

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SANYO Semiconductors DATA SHEET

LA6565 — For CD and DVD players 5-channel Driver (BTL:4ch,H-bridge:1ch)

Overview

The LA6565 is a 4-channel BTL plus 1-channel H-bridge actuator driver developed for use in CD and DVD drives. The BTL driver channels 1 and 2 include built-in operational amplifiers allowing the LA6565 to support a wide range of applications.

Functions

- Five power amplifier channels on a single chip (Bridge connection (BTL): 4-channels, H-bridge: 1-channel)
- IO max: 1A
- Built-in level shifters (except for the H bridge channel)
- Muting circuits (output on/off, two systems)
 (The muting circuits operate for the BTL amplifiers. They do not apply to the H-bridge or regulator circuits.)
- Built-in regulator (Uses an external PNP-transistor and is set with an external resistor.)
- Output voltage setting function (loading driver)
- Built-in independent operational amplifiers
- Thermal shutdown circuit

Specifications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		14	V
Maximum output current	I _O max		1	Α
Maximum input voltage V _{INB}			13	V
MUTE pin voltage	V _{MUTE}		13	V
Allowable power dissipation Pd max		Independent IC	0.8	W
		Mounted on a specified board *	2	W
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Specified board: 114.3mm \times 76.1mm \times 1.6mm, glass epoxy board.

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VCC		5.6 to 13	V

Electrical Characteristics at Ta = 25°C, $V_{CC}1 = V_{CC}2 = 8V$, VREF = 2.5V

Parameter	Symbol Conditions -		Ratings			Unit
i didilietei			min	typ	max	Offic
Overall		,				
Quiescent current when o	I _{CC} -ON	BTL amplifier output on, loading block off *1		30	50	mA
Quiescent current when off	I _{CC} -OFF	All outputs off *1		10	15	mA
Thermal shutdown circuit	TSD	*7	150	175	200	°C
operating temperature						
VREF Amplifier	T	1	1		1	
VREF amplifier offset voltage	VREF-OFFSET		-10		+10	mV
VREF input voltage range	VREF-IN		1		V _{CC} -1.5	V
VREF-OUT output current	I-VREF-OUT			1		mA
Operational Amplifier (Indepe	endent)	,				
Input voltage range	V _{IN} (OP)		0		V _{CC} -1.5	V
Output current (sink)	SINK(OP)		2			mA
Output current (source)	SOURCE(OP)		300	500		μΑ
Output offset voltage	V _{OFF} (OP)		-10		+10	mV
Residual current (sink)	V _{CE} -SINK(OP)	I _O (sink side) = 1mA			0.6	V
BTL Amplifier Block (Channe	els 1 to 4)		'			
Output offset voltage	VOFF	The voltage difference between each channel outputs *2, *3	-50		+50	mV
Input voltage range	V _{IN}	Input voltage range of the input operational amplifiers	0		V _{CC} -1.5	V
Output voltage	v _O	$I_O = 0.5A$, the voltage between V_O^+ and V_O^- in each channel	5.7	6.2		V
Closed circuit voltage gain	VG	The gain from the input to the output with the input amplifier set to 0dB*2, *3	7.2	8	9	time
Slew rate SR	SR	For the independent amplifier. Times 2 when between outputs.*7		0.5		V/µs
Muting on voltage	V _{MUTE} -ON	The output on voltage, for each mute function *4	2.5			V
Muting off voltage	V _{MUTE} -OFF	The output off voltage, for each mute function *4			0.5	V
Input Amplifier Block (Chann	nels 1 and 2)		u u			
Input voltage range	V _{IN} -OP		0		V _{CC} -1.5	V
Output current (sink)	SINK-OP		2			mA
Output current (source)	SOURCE-OP	*5	300	500		μА
Output offset voltage	V _{OFF} -OP		-10		+10	mV
Loading Block (Channel 5, H					<u> </u>	
Output voltage	V _O -LOAD	For forward/reverse operation, I _O = 0.5A, VCONT = V _{CC} *	5.7	6.5		٧
Braking output saturation voltage	V _{CE} -BREAK	The output voltage during braking *6			0.3	V
Low-level input voltage	V _{IN} -L				1	V
High-level input voltage	V _{IN-} H		2			V
Power Supply Block (Uses a		I K PNP-transistor)			I	
Power supply output	V _{OUT}	I _O = 200mA	1.260	1.285	1.310	V
REG-IN sink current	REG-IN-SINK	External PNP-transistor base current	5	10	1.0.0	mA
Line regulation	ΔV _O LN	$6V \le V_{CC} \le 12V, I_{O} = 200mA$		10	100	m۷
Load regulation	_			10	100	mV
Load regulation	ΔV _O LD	$5mA \le I_O \le 200mA$		10	100	1111

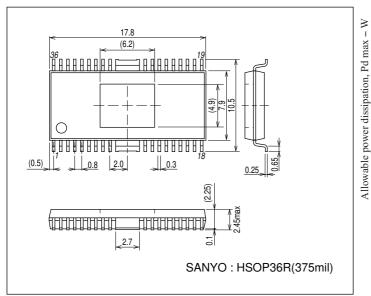
^{*1:} The total current dissipation for $V_{\mbox{\footnotesize{CC}}}\mbox{\footnotesize{P1}},\,V_{\mbox{\footnotesize{CC}}}\mbox{\footnotesize{P2}},$ and $V_{\mbox{\footnotesize{CC}}}\mbox{\footnotesize{S}}$ with no load.

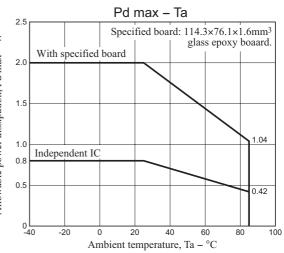
^{*2:} The input amplifier is a buffer amplifier.

^{*3:} The voltage difference between the two sides of the load (12 Ω).

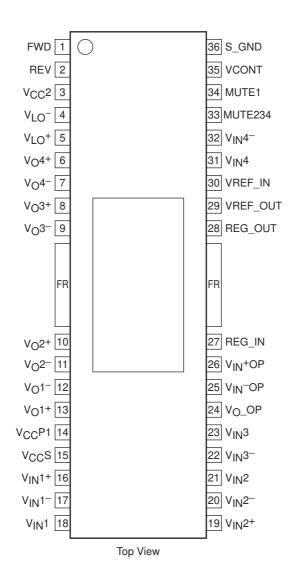
 $^{^{\}star}4$: When the MUTE pin is high, the output will be on, and when low, the output will be off (high-impedance state).

^{*5:} The input operational amplifier source is constant current. Since the $11k\Omega$ resistor between this and the next stage functions as the load, the input operational amplifier gain must be set carefully.

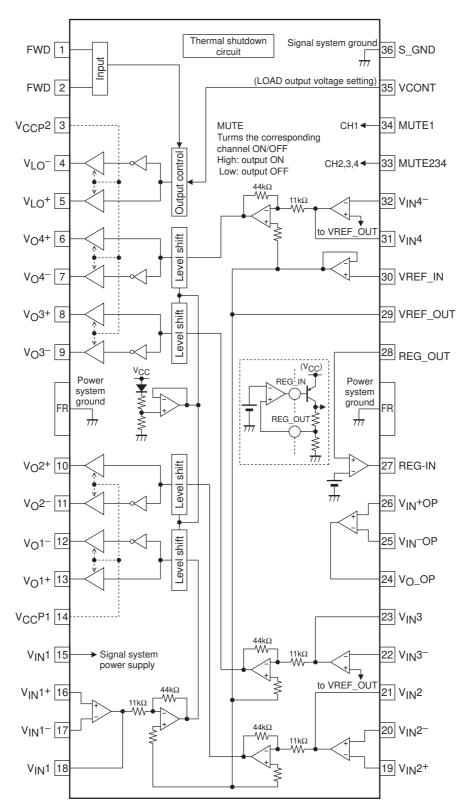

^{*6:} The braking operation is a short (to ground) braking operation. The sink side output is on at this time.


^{*7:} Design guarantee.

Package Dimensions


unit : mm (typ)

3251



Pin Assignment

Block Diagram

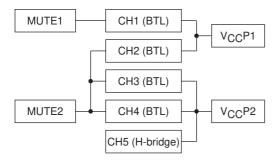
LA6565

Pin Function

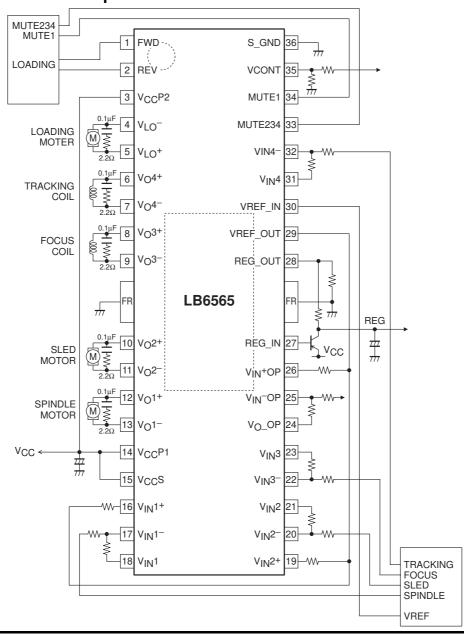
Pin No.	Pin name	Pin function			
1	FWD	Loading output direction switching (FWD). Loading system logic input.			
2	REV	Loading output direction switching (REV). Loading system logic input.			
3	V _{CC} 2	Channels 3, 4, and loading power stage power supply.			
4	V_{LO}^-	Loading output (–)			
5	V _{LO} +	Loading output (+)			
6	V _O 4+	Channel 4 output (+)			
7	V _O 4 ⁻	Channel 4 output (–)			
8	V _O 3+	Channel 3 output (+)			
9	V _O 3-	Channel 3 output (–)			
10	V _O 2+	Channel 2 output (+)			
11	V _O 2 ⁻	Channel 2 output (–)			
12	V _O 1 ⁻	Channel 1 output (–)			
13	V _O 1+	Channel 1 output (+)			
14	V _{CC} P1	Channels 1 and 2 power stage power supply.			
15	V _{CC} S	Signal system power supply.			
16	V _{IN} 1+	Channel 1 input. Input operational amplifier + input.			
17	V _{IN} 1-	Channel 1 input. Input operational amplifier – input.			
18	V _{IN} 1	Channel 1 input. Input operational amplifier output.			
19	V _{IN} 2+	Channel 2 input. Input operational amplifier + input.			
20	V _{IN} 2 ⁻	Channel 2 input. Input operational amplifier – input.			
21	V _{IN} 2	Channel 2 input. Input operational amplifier output.			
22	V _{IN} 3-	Channel 3 input. Input operational amplifier – input.			
23	V _{IN} 3	Channel 3 input. Input operational amplifier output.			
24	V _O _OP	Operational amplifier output.			
25	V _{IN} -OP	Operational amplifier – input			
26	V _{IN} +OP	Operational amplifier + input			
27	REG_IN	Regulator error amplifier output. Connect this pin to the base of the external PNP-transistor.			
28	REG_OUT	Regulator error amplifier input (+).			
29	VREF_OUT	VREF amplifier (voltage follower) output.			
30	VREF_IN	VREF input. Apply the external reference voltage to this pin.			
31	V _{IN} 4	Channel 4 input. Input operational amplifier output.			
32	$V_{IN}4^-$	Channel 4 input. Input operational amplifier – input.			
33	MUTE234	Controls the on/off state of channels 2, 3, and 4.			
34	MUTE1	Channel 1 output on/off control			
35	VCONT	Loading block output high-level voltage setting.			
36	S_GND	Signal system ground.			

^{*} center frame (FR) becomes GND for the power system, Set this to the minimum potential together with S_GND (signal system ground).

Pin Description


Pin No.	Pin name	Function	Description	Equivalent circuit
16	V _{IN} 1+	Input	Inputs (channels 1 to 4 and the	
17	V _{IN} 1-	(CH1 to 4)	independent operational	V _{IN*}
18	V _{IN} 1	(6 10 1)	amplifier)	
19	V _{IN} 2+		. ,	Vccs
20	V _{IN} 2-			$\downarrow \qquad \qquad \downarrow \qquad \downarrow$
21	V _{IN} 2			V _{IN} *+ 300Ω + 1 + W 300Ω + 300Ω
22	V _{IN} 3-			
23	V _{IN} 3			V _{IN*} - 300Ω V _{IN*} -
32	V _{IN} 4 ⁻			
31	V _{IN} 4			
26	V _{IN} +OP			
25	V _{IN} -OP			S-GND -
24	V _O _OP			
1 2	FWD REV	Input (H-bridge)	Logic inputs. The IC is set to one of four modes, forward, reverse, brake, and free running by the combination of high and low values applied to these pins.	FWD CHOICE CHOIC
12	V _O 1+	Output	Channel 1 to 4 outputs.	- t t VCCP
13 10	V _O 1-	(BTL-AMP)		
11	V _O 2+ V _O 2-			
8	V _O 3+			₹ 1
9	V _O 3-			V_{0*}
6	V _O 4+			
7	V _O 4 ⁻			<u>g</u> *
				→ FR
4	V _{LO} -	Output	H-bridge (loading) output.	VccP2 Vi 0+ Vi 0-
5	V _{LO} +	(H-bridge)		V _{CC} P2 V _{LO} + V _{LO} -
				S_GND \$ \$ \$ \qquad \qquad \qquad \qquad \qquad \qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
				S_GND \$ \$ VCONT
35	VCONT	Input	Loading output setting.	20kΩ 20kΩ
33	MUTE234	MUTE	BTL amplifier output ON/OFF	Vocs
34	MUTE1		state setting.	v _{cc} s O
			High: output ON	MUTE*
			Low: output OFF	S → W → M
				4 7
				\$\$\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
				₽ P
				S-GND

Truth Table (Loading (H bridge) block)


FWD	REV	V _{LO} +	V _{LO} -	Loading output
L	L	OFF	OFF	OFF *1
	Н	Н	L	Forward
Н	L	L	Н	Reverse
	Н	L	L	Short-circuit braking *2

^{*1.} The output goes to the high-impedance state.

Relationship between the MUTE pins and the power supply systems $(v_{CC}P^{\ast})$

Application Circuit Example

 $^{^{\}star}2$. In braking mode, the sink side transistor is turned on (for short-circuit braking). The V_{LO}^{+} and V_{LO}^{-} pins go to a level that is essentially the ground level.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2009. Specifications and information herein are subject to change without notice.