# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



# LA1787M

# Monolithic Linear IC Single-Chip Tuner IC for Car Radios



#### **Overview**

The LA1787M integrates all six blocks required in a car radio tuner on a single chip.

## **Functions**

- FM front end
- FM IF
- Noise canceller

- AM up-conversion
- FM/AM switch
- MRC

• Multiple

### **Features**

- Improved noise reduction methods
- The FM front end provides excellent 3-signal characteristics equivalent to those of the LA1193M.
- Superlative listenability due to improved medium and weak field noise canceller characteristics.
- Improved separation characteristics
- Anti-birdie filter
- Improved AM and FM thermal characteristics
- Excellent FM signal meter linearity
- Modified N.C. circuit for improved noise rejection
- Improved AM adjacent channel interference characteristics ( $\Delta 40 \text{ kHz}$ )
- Double conversion AM tuner (up conversion) Reduces the number of external components required as compared to earlier double conversion tuners, in particular, no crystal is required (when used in conjunction with the LC72144). • Sample-to-sample variation reduction circuit built into the FM IF circuit.
- (Fixed resistors are used for the SD, keyed AGC, mute on adjustment, ATT, SNC, and HCC functions.)
- Improved FM separation temperature characteristics
- The LA1787 inherits the block arrangement of the LA1780M and supports pin-compatible designs.

### Package Dimensions

unit : mm (typ)

QIP64E(14X14)



# Specifications

## Maximum Ratings at $Ta = 25^{\circ}C$

| Parameter                   | Symbol                | Conditions                 | Ratings     | Unit |
|-----------------------------|-----------------------|----------------------------|-------------|------|
|                             | V <sub>CC</sub> 1 max | Pins 6, 40, and 61         | 9           | V    |
| Maximum supply voltage      | V <sub>CC</sub> 2 max | Pins 7, 45, 54, 59, and 60 | 12          | V    |
| Allowable power dissipation | Pd max                | Ta ≤ 55°C                  | 950         | mW   |
| Operating temperature       | Topr                  |                            | -40 to +85  | °C   |
| Storage temperature         | Tstg                  |                            | -40 to +150 | °C   |

#### Operating Conditions at $Ta = 25^{\circ}C$

| Parameter                      | Symbol                 | Conditions                            | Ratings    | Unit |
|--------------------------------|------------------------|---------------------------------------|------------|------|
| Recommended supply voltage     | V <sub>CC</sub>        | Pins 6, 7, 40, 45, 54, 59, 60, and 61 | 8          | V    |
| Recommended supply voltage     | V <sub>CC</sub> ST IND | Pin 26                                | 5          | V    |
| Operating supply voltage range | V <sub>CC</sub> op     |                                       | 7.5 to 9.0 | V    |

# Operating Characteristics at Ta = 25 $^{\circ}C,$ V<sub>CC</sub>= 8.0V, in the specified test cricuit for the FM IF input

| Part antener         Symbol         Conductions         min         typ         max         off           IFM Characteristics] At the FW if incur         Loco-FM         No input, 140 + 145 + 154 + 159 + 160 + 161         60         94         110         mA           Demodulation output         Vo-FM         10.7 MHz, 1000Bµ, 1 kHz, 100%mod, The pin 31 output         205         310         415         mVms           Channel balance         GB         The ratio between pins 15 and 16 at 10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15                                        N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Decemeter                                                                          | Cumbel                | nbol Conditions                                                                                              |      | Ratings |      |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------|------|---------|------|-------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Parameter                                                                          | l'arameter Symbol     |                                                                                                              | min  | typ     | max  | unit  |  |
| $ \begin{array}{c cccr} Current drain \\ Current drain \\ Corrent drain \\ V_{Cr}FM \\ V_{Cr$                                | [FM Characteristics] At the FM IF input                                            |                       |                                                                                                              |      |         |      |       |  |
| Demodulation output         Vo_FM         10.7 MHz, 100dBµ, 1 kHz, 100%mod, The pin 15 output         205         310         415         mVmms           Pin 31 demodulation output         Vo_FM31         10.7 MHz, 100dBµ, 1 kHz, 100%mod, The pin 31 output         100         295         380         mVms           Channel balance         CB         The ratio between pins 15 and 16 at 10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15          0.3         1         %           Signal-to-noise ratio: IF         MRI IF         10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15          0.3         15         68          dB           Muting attenuation         MAT         10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15          15         10         15         dB           Muting attenuation         Att-1         10.7 MHz, 100 dBµ, 1 kHz. The pin 15         15         10         15         dB           Separation         Att-2         10.7 MHz, 100 dBµ, 1 kHz. The pin 15         15         20         25         dB           Stere on level         St-ON         The pilot modulation such that V26 < 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Current drain                                                                      | I <sub>CCO</sub> -FM  | No input, I40 + I45 + I54 + I59 + I60 + I61                                                                  | 60   | 94      | 110  | mA    |  |
| Pin 31 demodulation output         V <sub>0</sub> -FM31         10.7 MHz, 100dBµ, 14kz, 100%mod, The pin 31 output         190         295         380         mVmms           Channel balance         CB         The ratio between pins 15 and 16 at 10.7 MHz, 100 dBµ, 14kz         -1         0         4.1         dB           Signal-to-noise ratio: IF         S/N-FM IF         10.7 MHz, 100 dBµ, 14kz, 100% mod, pin 15         75         82         .         dB           AM suppression ratio: IF         AMR IF         10.7 MHz, 100 dBµ, 14kz, 1mp in 15         75         68         .         dB           Muting attenuation         Att-1         10.7 MHz, 100 dBµ, 14kz, 1mp in 15         55         68         .         dB           Muting attenuation         Att-2         10.7 MHz, 100 dBµ, 14kz, 1mp in 15         15         20         25         dB           Stereo of level         Att-3         10.7 MHz, 100 dBµ, 14kz, 1mp in 15         30         40         .         dB           Stereo of level         Storo         The pilot modulation such that V26 < 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Demodulation output                                                                | V <sub>O</sub> -FM    | 10.7 MHz, 100dBµ, 1 kHz, 100%mod, The pin 15 output                                                          |      | 310     | 415  | mVrms |  |
| Channel balance         CB         The ratio between pins 15 and 16 at 10.7 MHz, 100 dBµ, 1 kHz         -1         0         +1         dB           Total harmonic distorion         THD-FM mon         10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15         0.3         1         %           Signal-to-obies ratio: IF         SN-FM IF         10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15         55         68         /         dB           Musppression ratio: IF         AMR IF         10.7 MHz, 100 dBµ, 1 kHz, 1me pin 15         55         68         10         15         dB           Muting attenuation         10.7 MHz, 100 dBµ, 1 kHz, The pin 15         5         10         15         dB           Separation         10.7 MHz, 100 dBµ, 1 kHz, The pin 15         28         33         dB         dB           Separation         10.7 MHz, 100 dBµ, 1 kHz, The pin 15         28         33         dB         dB           Stereo on level         ST-ON         The pilot modulation such that V26 < 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pin 31 demodulation output                                                         | V <sub>O</sub> -FM31  | 10.7 MHz, 100dBµ, 1 kHz, 100%mod, The pin 31 output                                                          | 190  | 295     | 380  | mVrms |  |
| Total Ammonic distortion         THD-FM mone         10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15         .         0.3         1         %           Signal-to-noise ratio: IF         S/N-FM IF         10.7 MHz, 100 dBµ, 1 kHz, 100% mod, pin 15         75         82         .         dB           AM suppression ratio: IF         AMR IF         10.7 MHz, 100 dBµ, 1 kHz, The pin 15<br>attenuation when V33 goes from 0 to 2 V         5         10         15         20         25         dB           Muting attenuation when V33 goes from 0 to 2 V <sup>1</sup> 15         20         25         dB         33         38         dB           Separation         10.7 MHz, 100 dBµ, 1 kHz, The pin 15<br>attenuation when V33 goes from 0 to 2 V <sup>1</sup> 15         20         25         dB           Separation         Separation         10.7 MHz, 100 dBµ, L+R = 00%, pilot = 10%. The pin 15 output         30         40          %           Stere on level         ST-OFF         The pilot modulation such that V26 < 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Channel balance                                                                    | СВ                    | The ratio between pins 15 and 16 at 10.7 MHz, 100 dB $\mu$ , 1 kHz                                           | -1   | 0       | +1   | dB    |  |
| Signal-to-noise ratio: IF         S/N-FM IF         10.7 MHz, 100 dBµ, 1 kHz, 10, and 1 kHz, 1, kHz, and 1 kHz, 1, kHz, and 1 kHz, 1 kHz, and                                                                                                                                                                                                                                                                             | Total harmonic distortion                                                          | THD-FM mono           | 10.7 MHz, 100 dB $\mu$ , 1 kHz, 100% mod, pin 15                                                             |      | 0.3     | 1    | %     |  |
| AM suppression ratio: IFAMR IF10.7 MHz, 100 dBµ, 1 kHz, 1m e in 15<br>attenuation when V33 goes from 0 to 2 v15568(mdBMuting attenuationAtt-110.7 MHz, 100 dBµ, 1 kHz, The pin 15<br>attenuation when V33 goes from 0 to 2 v1152025dBAtt-210.7 MHz, 100 dBµ, 1 kHz, The pin 15<br>attenuation when V33 goes from 0 to 2 v12830dBdBSeparation10.7 MHz, 100 dBµ, 1 kHz, The pin 15<br>attenuation when V33 goes from 0 to 2 v12830dBdBStere on levelST-0NThe pilot modulation such that V26 < 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signal-to-noise ratio: IF                                                          | S/N-FM IF             | $10.7~\text{MHz},100~\text{dB}\mu,1~\text{kHz},100\%$ mod, pin 15                                            | 75   | 82      |      | dB    |  |
| Att-11.7 MHz, 100 dBµ, 1 kHz, The pin 15<br>attenuation when V33 goes from 0 to 2 V151015dBAtt-210.7 MHz, 100 dBµ, 1 kHz, The pin 15<br>attenuation when V33 goes from 0 to 2 V1152025dBAtt-310.7 MHz, 100 dBµ, 1 kHz, The pin 15<br>attenuation when V33 goes from 0 to 2 V1283338dBSeparationSeparation10.7 MHz, 100 dBµ, 1 kHz, The pin 15 output304010dBStereo on levelST-ONThe pilot modulation such that V26 < 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AM suppression ratio: IF                                                           | AMR IF                | 10.7 MHz, 100 dB $\mu$ , 1 kHz, f <sub>m</sub> = 1 kHz, 30% AM, pin 15                                       | 55   | 68      |      | dB    |  |
| Muting attenuation         Att-2         10.7 MHz, 100 dBµ, 1 kHz. The pin 15<br>attenuation when V33 goes from 0 to 2 V <sup>+1</sup> 15         20         25         dB           Separation $10.7$ MHz, 100 dBµ, 1 kHz. The pin 15<br>attenuation when V33 goes from 0 to 2 V <sup>+2</sup> 28         33         38         dB           Separation         Separation $10.7$ MHz, 100 dBµ, 1 kHz. The pin 15 output<br>ratio         300         40          dB           Stereo on level         ST-ON         The pilot modulation such that V26 < 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    | Att-1                 | 10.7 MHz, 100 dB $\mu$ , 1 kHz. The pin 15 attenuation when V33 goes from 0 to 2 V                           | 5    | 10      | 15   | dB    |  |
| Att-310.7 MHz, 100 dBµ, 1 kHz. The pin 15<br>attenuation when V33 goes from 0 to 2 V°2283338dBSeparationSeparation10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 output<br>ratio30404048Stereo on levelST-ONThe pilot modulation such that V26 < 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Muting attenuation                                                                 | Att-2                 | 10.7 MHz, 100 dBµ, 1 kHz. The pin 15 attenuation when V33 goes from 0 to 2 V*1                               | 15   | 20      | 25   | dB    |  |
| SeparationSeparation10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 output304040Stereo on levelST-ONThe pilot modulation such that V26 < 0.5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    | Att-3                 | 10.7 MHz, 100 dBµ, 1 kHz. The pin 15 attenuation when V33 goes from 0 to 2 $V^{\ast 2}$                      | 28   | 33      | 38   | dB    |  |
| Stereo on level         ST-ON         The pilot modulation such that V26 < 0.5 V         1.2         2.4         4.4         %           Stereo off level         ST-OFF         The pilot modulation such that V26 > 3.5 V         0.6         1.6         %           Main total harmonic distortion         THD-Main L         10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 signal         0.3         1.2         %           Pilot cancellation         PCAN         10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 signal/the pilot level leakage. DIN audio         20         30          dB           SNC output attenuation         AttSNC         10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. V28 = 3 V → 0.6 V, pin 15         1         5         9         dB           HCC output attenuation         AttHCC-1         10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. V29 = 3 V → 0.6 V, pin 15         0.5         4.5         8.5         dB           Input limiting voltage         Vi-lim         10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. V29 = 3 V → 0.6 V, pin 15         0.5         4.5         8.5         dB           Input limiting voltage         Vi-lim         10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. V29 = 3 V → 0.6 V, pin 15         33         40         47         dBµ           So sensitivity         Vi-lim         10.7 MHz, 100 dBµ, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Separation                                                                         | Separation            | 10.7 MHz, 100 dB $\mu$ , L+R = 90%, pilot = 10%. The pin 15 output ratio                                     | 30   | 40      |      | dB    |  |
| Stereo off level         ST-OFF         The pilot modulation such that V26 > 3.5 V         0.6         1.6         %           Main total harmonic distortion         THD-Main L         10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 signal         0.3         1.2         %           Pilot cancellation         PCAN         10.7 MHz, 100 dBµ, DH = 10%. The pin 15 signal/the pilot level leakage. DIN audio         20         30         C         dB           SNC output attenuation         AttSNC         10.7 MHz, 100 dBµ, L-R = 90%, pilot = 10%. Y28 = 3 V → 0.6 V, pin 15         1         5         9         dB           HCC output attenuation         AttHCC-1         10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. Y28 = 3 V → 0.6 V, pin 15         0.5         4.5         8.5         dB           Input limiting voltage         AttHCC-2         10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. Y28 = 3 V → 0.6 V, pin 15         6         10         14         dB           Input limiting voltage         Vi-lim         10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. Y28 = 3 V → 0.6 V, pin 15         6         10         14         dB           Muting sensitivity         Vi-lim         10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. Y28 = 3 V → 0.1 V, pin 15         33         40         47         dBµ           Muting sensitivity         Vi-lim <td< td=""><td>Stereo on level</td><td>ST-ON</td><td>The pilot modulation such that V26 &lt; 0.5 V</td><td>1.2</td><td>2.4</td><td>4.4</td><td>%</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stereo on level                                                                    | ST-ON                 | The pilot modulation such that V26 < 0.5 V                                                                   | 1.2  | 2.4     | 4.4  | %     |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stereo off level                                                                   | ST-OFF                | The pilot modulation such that V26 > 3.5 V                                                                   | 0.6  | 1.6     |      | %     |  |
| Pilot cancellationPCAN10.7 MHz, 100 dBµ, pilot = 10%.<br>The pin 15 signal/the pilot level leakage. DIN audio2030dBSNC output attenuationAttSNC10.7 MHz, 100 dBµ, L-R = 90%, pilot = 10%.<br>$V28 = 3 V \rightarrow 0.6 V, pin 15$ 159dBHCC output attenuationAttHCC-110.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%.<br>$V29 = 3 V \rightarrow 0.6 V, pin 15$ 0.54.58.5dBHCC output attenuationAttHCC-210.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%.<br>$V29 = 3 V \rightarrow 0.6 V, pin 15$ 61014dBInput limiting voltageVi-lim100 dBµ, 10.7 MHz, 30% modulation. The IF input such<br>that the input reference output goes down by 3 dB334047dBµMuting sensitivityVi-muteThe IF input level (unmodulated) (ver 100 mV rms)<br>such that the IF counter buffer output goes on546270dBµSD sensitivitySD-sen1 FMThe IF input level (unmodulated) (ver 100 mV rms)<br>such that the IF counter buffer output goes on546270dBµIF counter buffer outputV <sub>I-BUFF-FM</sub> 10.7 MHz, 100 dBµ, unmodulated. The pin 23 output130200270mVrmsSignal meter outputV <sub>SM</sub> FM-1No input. The pin 24 DC output, unmodulated0.41.01.5VVSm FM-370 dBµ. The pin 24 DC output, unmodulated2.02.73.56.2VVSm FM-4100 dBµ. The pin 24 DC output, unmodulated0.41.01.5VVSm FM-4100 dBµ. The pin 24 DC output, unmodulated4.7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Main total harmonic distortion                                                     | THD-Main L            | 10.7 MHz, 100 dBµ, L+R = 90%, pilot = 10%. The pin 15 signal                                                 |      | 0.3     | 1.2  | %     |  |
| $ \begin{array}{cccc} {\rm SNC \ output \ attenuation} & {\rm AttSNC} & 10.7 \ {\rm MHz}, 100 \ dB\mu, L-R = 90\%, pilot = 10\%. \\ V28 = 3 \ V \to 0.6 \ V, pin 15 & 1 & 5 & 9 & dB \\ \hline V28 = 3 \ V \to 0.6 \ V, pin 15 & 0.5 & 4.5 & 8.5 & dB \\ \hline {\rm AttHCC-1} & 10.7 \ {\rm MHz}, 100 \ dB\mu, 10 \ {\rm kHz}, L+R = 90\%, pilot = 10\%. \\ V29 = 3 \ V \to 0.6 \ V, pin 15 & 0.5 & 4.5 & 8.5 & dB \\ \hline {\rm AttHCC-2} & 10.7 \ {\rm MHz}, 100 \ dB\mu, 10 \ {\rm kHz}, L+R = 90\%, pilot = 10\%. \\ \hline {\rm N29 = 3 \ V \to 0.6 \ V, pin 15 } & 6 & 10 & 14 & dB \\ \hline {\rm Input limiting \ voltage} & Vi-lim & 100 \ dB\mu, 10.7 \ {\rm MHz}, 30\% \ modulation. The IF input such that the input reference output goes down by 3 \ dB & 33 & 40 & 47 & dB\mu \\ \hline {\rm Muting \ sensitivity} & Vi-mute & The IF input level (unmodulated) \ when V33 = 2 \ V & 27 & 35 & 43 & dB\mu \\ \hline {\rm SD \ sensitivity} & SD \ sensitivity & Vi-mute & The IF input level (unmodulated) \ (over 100 \ mV \ rms) \\ such that the IF \ counter \ buffer \ output goes \ on & SD \ sensitivity \\ \hline {\rm IF \ counter \ buffer \ output } & V_{I-BUFF-FM} & 10.7 \ {\rm MHz}, 100 \ dB\mu, unmodulated. The pin 23 \ output \\ \hline {\rm Ns \ SD \ sensitivity} & V_{I-BUFF-FM} & 10.7 \ {\rm MHz}, 100 \ dB\mu, unmodulated \ det & 0.0 & 0.1 & 0.3 & V \\ \hline {\rm V_{SM} \ FM-2} & 50 \ dB\mu. \ The pin 24 \ DC \ output, unmodulated \\ \hline {\rm V_{SM} \ FM-3} & 70 \ dB\mu. \ The pin 24 \ DC \ output, unmodulated \ det & 0.4 & 1.0 & 1.5 & V \\ \hline {\rm V_{SM} \ FM-3} & 70 \ dB\mu. \ The pin 24 \ DC \ output, unmodulated \ det & 0.4 & 1.0 & 1.5 & V \\ \hline {\rm V_{SM} \ FM-3} & 70 \ dB\mu. \ The pin 24 \ DC \ output, unmodulated \ det & 0.4 & 1.0 & 1.5 & V \\ \hline {\rm V_{SM} \ FM-3} & 70 \ dB\mu. \ The pin 24 \ DC \ output, unmodulated \ det & 0.4 & 1.0 & 1.5 & V \\ \hline {\rm V_{SM} \ FM-3} & 70 \ dB\mu. \ The pin 24 \ DC \ output, unmodulated \ det & 0.4 & 1.0 & 1.5 & V \\ \hline {\rm V_{SM} \ FM-3} & 70 \ dB\mu. \ The pin 24 \ DC \ output, unmodulated \ det & 0.4 & 1.0 & 1.5 & V \\ \hline {\rm V_{SM} \ FM-4} & 100 \ dB\mu. \ The pin 24 \ DC \ output, unmodulated \ det & 0.5 & 6.2 & V \\ \hline {\rm Muting \ bandwidth} \ BW-mute & 100 \ dB\mu. \ $ | Pilot cancellation                                                                 | PCAN                  | 10.7 MHz, 100 dBμ, pilot = 10%.<br>The pin 15 signal/the pilot level leakage. DIN audio                      |      | 30      |      | dB    |  |
| HCC output attenuationAttHCC-1 $10.7 \text{ MHz}, 100 \text{ dB}\mu, 10 \text{ kHz}, L+R = 90\%, pilot = 10\%.$<br>$V29 = 3 V \to 0.6 V, pin 15$ $0.5$ $4.5$ $8.5$ $dB$ Incr MHz, 100 dB $\mu, 10 \text{ kHz}, L+R = 90\%, pilot = 10\%. V29 = 3 V \to 0.1 V, pin 15$ $6$ $10$ $14$ $dB$ Input limiting voltageVi-lim $100 \text{ dB}\mu, 10.7 \text{ MHz}, 30\% modulation. The IF input such that the input reference output goes down by 3 dB334047dB\muMuting sensitivityVi-muteThe IF input level (unmodulated) when V33 = 2 V273543dB\muSD sensitivitySD-sen1 FMThe IF input level (unmodulated) (over 100 mV rms) such that the IF counter buffer output goes on546270dB\muIF counter buffer outputV_{I-BUFF-FM}10.7 \text{ MHz}, 100 \text{ dB}\mu, unmodulated. The pin 23 output130200270mVrmsSignal meter outputV_{SM} FM-1No input. The pin 24 DC output, unmodulated0.41.01.5VV_{SM} FM-370 \text{ dB}\mu. The pin 24 DC output, unmodulated2.02.73.5VV_{SM} FM-4100 \text{ dB}\mu. The pin 24 DC output, unmodulated2.02.73.5VV_{SM} FM-4100 \text{ dB}\mu. The pin 24 DC output, unmodulated4.75.56.2VMuting bandwidthBW-mute100 \text{ dB}\mu. The pandwidth when V33 = 2 V, unmodulated4.75.56.2V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SNC output attenuation         AttSNC         10.7 M           V28 =         V28 = |                       | 10.7 MHz, 100 dBµ, L-R = 90%, pilot = 10%. V28 = 3 V $\rightarrow$ 0.6 V, pin 15                             | 1    | 5       | 9    | dB    |  |
| New output attendationAttHCC-210.7 MHz, 100 dBµ, 10 kHz, L+R = 90%,<br>pilot = 10%. V29 = 3 V $\rightarrow$ 0.1 V, pin 1561014dBInput limiting voltageVi-lim100 dBµ, 10.7 MHz, 30% modulation. The IF input such<br>that the input reference output goes down by 3 dB334047dBµMuting sensitivityVi-muteThe IF input level (unmodulated) when V33 = 2 V273543dBµSD sensitivitySD-sen1 FMThe IF input level (unmodulated) (over 100 mV rms)<br>such that the IF counter buffer output goes on546270dBµIF counter buffer outputVI <sub>IEBUFF-FM</sub> 10.7 MHz, 100 dBµ, unmodulated. The pin 23 output130200270mVrmsSignal meter outputVI <sub>SM</sub> FM-1No input. The pin 24 DC output, unmodulated0.00.10.3VVSM FM-370 dBµ. The pin 24 DC output, unmodulated2.02.73.5VVSM FM-4100 dBµ. The pin 24 DC output, unmodulated4.75.56.2VMuting bandwidthBW-mute100 dBµ. The bandwidth when V33 = 2 V, unmodulated150220290kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCC output attonuation                                                             | AttHCC-1              | 10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. V29 = 3 V $\rightarrow$ 0.6 V, pin 15                     | 0.5  | 4.5     | 8.5  | dB    |  |
| Input limiting voltageVi-lim100 dBµ, 10.7 MHz, 30% modulation. The IF input such<br>that the input reference output goes down by 3 dB334047dBµMuting sensitivityVi-muteThe IF input level (unmodulated) when V33 = 2 V273543dBµSD sensitivitySD-sen1 FMThe IF input level (unmodulated) (over 100 mV rms)<br>such that the IF counter buffer output goes on546270dBµIF counter buffer outputVI_FBUFF-FM10.7 MHz, 100 dBµ, unmodulated. The pin 23 output130200270mVrmsSg sensitivityV <sub>SM</sub> FM-1No input. The pin 24 DC output, unmodulated0.41.01.5VV <sub>SM</sub> FM-250 dBµ. The pin 24 DC output, unmodulated0.41.01.5VV <sub>SM</sub> FM-370 dBµ. The pin 24 DC output, unmodulated2.02.73.54.2VMuting bandwidthBW-mute100 dBµ. The pin 24 DC output, unmodulated4.75.56.2V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    | AttHCC-2              | 10.7 MHz, 100 dBµ, 10 kHz, L+R = 90%, pilot = 10%. V29 = 3 V $\rightarrow$ 0.1 V, pin 15                     | 6    | 10      | 14   | dB    |  |
| Muting sensitivityVi-muteThe IF input level (unmodulated) when V33 = 2 V273543dB $\mu$ SD sensitivitySD-sen1 FMThe IF input level (unmodulated) (over 100 mV rms)<br>such that the IF counter buffer output goes on546270dB $\mu$ IF counter buffer outputSD-sen2 FM10.7 MHz, 100 dB $\mu$ , unmodulated. The pin 23 output130200270mV rmsIF counter buffer outputV <sub>IFBUFF-FM</sub> 10.7 MHz, 100 dB $\mu$ , unmodulated. The pin 23 output1300.00.10.3VNo input. The pin 24 DC output, unmodulated0.00.10.3VVVSM FM-250 dB $\mu$ . The pin 24 DC output, unmodulated0.41.01.5VNgm FM-370 dB $\mu$ . The pin 24 DC output, unmodulated2.02.73.5VVVSM FM-4100 dB $\mu$ . The pin 24 DC output, unmodulated4.75.56.2VMuting bandwidthBW-mute100 dB $\mu$ . The bandwidth when V33 = 2 V, unmodulated150220290KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input limiting voltage                                                             | Vi-lim                | 100 dB $\mu$ , 10.7 MHz, 30% modulation. The IF input such that the input reference output goes down by 3 dB | 33   | 40      | 47   | dBμ   |  |
| $ \begin{array}{ c c c c c c } SD-sen1FM & The IF input level (unmodulated) (over 100 mV rms) \\ such that the IF counter buffer output goes on \\ \hline SD-sen2FM & SD-sen2FM & IO.7 MHz, 100 dB\mu, unmodulated. The pin 23 output & I30 & 200 & 270 & mV rms \\ \hline IF counter buffer output & V_{IFBUFF-FM} & IO.7 MHz, 100 dB\mu, unmodulated. The pin 23 output & I30 & 200 & 270 & mV rms \\ \hline V_{SM}FM-2 & SO dB\mu. The pin 24 DC output, unmodulated & 0.4 & 1.0 & 1.5 & V \\ \hline V_{SM}FM-3 & 70  dB\mu. The pin 24 DC output, unmodulated & 0.4 & 1.0 & 1.5 & V \\ \hline V_{SM}FM-3 & 70  dB\mu. The pin 24 DC output, unmodulated & 2.0 & 2.7 & 3.5 & V \\ \hline V_{SM}FM-4 & 100  dB\mu. The pin 24 DC output, unmodulated & 4.7 & 5.5 & 6.2 & V \\ \hline Muting bandwidth & BW-mute & 100  dB\mu. The bandwidth when V33 = 2 V, unmodulated & 150 & 220 & 290 & KHz \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Muting sensitivity                                                                 | Vi-mute               | The IF input level (unmodulated) when V33 = 2 V                                                              | 27   | 35      | 43   | dBµ   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SD sensitivity                                                                     | SD-sen1 FM            | The IF input level (unmodulated) (over 100 mV rms) such that the IF counter buffer output goes on            | 54   | 62      | 70   | dBμ   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | SD-sen2 FM            |                                                                                                              | 54   | 62      | 70   | dBµ   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IF counter buffer output                                                           | VIFBUFF-FM            | 10.7 MHz, 100 dBµ, unmodulated. The pin 23 output                                                            | 130  | 200     | 270  | mVrms |  |
| Signal meter output         V <sub>SM</sub> FM-2         50 dBμ. The pin 24 DC output, unmodulated         0.4         1.0         1.5         V           V <sub>SM</sub> FM-3         70 dBμ. The pin 24 DC output, unmodulated         2.0         2.7         3.5         V           V <sub>SM</sub> FM-4         100 dBμ. The pin 24 DC output, unmodulated         4.7         5.5         6.2         V           Muting bandwidth         BW-mute         100 dBμ. The bandwidth when V33 = 2 V, unmodulated         150         220         290         kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    | V <sub>SM</sub> FM-1  | No input. The pin 24 DC output, unmodulated                                                                  | 0.0  | 0.1     | 0.3  | V     |  |
| V <sub>SM</sub> FM-3         70 dBµ. The pin 24 DC output, unmodulated         2.0         2.7         3.5         V $V_{SM}$ FM-4         100 dBµ. The pin 24 DC output, unmodulated         4.7         5.5         6.2         V           Muting bandwidth         BW-mute         100 dBµ. The bandwidth when V33 = 2 V, unmodulated         150         220         290         kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Signal mater output                                                                | V <sub>SM</sub> FM-2  | 50 dBµ. The pin 24 DC output, unmodulated                                                                    | 0.4  | 1.0     | 1.5  | V     |  |
| V <sub>SM</sub> FM-4         100 dBμ. The pin 24 DC output, unmodulated         4.7         5.5         6.2         V           Muting bandwidth         BW-mute         100 dBμ. The bandwidth when V33 = 2 V, unmodulated         150         220         290         kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signal meter output                                                                | V <sub>SM</sub> FM-3  | 70 dBµ. The pin 24 DC output, unmodulated                                                                    | 2.0  | 2.7     | 3.5  | V     |  |
| Muting bandwidth BW-mute 100 dBµ. The bandwidth when V33 = 2 V, unmodulated 150 220 290 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    | V <sub>SM</sub> FM-4  | 100 dBµ. The pin 24 DC output, unmodulated                                                                   | 4.7  | 5.5     | 6.2  | V     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Muting bandwidth                                                                   | BW-mute               | 100 dB $\mu$ . The bandwidth when V33 = 2 V, unmodulated                                                     | 150  | 220     | 290  | kHz   |  |
| Mute drive output         V <sub>MUTE-100</sub> 100 dBμ, 0 dBμ. The pin 33 DC output, unmodulated         0.00         0.03         0.20         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mute drive output                                                                  | V <sub>MUTE-100</sub> | 100 dBµ, 0 dBµ. The pin 33 DC output, unmodulated                                                            | 0.00 | 0.03    | 0.20 | V     |  |

#### LA1787M

Continued from preceding page.

|                                 |                      |                                                                                                                                                                                                                                             | Ratings |     |     | it    |
|---------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----|-------|
| Parameter Symbo                 |                      | Conditions                                                                                                                                                                                                                                  |         | typ | max | unit  |
| [FM FE Mixer Input              | 1                    | 1                                                                                                                                                                                                                                           |         |     |     |       |
| N-AGC on input                  | V <sub>N</sub> -AGC  | 83 MHz, unmodulated.<br>The input such that the pin 2 voltage is 2.0 V or below                                                                                                                                                             | 81      | 88  | 95  | dBμ   |
| W-AGC on input                  | V <sub>W</sub> AGC   | 83 MHz, unmodulated. The input such that the pin 2 voltage is 2.0 V or below. (When the keyed AGC is set to 4.0 V.)                                                                                                                         | 104     | 110 | 116 | dBµ   |
| Conversion gain                 | A.V                  | 83 MHz, 80 dBµ, unmodulated. The FE CF output                                                                                                                                                                                               | 19      | 30  | 48  | mVrms |
| Oscillator buffer output        | VOSCBUFFFM           | No input                                                                                                                                                                                                                                    | 85      | 110 | 165 | mVrms |
| [NC Block] NC input (pin 30)    |                      |                                                                                                                                                                                                                                             |         |     |     |       |
| Gate time                       | τGATE1               | f = 1 kHz, for a 1-µs, 100-mV p-o pulse                                                                                                                                                                                                     |         | 55  |     | μs    |
| Noise sensitivity               | SN                   | The level of a 1 = kHz, 1-µs pulse input that starts noise canceller operation. Measured at pin 30.                                                                                                                                         |         | 40  |     | mVp-o |
| NC effect                       | SN-NC                | The pulse rejection effect provided by the noise canceller.<br>For a repeated 1- $\mu$ s wide pulse, frequency = 10 kHz,<br>150 mV p-o. The ratio of the FM mode pin 15 output<br>referenced to the AM mode pin 15 output (effective value) | 5       |     |     |       |
| [Multipath Rejection Circuit] N | IRC input (pin 27)   | )                                                                                                                                                                                                                                           |         |     |     |       |
| MRC output                      | VMRC                 | V24 = 5 V                                                                                                                                                                                                                                   | 2.2     | 2.3 | 2.4 | V     |
| MRC operating level             | MRC-ON               | The pin 32 input level at $f = 70$ kHz such that<br>pin 24 goes to 5 V and pin 27 goes to 2 V                                                                                                                                               |         | 15  | 20  | mVrms |
| [AM Characteristics] AM ANT     | input                | -                                                                                                                                                                                                                                           |         |     |     | -     |
| Practical sensitivity           | S/N-30               | 1 MHz, 30 dBµ, f <sub>m</sub> = 1 kHz, 30% modulation, pin 15                                                                                                                                                                               | 20      |     |     | dB    |
| Detector output                 | V <sub>O</sub> -AM   | 1 MHz, 74 dBµ, f <sub>m</sub> = 1 kHz, 30% modulation, pin 15                                                                                                                                                                               | 130     | 195 | 270 | mVrms |
| Pin 31 detector output          | V <sub>O</sub> -AM31 | 1 MHz, 74 dB $\mu$ , f <sub>m</sub> = 1 kHz, 30% modulation, pin 31                                                                                                                                                                         | 110     | 175 | 230 | mVms  |
| AGC F.O.M.                      | V <sub>AGC-FOM</sub> | 1 MHz, 74 dB $\mu$ , referenced to the output, the input amplitude such that the output falls by 10 dB. Pin 15                                                                                                                              | 51      | 56  | 61  | dB    |
| Signal-to-noise ratio           | S/N-AM               | 1 MHz, 74 dBµ, f <sub>m</sub> = 1 kHz, 30% modulation                                                                                                                                                                                       | 47      | 52  |     | dB    |
| Total harmonic distortion       | THD-AM               | 1 MHz, 74 dBµ, f <sub>m</sub> = 1 kHz, 80% modulation                                                                                                                                                                                       |         | 0.3 | 1   | %     |
| Signal motor output             | V <sub>SM</sub> AM-1 | No input                                                                                                                                                                                                                                    | 0.0     | 0.2 | 0.5 | V     |
| Signal meter output             | V <sub>SM</sub> AM-2 | 1 MHz, 130 dBµ, unmodulated                                                                                                                                                                                                                 | 4.8     | 6   | 7.3 | V     |
| Oscillator buffer output        | VOSCBUFF AM1         | No input, the pin 15 output                                                                                                                                                                                                                 | 185     | 230 |     | mVrms |
| Wide band AGC sensitivity       | W-AGCsen1            | 1.4 MHz, the input when $V46 = 0.7 V$                                                                                                                                                                                                       | 92      | 98  | 104 | dBμ   |
| while band Acto scholawity      | W-AGCsen2            | 1.4 MHz, the input when V46 = 0.7 V (seek mode)                                                                                                                                                                                             | 83      | 89  | 95  | dBμ   |
| SD sensitivity                  | SD-sen1 AM           | 1 MHz, the ANT input level such that the IF counter output turns on.                                                                                                                                                                        | 24      | 30  | 36  | dBμ   |
|                                 | SD-sen2 AM           | 1 MHz, the ANT input level such that the SD pin goes to the on state.                                                                                                                                                                       | 24      | 30  | 36  | dBμ   |
| IF buffer output                | VIFBUFF-AM           | 1 MHz, 74 dBµ, unmodulated. The pin 23 output                                                                                                                                                                                               |         | 290 |     | mVrms |

Note: These measurements must be made using the either the IC-51-0644-824 or KS8277 IC socket (manufactured by Yamaichi Electronics).
\* 1. When the resistor between pin 58 and ground is 200 kΩ.
\* 2. When the resistor between pin 58 and ground is 30 kΩ.

#### **Function List**

FM Front End (Equivalent to the Sanyo LA1193)

- Double input type double balanced mixer
- Pin diode drive AGC output
- MOSFET second gate drive AGC output
- Keyed AGC adjustment pin
- Differential IF amplifier
- Wide band AGC sensitivity setting pin, and narrow band AGC sensitivity setting pin
- Local oscillator

#### FM IF

- IF limiter amplifier
- S-meter output (also used for AM) 6-stage pickup
- Multipath detection pin (shared FM signal meter)
- Quadrature detection
- AF preamplifier
- AGC output
- Band muting
- Weak input muting
- Soft muting adjustment pin
- Muting attenuation adjustment pin
- IF counter buffer output (also used for AM)
- SD (IF counter buffer on level) adjustment pin
- SD output (active high) (also used for AM)

#### Noise Canceller

- High-pass filter (first order)
- Delay circuit based low-pass filter (fourth order)
- Noise AGC
- Pilot signal compensation circuit
- Noise sensitivity setting pin
- Function for disabling the noise canceller in AM mode

**Multiplex Functions** 

- Adjustment-free VCO circuit
- Level follower type pilot canceller circuit
- HCC (high cut control)
- Automatic stereo/mono switching
- VCO oscillation stop function (AM mode)
- Forced monaural
- SNC (stereo noise controller)
- Stereo display pin
- Anti-birdie filter

AM

- Double balanced mixer (1st, 2nd)
- IF amplifier
- Detection
- RF AGC (narrow/wide)
- Pin diode drive pin
- IF AGC
- Signal meter output (also used for FM)
- Local oscillator circuits (first and second)
- Local oscillator buffer output
- IF counter buffer output (also used by the FM IF)
- SD (IF counter buffer on level) adjustment pin
- SD output (active high) (also used for AM)
- Wide AGC
- Detection output frequency characteristics adjustment pin (low cut, high deemphasis)
- AM stereo buffer

MRC (multipath noise rejection circuit)

AM/FM switching output (linked to the FM  $V_{\mbox{\scriptsize CC}})$ 

#### Operating Characteristics and Symbols Used in the Test Circuit Diagrams

Switches (SW)

Switch on = 1, SW off = 0

There are two switches that use signal transfer.

- SW2: switches between the mixer input and the IF input.

- SW4: switches between noise canceler input and IF output + noise canceler input.

#### Types of SG used

| PG1 (AC1) | Used for noise canceler testing. A pulse generator and an AF oscillator are required.                           |
|-----------|-----------------------------------------------------------------------------------------------------------------|
| AC2       | Used for FM front end testing. Outputs an 83 MHz signal.                                                        |
| AC3       | Used for FM IF, noise canceler, and MPX testing. Outputs a 10.7 MHz signal. Stereo modulation must be possible. |
| AC4       | Used for AM testing. Outputs 1 MHz and 1.4 MHz signals.                                                         |
| AC5       | Used with the MRC. Can also be used for AF and OSC.                                                             |

#### Power supply

| V <sub>CC</sub>   | 8 V                       |                   |                       |
|-------------------|---------------------------|-------------------|-----------------------|
| V <sub>CC</sub> 1 | 5 V                       |                   | SD, stereo, seek/stop |
| V <sub>CC</sub> 2 | 0.1 V / 0.7 V / 2 V / 4 V | These levels      | Keyed AGC, Mute ATT   |
| V <sub>CC</sub> 3 | 0.1 V / 0.6 V / 2 V       | must be variable. | HCC, SNC, SASC (MRC)  |

#### • Switches

|      | Parameter                                                                  | ON                              | OFF                                 |
|------|----------------------------------------------------------------------------|---------------------------------|-------------------------------------|
| SW1  | AM/FM switching. The FE V <sub>CC</sub> is supplied to pin 62.             | FM                              | AM                                  |
| SW2  | FM IF switching. Pin 51/FE output                                          | FE IF OUT (A)                   | AC3 (B)                             |
| SW3  | For conversion gain testing                                                | Conversion gain measurement (A) | Other/purposes                      |
| SW4  | For switching between noise canceler input and IF output + noise canceler. | AC1 (A)                         | Other/purposes                      |
| SW5  | High-speed SD                                                              | High-speed SD                   | Other/purposes                      |
| SW6  | SEEK/STOP (IF BUFF ON/OFF)                                                 | STOP                            | Seek (IF buffer output)             |
| SW7  | MUTE ATT 200 kΩ                                                            | MUTE 200 kΩ                     | OFF                                 |
| SW8  | MUTE ATT 30 kΩ                                                             | MUTE 30 kΩ                      | OFF                                 |
| SW9  | For pilot cancellation testing                                             | When pilot cancellation is used | When pilot cancellation is not used |
| SW10 | Mute off (pin 33)                                                          | MUTE OFF                        | MUTE ON                             |

#### • Trimmers (variable resistors)

| VR1 | Separation adjustment         |
|-----|-------------------------------|
| VR2 | Pilot cancellation adjustment |

#### **Test Points**

• DC voltages

| VD1 | FM RF AGC voltage                       | Pin 2  |
|-----|-----------------------------------------|--------|
| VD2 | AM/FM SD, AM Tweet, FM stereo indicator | Pin 26 |
| VD3 | AM/FM S-meter                           | Pin 24 |
| VD4 | MRC output                              | Pin 27 |
| VD5 | Mute drive output                       | Pin 33 |
| VD6 | AM antenna damping voltage              | Pin 46 |
| VD7 | N.C. Gate time                          | Pin 8  |

#### • AC voltages

| VA1 | AM/FM OSC Buff    | Pin 4                                                              |
|-----|-------------------|--------------------------------------------------------------------|
| VA2 | First IF output   | Pin 53 $\rightarrow$ CF $\rightarrow$ pin 51 load level (10.7 MHz) |
| VA3 | IF counter buffer | Pin 23 (10.7 MHz/450 kHz)                                          |
| VA4 | MPX OUT Left ch   | Pin 15 (AF)                                                        |
| VA5 | MPX OUT Right ch  | Pin 16 (AF)                                                        |

#### **Pin Descriptions**

| Pin No. | Function              | Description                                                                                                       | Equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|-----------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Antenna damping drive | An antenna damping current flows<br>when the RF AGC voltage (pin 2)<br>reaches V <sub>CC</sub> – V <sub>D</sub> . | ANT<br>ANT<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>1000pF<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>10000P<br>1000 |
| 2       | RF AGC                | Used to control the FET second gate.                                                                              | FET<br>2nd GATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3       | F.E.GND               |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4       | OSC                   | Oscillator connection                                                                                             | V <sub>CC</sub><br>4<br>V <sub>T</sub><br>25pF<br>25pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF<br>20pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7       | AM OSC                | AM first oscillator<br>This circuit can oscillator up to the<br>SW band.<br>An ALC circuit is included.           | Alassa<br>Continued on next page.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Continued from preceding page. |                                         |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|--------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Pin No.                        | Function                                | Description                                                                                                                                                                                                                     | Equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 8<br>9                         | Noise AGC sensitivity<br>AGC adjustment | After setting up the medium field<br>(about 50 dB $\mu$ ) sensitivity with the<br>noise sensitivity setting pin (pin 8),<br>set the weak field (about 20 to<br>30 dB $\mu$ ) sensitivity with the AGC<br>adjustment pin (pin 9) | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$ |  |  |
| 11<br>12                       | Memory circuit connection               | Recording circuit used during noise canceller operation.                                                                                                                                                                        | 0.01µF 6800pF 3.9kΩ<br>13 12 VCC<br>+ VCC<br>+ VCC<br>+ UFF<br>A1360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 13                             | Pilot input                             | Pin 13 is the PLL circuit input pin.                                                                                                                                                                                            | N.C<br>12<br>$0.01\mu F$<br>N.S<br>13561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 14                             | N.C, MPX, MRC, GND                      | MRC circuits.                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

| Din No   | Eurotion                                | Description                                                                                                                                              | Equivalent circuit                                    |
|----------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| FIII NO. | FUNCTION                                | Description                                                                                                                                              | Equivalent circuit                                    |
| 15<br>16 | MPX output (left)<br>MPX output (right) | Deemphasis<br>50 μs: 0.015 μF<br>75 μs: 0.022 μF                                                                                                         | VCC                                                   |
| 17       | Pilot canceller signal output           | Adjustment is required since the<br>pilot signal level varies with the<br>sample-to-sample variations in<br>the IF output level and other<br>parameters. | VCC<br>20kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>413563 |
| 18       | Pilot canceller signal output           | Pin 18 is the output pin for the pilot canceller signal.                                                                                                 | Vcc                                                   |

Continued from preceding page.

Continued from preceding page.



| Continued from preceding page. |          |  |  |  |  |
|--------------------------------|----------|--|--|--|--|
| Pin No.                        | Function |  |  |  |  |

| Pin No.  | Function                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                      | Equivalent circuit                                                                                                                                                |
|----------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23       | IF counter buffer seek/stop<br>switching        | This pin functions both as the IF<br>counter buffer (AC output) and as<br>the seek/stop switch pin.<br>The voltage V23 switches<br>between the following three<br>modes.<br>During FM reception:<br>5 V: Seek mode<br>2.5 V: Forced SD mode<br>0 V: Reception mode<br>AM reception<br>(two modes: 0 and 5 V)<br>5 V: Seek mode<br>0 V: Reception mode                                                                            | 4.9V<br>4.9V<br>50kΩ<br>1.3V<br>V <sub>CC</sub> IF counter<br>buffer<br>10kΩ<br>50F<br>50F<br>50F<br>50F<br>50F<br>50F<br>50F<br>50F                              |
| 24<br>32 | AM/FM signal meter<br>Dedicated FM signal meter | Fixed-current drive signal meter<br>output<br>In AM mode, pin 32 outputs a<br>1-mA current. Thus the HCC<br>circuit is turned off.                                                                                                                                                                                                                                                                                               | VCC       FM       S-meter       10kΩ       AM       S-meter       10kΩ       WFM       Outputs a 1-mA       Current during AM       MRC       AM/FM       Smeter |
| 26       | Stereo indicator for the SD pin                 | <ul> <li>The voltage V23 switches<br/>between three modes as follows.</li> <li>FM reception:</li> <li>5 V: The SD pin operates linked<br/>to the IF counter buffer.</li> <li>2.5 V: Forced SD mode: operates<br/>as the SD pin.</li> <li>0.7 V: Reception mode: stereo<br/>indicator</li> <li>AM reception: (two modes: 0 and 5 V)</li> <li>5 V: Operates as the seek SD pin.</li> <li>0 V: Reception mode. Not used.</li> </ul> | AM/FM<br>Sb<br>SD<br>indicator<br>Seek/stop<br>switching<br>26<br>VD<br>A13570                                                                                    |

| Continued from preceding page. |                                      |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|--------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pin No.                        | Function                             | Description                                                                                                                                                                                                            | Equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 27                             | MRC control voltage time<br>constant | The MRC detector time constant<br>is determined by a 100 $\Omega$ resistor<br>and C2 when discharging and by<br>the 2-µA current and C2 when<br>charging.                                                              | $V_{CC}$<br>$2\mu A$<br>$V_{CC}$<br>$V_{CC}$<br>C2<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$<br>$V_{CC}$ |  |  |  |  |
| 28                             | SNC control input                    | The sub-output is controlled by a 0 to 1-V input.                                                                                                                                                                      | 28<br>T<br>A13572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 29                             | HCC control input                    | The high band frequency output is<br>controlled by a 0 to 1-V input.<br>It can also be controlled by the<br>MRC output.<br>Use a resistor of at least 100 kΩ<br>when controlling with the pin 32<br>FM S-meter signal. | 32<br>1μF ZZZ<br>413573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |

Continued from preceding page.

| Pin No. | Function                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                        | Equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30      | Noise canceller input<br>AM/FM detector output | Pin 30 is the noise canceller input.<br>The input impedance is 50 kΩ.<br>Pin 31 is the AM and FM detector<br>output<br>In FM mode, this is a low-<br>impedance output.<br>In AM mode, the output<br>impedance is 10 kΩ.<br>To improve the low band<br>separation, use a coupling<br>capacitor of over 10 $\mu$ F.                                                                                                  | VCC       I0kΩ       VCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32      | IF S-meter output and MRC<br>DC input          | FM S-meter output block<br>MRC AC input block<br>Adjust the external 1-kΩ resistor<br>to attenuate the MRC AC input<br>and control the circuit.                                                                                                                                                                                                                                                                    | VCC<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ<br>10kΩ |
| 33      | Mute drive output                              | • The muting time constant is determined by an external RC circuit as described below.<br>Attack time: $T_A = 10 k\Omega \times C1$<br>Release time: $T_R = 50 k\Omega \times C1$<br>• Noise convergence adjustment The noise convergence can be adjusted when there is no input signal by inserting a resistor between pin 33 and ground.<br>• Muting off function Ground pin 33 through a 4-k $\Omega$ resistor. | C1<br>+<br>ZZ 0.1µF<br>33<br>33<br>VCC<br>50KΩ<br>MUTE<br>AMP.<br>40KΩ<br>SOFT<br>HOLE<br>Band<br>MUTE<br>DET<br>MUTE<br>DET<br>SD circuit<br>413576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Continued from preceding page.

| Pin No.              | Function                                         | Description                                                                                                                                                                                                                                                                                                                                                                                       | Equivalent circuit                                                                                                        |
|----------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 34<br>35<br>36<br>37 | AGC<br>QD output<br>QD input<br>V <sub>REF</sub> | •The resistor R <sub>1</sub> determines the width of the band muting function. Increasing the value of R <sub>1</sub> narrows the band.<br>Reducing the value of R <sub>1</sub> widens the band.<br>•Null voltage<br>When tuned, the voltage between pins 34 and 37, V <sub>34 - 37</sub> , will be 0 V.<br>The band muting function turns on when $ V_{34 - 37}  \ge 0.7$ V.<br>$V_{37} = 4.9$ V | 0.1μ <sup>F</sup> VREF R1<br>VCC<br>Flip<br>R2 36<br>35<br>4<br>CCC<br>CCC<br>CCC<br>CCC<br>CCC<br>CCC<br>CCC             |
| 38                   | FM SD ADJ                                        | A 130-µA current flows from pin<br>38 and, in conjunction with the<br>external resistance R, determines<br>the comparison voltage.                                                                                                                                                                                                                                                                | R SD ADJ<br>38<br>130µA<br>130µA<br>Comparator<br>S-meter<br>A13578                                                       |
| 39                   | Keyed AGC<br>AM stereo buffer                    | The keyed AGC operates when<br>the voltage created by dividing the<br>pin 24 S-meter output voltage by<br>the 6.4 and 3.6 k $\Omega$ resistors<br>becomes lower than the voltage<br>determined by the resistor<br>between pin 39 and ground.<br>This pin also is used as the AM<br>stereo IF buffer pin.                                                                                          | S-meter<br>$6.4k\Omega$<br>Comparator<br>KEYED<br>AGC<br>1.3V<br>VCC<br>AM IF out<br>50pF<br>$150\Omega$<br>777<br>413579 |

Continued from preceding page.

| Pin No. | Function       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41      | HCC capacitor  | The HCC frequency characteristics<br>are determined by the external<br>capacitor connected at this pin.                                                                                                                                                                                                                                                                                                                                                      | +<br>20kΩ<br>20kΩ<br>20kΩ<br>20kΩ<br>41<br>2200pF<br>//<br>//<br>//<br>//<br>//<br>//<br>//<br>//<br>//<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 42      | AM L.C. pin    | This pin is used to change the frequency characteristics of the unneeded audio band under 100 Hz in AM mode to produce a clear audio signal.<br>Note: The LC capacitor must be connected between this pin and V <sub>CC</sub> (pin 40).<br>This is because the detector circuit operates referenced to V <sub>CC</sub> .<br>The cutoff frequency f <sub>C</sub> is determined by the following formula.<br>$f_C = 1/2\pi \times 50 \text{ k}\Omega \times C$ | $\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ |
| 43      | Pilot detector | Inserting a 1-M $\Omega$ resistor between pin 43 and $V_{CC}$ will force the IC to mono mode.                                                                                                                                                                                                                                                                                                                                                                | <sup>19kHz∠0°</sup> BIAS<br><sup>30kΩ</sup> <sup>30kΩ</sup> <sup>43</sup><br><sup>43</sup><br><sup>1µF</sup> <sup>222</sup><br><sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Continued from preceding page.



Continued from preceding page.

| Pin No.  | Function                         | Description                                                                                                                                                                                                                                                               | Equivalent circuit                        |  |  |  |  |
|----------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| 47       | FM muting on level<br>adjustment | Modify the value of the external<br>resistor to adjust the muting on<br>level.                                                                                                                                                                                            | 30kg<br>Я 777<br>VCC<br>140µА<br>Pin 24 < |  |  |  |  |
| 48<br>57 | RF AGC bypass<br>RF AGC          | RF AGC rectification capacitor<br>The low frequency distortion is<br>determined as follows:<br>Increasing C48 and C57 improves<br>the distortion but makes the<br>response slower.<br>Reducing C48 and C57<br>aggravates the distortion but<br>makes the response faster. | For AGC use<br>47μF<br>47μF<br>413587     |  |  |  |  |
| 50<br>51 | IF bypass<br>FM IF input         | Due to the high gain of the limiter<br>amplifer, care must be taken when<br>choosing the grounding point for<br>the limiter amplifer input capacitor<br>to prevent oscillation.                                                                                           | 0.022μF<br>IF in<br>A13588                |  |  |  |  |
| 52       | IF input                         | The input impedance is 2 kΩ.                                                                                                                                                                                                                                              |                                           |  |  |  |  |

| Pin No.     Function     Description     Equivalent circuit       53     IF amplifier output     • Input and output pin or the first<br>IF amplifier input     • Input and output pin or the first<br>IF amplifier input     • Input and output pin or the first<br>IF amplifier input     • IF OUT (\$3)     • IF OUT (\$3)       53     IF amplifier output     • VS6 = 2 V<br>Input impedance: R <sub>IN</sub> = 330 Ω     • VS3 = 5.3 V     • IF OUT (\$5)     • IF OUT (\$5)       54     Mixer output: 130 μA     The mixer coil connected to the<br>pin 54 mixer output must be<br>wired to V <sub>CC</sub> (pin 40).<br>The pin 49 mixer input<br>impedance is 330 Ω     Pin 40 V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Continued from preceding page. |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|--|--|--|
| 53<br>56IF amplifier output<br>IF amplifier input• Input and output pin or the first<br>IF amplifier<br>$VS6 = 2 V$<br>Input Impedance: $R_{IN} = 330 \Omega$<br>$VS3 = 5.3 V$<br>Output Impedance<br>$R_{OUT} = 330 \Omega$ IF OUT $(3)$<br>IF $UT = 2.75 V$<br>IF $UT = 2.75 V$<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |  |  |
| 54<br>49 Mixer output: 130 $\mu$ A<br>49 Mixer input<br>The mixer coil connected to the<br>pin 54 mixer output must be<br>wired to V <sub>CC</sub> (pin 40).<br>The pin 49 mixer input<br>impedance is 330 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Α13590                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _OSC<br>                       |  |  |  |  |  |  |  |
| <ul> <li>55 W-AGC IN<br/>AM SD ADJ</li> <li>58 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>58 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>59 W-AGC IN<br/>AM SD ADJ</li> <li>50 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>51 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>52 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>53 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>54 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>55 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>55 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>55 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>56 N-AGC IN<br/>Muting attenuation<br/>adjustment pin</li> <li>57 N-AGC IN<br/>Muting attenuation<br/>AM SD ADJ</li> <li>58 N-AGC IN<br/>Muting attenuation<br/>AM SD ADJ</li> <li>59 N-AGC IN<br/>Muting attenuation<br/>AM SD ADJ</li> <li>50 N-AGC IN<br/>Muting a</li></ul> | N-AGC                          |  |  |  |  |  |  |  |

Continued from preceding page.

| Pin No.              | Function                                  | Description                                                                                                                                                                                                                                                                                                                                           | Equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 59<br>60<br>63<br>64 | Mixer output<br>Mixer input               | Double balanced mixer<br>Pins 59 and 60 are the mixer<br>10.7-MHz output<br>Pins 63 and 64 are the mixer<br>input.<br>This is an emitter insertion type<br>circuit, and the amount of<br>insertion is determined by the<br>capacitors C1 and C2.<br>Note:The lines for pins 63 and 64<br>must be kept separated from<br>the lines for pins 59 and 60. | 1ST.IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6                    | Front end V <sub>CC</sub> AM/FM switching | Pin 6 functions both as the FMfront end V <sub>CC</sub> and the AM/FMswitching circuit.V6 voltageModeWhen 8 V $\rightarrow$ FMOPEN $\rightarrow$ AM                                                                                                                                                                                                   | SD<br>+<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 62                   | 1st MIX<br>INPUT                          | First mixer input<br>The input impedance is about<br>10 kΩ.                                                                                                                                                                                                                                                                                           | to RF<br>Amp.<br>62<br>10kû<br>2.1V<br>77<br>10kû<br>10kû<br>10kû<br>10kû<br>10kû<br>10kû<br>10kû<br>10kû                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10                   | AM 2nd OSC                                | Crystal oscillator circuit<br>The Kinseki, Ltd. HC-49/U-S and<br>a C <sub>L</sub> of 20 pF must be used.                                                                                                                                                                                                                                              | $ \begin{array}{c} 10k\Omega \\ \hline 5.6V \\ \hline 7.6V \\ \hline 7.56V \\ \hline 7.50V \\ \hline 7$ |



No. 6655-19/54

Block Diagram





No. 6655-20/54

LA1787M

#### **Test Conditions**

|                                | <b>a</b>              | Switch states |     |     |     |     |     |     |     |        |      |
|--------------------------------|-----------------------|---------------|-----|-----|-----|-----|-----|-----|-----|--------|------|
| Parameter                      | Symbol                | SW1           | SW2 | SW3 | SW4 | SW5 | SW6 | SW7 | SW8 | SW9    | SW10 |
| Current drain                  | I <sub>CCO</sub> -FM  | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Demodulation output            | V <sub>O</sub> -FM    | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Pin 31 demodulation output     | V <sub>O</sub> -FM31  | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Channel balance                | СВ                    | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Total harmonic distortion (FM) | THD-FMmono            | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Signal-to-noise ratio: IF      | S/N-FM IF             | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| AM suppression ratio: IF       | AMR IF                | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
|                                | Att-1                 | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Muting attenuation             | Att-2                 | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
|                                | Att-3                 | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Separation                     | Separation            | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Stereo on level                | ST-ON                 | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Stereo off level               | ST-OFF                | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | _    |
| Main total harmonic distortion | THD-Main L            | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | _    |
| Pilot cancellation             | PCAN                  | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | OFF/ON | _    |
| SNC output attenuation         | AttSNC                | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | _    |
| HCC output attenuation 1       | AttHCC-1              | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | _    |
| HCC output attenuation 2       | AttHCC-2              | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | _    |
| Input limiting voltage         | Vi-lim                | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | ON   |
| Muting sensitivity             | Vi-mute               | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| SD sensitivity 1               | SD-sen1 FM            | ON            | b   | OFF | b   | OFF | OFF | OFF | OFF | ON     | —    |
| SD sensitivity 2               | SD-sen2 FM            | ON            | b   | OFF | b   | ON  | OFF | OFF | OFF | ON     | _    |
| IF counter buffer output       | VIFBUFF-FM            | ON            | b   | OFF | b   | OFF | OFF | OFF | OFF | ON     | _    |
|                                | V <sub>SM</sub> FM-1  | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | _    |
| Signal meter output (FM)       | V <sub>SM</sub> FM-2  | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
|                                | V <sub>SM</sub> FM-3  | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
|                                | V <sub>SM</sub> FM-4  | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Muting bandwidth               | BW-mute               | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| Mute drive output              | V <sub>MUTE-100</sub> | ON            | b   | OFF | b   | _   | ON  | OFF | OFF | ON     | —    |
| N-AGC on input                 | V <sub>NAGC</sub>     | ON            | а   | ON  | b   | _   | ON  | OFF | OFF | _      | —    |
| W-AGC on input                 | V <sub>WAGC</sub>     | ON            | а   | ON  | b   | —   | ON  | OFF | OFF | —      | —    |
| Conversion gain                | A.V                   | ON            | а   | ON  | b   | —   | ON  | OFF | OFF | —      | —    |
| Oscillator buffer output       | VOSCBUFFFM            | ON            | а   | ON  | b   | —   | ON  | OFF | OFF | —      | —    |
| Gate time 1                    | τGATE1                | ON            | _   | OFF | а   | —   | ON  | OFF | OFF | —      | —    |
| Noise sensitivity              | SN                    | ON            | _   | OFF | а   | —   | ON  | OFF | OFF | —      | —    |
| NC effect                      | SN-NC                 | ON/OFF        | _   | OFF | а   | —   | ON  | OFF | OFF | —      | —    |
| MRC output                     | V <sub>MRC</sub>      | ON            | _   | OFF | b   | —   | ON  | OFF | OFF | —      | —    |
| MRC operating level            | MRC-ON                | ON            | _   | OFF | b   | —   | ON  | OFF | OFF | _      | —    |
| Practical sensitivity          | S/N-30                | OFF           | _   | OFF | b   | ON  | ON  | —   | —   | —      | —    |
| Detection output               | V <sub>O</sub> -AM    | OFF           | —   | OFF | b   | ON  | ON  | —   | -   | -      | —    |
| Pin 31 detection output        | V <sub>O</sub> -AM31  | OFF           | —   | OFF | b   | ON  | ON  | —   | —   | —      | —    |
| AGC F.O.M.                     | V <sub>AGC-FOM</sub>  | OFF           |     | OFF | b   | ON  | ON  | —   | —   | —      | —    |
| Signal-to-noise ratio          | S/N-AM                | OFF           | _   | OFF | b   | ON  | ON  | —   | —   | —      | —    |
| Total harmonic distortion (AM) | THD-AM                | OFF           | —   | OFF | b   | ON  | ON  | —   | —   | —      | —    |
| Signal meter output (AM)       | V <sub>SM</sub> AM-1  | OFF           | _   | OFF | b   | ON  | ON  | —   | —   | —      | _    |
| olgha motor output (/ im)      | V <sub>SM</sub> AM-2  | OFF           | _   | OFF | b   | ON  | ON  | —   | —   | —      | —    |
| Oscillator buffer output       | VOSCBUFF AM-1         | OFF           | _   | OFF | b   | ON  | ON  | _   | —   |        |      |
| Wide hand AGC sensitivity      | W-AGCsen 1            | OFF           | _   | OFF | b   | ON  | ON  | —   | —   | _      | _    |
|                                | W-AGCsen 2            | OFF           | _   | OFF | b   | ON  | ON  | _   | —   | —      |      |
| SD sensitivity                 | SD-sen1 AM            | OFF           | _   | OFF | b   | OFF | OFF |     |     |        |      |
|                                | SD-sen2 AM            | OFF           |     | OFF | b   | OFF | OFF | —   | _   |        |      |
| IF buffer output               | VIFBUFF-AM            | OFF           | _   | OFF | b   | OFF | OFF | _   | _   | _      |      |

#### **Usage Notes**

| 1. | Notes or | V <sub>CC</sub> | and | Ground |
|----|----------|-----------------|-----|--------|
|----|----------|-----------------|-----|--------|

| Pin 40  | $V_{\mbox{CC}}$ for the FM IF, AM, NC, MPX, and MRC blocks                        |
|---------|-----------------------------------------------------------------------------------|
| Pin 25  | Ground for the FM IF and AM blocks                                                |
| Pin 14  | Ground for the NC, MPX, and MRC blocks                                            |
| Pin 61  | $V_{\mbox{CC}}$ for the FM front end, AM first mixer, and first oscillator blocks |
| * Pin 6 | $V_{\mbox{CC}}$ for the FM front end and AGC blocks, and the AM/FM switching pin  |
| Pin 3   | Ground for the FM front end, first mixer, and first oscillator blocks             |

\*: When applying the V<sub>CC</sub> voltage to pin 6, that voltage must not exceed the pin 40 and pin 61 V<sub>CC</sub> voltages. (This condition must be checked carefully when first applying the pin 6 voltage.)

#### 2. Notes on AM Coil Connection

The V<sub>CC</sub> used for the first oscillator coil connected to pin 7 must be at the same potential as pin 61.

Connect to the IFT connected with pin 45, and to the MIX coil connected with pin 54.  $V_{CC}$  must be at the same potential as pin 40.

#### 3. AM/FM Switching

Pin 6 is also used as the FM front end and RF AGC  $V_{CC}$ 



| Pin 6 voltage | Mode |
|---------------|------|
| 8             | FM   |
| OPEN          | AM   |

#### LA1787M Overview

1. Notes on the LA1781M, LA1784M, and LA1787M

The LA1784M is a version of the LA1781M that uses an external oscillator circuit, and has the same characteristics as the LA1781M.

The LA1787M is a version of the LA1784M that features improved characteristics.



#### 2. Modified circuits

The following characteristics have been improved over those of the The LA1784M.

- The AM adjacent channel interference characteristics ( $\Delta 40 \text{ kHz}$ ) have been improved.
- The AM S-meter curve slope has been increased.
- The FM separation temperature characteristics have been improved.
- The stereo indicator sensitivity has been improved.
- The FM oscillator circuit has been omitted.
- (1) AM interference characteristics improvement

The second signal interference and suppression have been improved for adjacent channels (±40 kHz) by increasing the AM second mixer input dynamic range.

(2) The AM S-meter curve slope has been increased.

The slope of the AM S-Meter curve has been increased from that of the LA1781M and LA1784M.



(3) FM separation temperature characteristics improvement

The temperature characteristics have been improved, the amount of change in the separation due to drift when at power on has been stabilized. This makes it easier to adjust the separation.



#### (4) Stereo indicator sensitivity improvement

The stereo indicator sensitivity (on/off) is equivalent to that of the LA1780M

|               | Stereo on level | Stereo off level |
|---------------|-----------------|------------------|
| LA1781M/1784M | 4.1%            | 3.1%             |
| LA1787M/1780M | 2.6%            | 1.6%             |
|               | •               | (Typical value)  |

\*: The pilot level such that the stereo indicator goes on or off for a 10.7 MHz unmodulated IF input.

#### (5) FM oscillator circuit removed

The internal FM oscillator circuit provided in the LA1781M has been removed. The FM oscillator level can be adjusted by constructing an external circuit block.

\*: However, this requires 4 more external parts than the LA1781M: 1 transistor and 3 resistors/capacitors.



#### 3. Gain distribution

The table below shows the gain distribution of the LA1780M, LA1784M, and LA1787M. (These are measured values.) Compared to the LA1784M, the total gain is lower.

|         | 1st MIX (10.7) | 1st IF (10.7) | 2nd MIX (450) | 2nd IF (450) |
|---------|----------------|---------------|---------------|--------------|
| LA1780M | 10 dB          | 3.3 dB        | 3.2 dB        | 69 dB        |
| LA1784M | 7.5 dB         | 13 dB         | 7 dB          | 66 dB        |
| LA1787M | 7.5 dB         | 3.5 dB        | 8.6 dB        | 67 dB        |

First mixer

First IF amplifier

: No circuit changes from the LA1784M.

: Equivalent to the LA1780M circuit. (The gain is lower than that in the LA1781M and LA1784M.)

Second mixer : The mixer circuit has been modified to improve adjacent channel suppression and interference.

Second IF amplifier : Equivalent to the LA1780M circuit.

#### 4. Changes to applications

Component values that change from LA1781M/LA1784M applications (Since the total AM gain has changed in the LA1787M)

- AM SD adjustment resistor (pin 55): Because Vsm is higher.
- AM level adjustment resistor (pin 31): Since the post-detection audio amplifier gain is higher than in the LA1781M and LA1784M, the output level is also higher. This resistor must be changed to match the set value.
- AM mixer coil (pin 54), IFT coil (pin 45) damp resistor: Since the IF block gain is increased, the mixer (pin 54) and IFT (pin 45) coil damping must be adjusted.
- Separation adjustment resistor (pin 19): Since an internal 4  $k\Omega$  resistor has been added to the pin 19 input circuit to

improve the separation temperature characteristics, the value of the external resistor must be reduced from that used with the LA1780M, LA1781M, and LA1784M. (See the following page.)



#### **Functions**

1. Notes on the FM Front End

Notes on interference rejection characteristics

• Intermodulation characteristics

The LA1787M applies two high-band AGC functions to prevent IM (the generation of intermodulation). These are the narrow AGC (pin 58: mixer input detection type) and the wide AGC (for the pin 55 input), and this results in the antenna frequency characteristics shown in figure 2. The levels at which the AGC functions turn on are determined by the capacitors attached at pins 55 and 58.

