}-1$	OFF	-	OFF	b	ON	ON	-	-	-	-
	$\mathrm{V}_{\text {SM }} \mathrm{AM}-2$	OFF	-	OFF	b	ON	ON	-	-	-	-
Oscillator buffer output	$V_{\text {OSCBUFF AM-1 }}$	OFF	-	OFF	b	ON	ON	-	-	-	-
Wide band AGC sensitivity	W-AGCsen 1	OFF	-	OFF	b	ON	ON	-	-	-	-
	W-AGCsen 2	OFF	-	OFF	b	ON	ON	-	-	-	-
SD sensitivity	SD-sen1 AM	OFF	-	OFF	b	OFF	OFF	-	-	-	-
	SD-sen2 AM	OFF	-	OFF	b	OFF	OFF	-	-	-	-
IF buffer output	$\mathrm{V}_{\text {IFBUFF-AM }}$	OFF	-	OFF	b	OFF	OFF	-	-	-	-

LA1787M

Usage Notes

1. Notes on V_{CC} and Ground

Pin 40	V CC for the FM IF, AM, NC, MPX, and MRC blocks
Pin 25	Ground for the FM IF and AM blocks
Pin 14	Ground for the NC, MPX, and MRC blocks
Pin 61	V $_{\text {CC }}$ for the FM front end, AM first mixer, and first oscillator blocks
* Pin 6	V ${ }_{\text {CC }}$ for the FM front end and AGC blocks, and the AM/FM switching pin
Pin 3	Ground for the FM front end, first mixer, and first oscillator blocks

*: When applying the V_{CC} voltage to pin 6, that voltage must not exceed the pin 40 and pin $61 \mathrm{~V}_{\mathrm{CC}}$ voltages.
(This condition must be checked carefully when first applying the pin 6 voltage.)

2. Notes on AM Coil Connection

The V_{CC} used for the first oscillator coil connected to pin 7 must be at the same potential as pin 61 .
Connect to the IFT connected with pin 45 , and to the MIX coil connected with pin $54 . \mathrm{V}_{\mathrm{CC}}$ must be at the same potential as pin 40 .

3. AM/FM Switching

Pin 6 is also used as the FM front end and RF AGC $V_{C C}$

Pin 6 voltage	Mode
8	FM
OPEN	AM

LA1787M Overview

1. Notes on the LA1781M, LA1784M, and LA1787M

The LA1784M is a version of the LA1781M that uses an external oscillator circuit, and has the same characteristics as the LA1781M.
The LA1787M is a version of the LA1784M that features improved characteristics.

LA1787M

2. Modified circuits

The following characteristics have been improved over those of the The LA1784M.

- The AM adjacent channel interference characteristics ($\Delta 40 \mathrm{kHz}$) have been improved.
- The AM S-meter curve slope has been increased.
- The FM separation temperature characteristics have been improved.
- The stereo indicator sensitivity has been improved.
- The FM oscillator circuit has been omitted.
(1) AM interference characteristics improvement

The second signal interference and suppression have been improved for adjacent channels ($\pm 40 \mathrm{kHz}$) by increasing the AM second mixer input dynamic range.
(2) The AM S-meter curve slope has been increased.

The slope of the AM S-Meter curve has been increased from that of the LA1781M and LA1784M.

(3) FM separation temperature characteristics improvement

The temperature characteristics have been improved, the amount of change in the separation due to drift when at power on has been stabilized. This makes it easier to adjust the separation.

LA1787M

(4) Stereo indicator sensitivity improvement

The stereo indicator sensitivity (on/off) is equivalent to that of the LA1780M

	Stereo on level	Stereo off level
LA1781M/1784M	4.1%	3.1%
LA1787M/1780M	2.6%	1.6%
(Typical value)		

*: The pilot level such that the stereo indicator goes on or off for a 10.7 MHz unmodulated IF input.
(5) FM oscillator circuit removed

The internal FM oscillator circuit provided in the LA1781M has been removed. The FM oscillator level can be adjusted by constructing an external circuit block.
*: However, this requires 4 more external parts than the LA1781M: 1 transistor and 3 resistors/capacitors.

LA1787M/1784M FM OSC

3. Gain distribution

The table below shows the gain distribution of the LA1780M, LA1784M, and LA1787M. (These are measured values.) Compared to the LA1784M, the total gain is lower.

	1st MIX (10.7)	1st IF (10.7)	2nd MIX (450)	2nd IF (450)
LA1780M	10 dB	3.3 dB	3.2 dB	69 dB
LA1784M	7.5 dB	13 dB	7 dB	66 dB
LA1787M	7.5 dB	3.5 dB	8.6 dB	67 dB

[^0]4. Changes to applications

Component values that change from LA1781M/LA1784M applications
(Since the total AM gain has changed in the LA1787M)

- AM SD adjustment resistor (pin 55): Because Vsm is higher.
- AM level adjustment resistor (pin 31): Since the post-detection audio amplifier gain is higher than in the LA1781M and LA1784M, the output level is also higher. This resistor must be changed to match the set value.
- AM mixer coil (pin 54), IFT coil (pin 45) damp resistor: Since the IF block gain is increased, the mixer (pin 54) and IFT (pin 45) coil damping must be adjusted.
- Separation adjustment resistor (pin 19): Since an internal $4 \mathrm{k} \Omega$ resistor has been added to the pin 19 input circuit to improve the separation temperature characteristics, the value of the external resistor must be reduced from that used with the LA1780M, LA1781M, and LA1784M. (See the following page.)

Functions

1. Notes on the FM Front End

Notes on interference rejection characteristics

- Intermodulation characteristics

The LA1787M applies two high-band AGC functions to prevent IM (the generation of intermodulation). These are the narrow AGC (pin 58: mixer input detection type) and the wide AGC (for the pin 55 input), and this results in the antenna frequency characteristics shown in figure 2. The levels at which the AGC functions turn on are determined by the capacitors attached at pins 55 and 58.

Fig. 2

[^0]: First mixer : No circuit changes from the LA1784M.
 First IF amplifier : Equivalent to the LA1780M circuit. (The gain is lower than that in the LA1781M and LA1784M.)
 Second mixer : The mixer circuit has been modified to improve adjacent channel suppression and interference.
 Second IF amplifier : Equivalent to the LA1780M circuit.

