: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LA72912V

Monolithic Linear IC
FM Modulator and Demodulator IC

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

Overview

The LA72912V is a FM modulation and demodulation single-chip IC. Its adjustment free modulation/demodulation circuit significantly reduces the number of peripheral circuits required and can contribute to lower production costs.

Functions

- ASK modulation and demodulation
- Video signal FM modulation and demodulation
- Video signal emphasis and de-emphasis function
- Drop-Out detecting function of Video FM signal
- FM mute function at Second-Call

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {CC }}$ max		7.0	V
Allowable power dissipation	Pd max		300	mW
Operating temperature	Topr	$\mathrm{Ta} \leq 70^{\circ} \mathrm{C}^{*}$	-30 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

* Mounted on a $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy board.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}		5.0	V
Allowable operating voltage range	V_{CC} op	$\mathrm{Ta}=-30$ to $+70^{\circ} \mathrm{C}$	4.7 to 5.5	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
DC CHARACTERISTICS $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}, \mathrm{~T} 18=0.4 \mathrm{~V}$

Parameter	Symbol	In	OUT	Conditions	Ratings			Unit
					min	typ	max	
Control terminal (Pin6,9) Low level	CNT6L CNT17L	$\begin{gathered} \hline \text { T6 } \\ \text { T17 } \end{gathered}$		Low level of control terminal of ALL mode. $\mathrm{T} 6=0.4 \mathrm{~V}$ (DEMOD mode), $\mathrm{T} 17=0.4 \mathrm{~V}$ (Standby mode)	0		0.4	V
Control terminal (Pin6,9)High level	$\begin{aligned} & \hline \text { CNT6H } \\ & \text { CNT17H } \end{aligned}$	$\begin{gathered} \hline \text { T6 } \\ \text { T17 } \end{gathered}$		High level of input terminal of ALL mode T6 $=2.0 \mathrm{~V}$ (MOD mode), $\mathrm{T} 17=2.0 \mathrm{~V}$ (Normal mode)	2.0		5.0	V
Input5 Low level	IN5L	T5		Low level of input terminal of MOD mode $\mathrm{T} 6=2.0 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}, \mathrm{~T} 18=0.4 \mathrm{~V}$	0		0.4	V
Input5 High level	IN5H	T5		High level of input terminal of MOD mode $\mathrm{T} 6=2.0 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}, \mathrm{~T} 18=0.4 \mathrm{~V}$	2.0		5.0	V
Input18 Low level	IN18L	T18		Low level of input terminal of MOD mode $\mathrm{T} 5=0.4 \mathrm{~V}, \mathrm{~T} 6=2.0 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$	0		0.4	V
Input18 High level	IN18H	T18		High level of input terminal of MOD mode $\mathrm{T} 5=0.4 \mathrm{~V}, \mathrm{~T} 6=2.0 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$	2.0		5.0	V
Output18 terminal High level	OPH18		T18	DEMOD mode: FM-Signal input $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$, Pull-UP: $15 \mathrm{~K} \Omega$	4.7			V
Output18 terminal Low level	$\begin{aligned} & \hline \text { OPL13 } \\ & \text { OPL18 } \end{aligned}$		T18	T18: DEMOD mode: FM No-signal Measure the sink level of output terminal. $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}, \mathrm{Pull}-\mathrm{UP}: 15 \mathrm{~K} \Omega$	0	0.25	0.4	V
InpuT20 Low level	IN20L	T20	T20	Voltage of terminal at AGC ON $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$	0		3	V
InpuT20 High level	IN20H	T20	T20	Voltage of terminal at AGC OFF $\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$	4.5		5.0	V
5pin AC input dynamic range	ACIN5	T5A	T3	Input amplitude level of FM signal Freq: 11.5 MHz to 13.5 MHz			1000	mVp-p
16pin AC input dynamic range	ACIN16	T24A	T3	Maximum input level of T24A at Video signal			1.5	Vp-p

Video FM Modulation Block (MOD) T6=2.0V,T17 $=2.0 \mathrm{~V}, \mathrm{~T} 18=0.4 \mathrm{~V}$

Parameter	Symbol	In	OUT	Conditions	Ratings			Unit
					min	typ	max	
Current dissipation	${ }^{1} \mathrm{CCR}$			measure the currents into pins 2 (MOD mode)	22.0	27.0	32.0	mA
FM modulator output level	VFM1		T3	Measure the output level on T3 (No signal input) It is load impedance 200Ω between T3-GND.		1.8	2.2	Vp-p
FM Mute output level	VFM2		T3	Measure the T3 output level with 2nd call	0	10	20	mVp-p
Carrier frequency	FFM		T3	Measure the output frequency on T3 with no signal input	10.9	11.5	12.1	MHz
FM output Second harmonic distortion	THD2		T3	Measure the second harmonics distortion with the above condition		-30	-20	dB
Deviation	DEV	T24A	T3	With T24A 100\% White 1Vp-p signal, Measure the deviation on T3	1.9	2.0	2.1	MHz
FM modulator linearity (11.5 MHz to 13.5 MHz)	LMOD	T24A	T3	Let $\mathrm{f} 2.85, \mathrm{f} 3.35$ and f 3.85 be the output frequency when $2.85 \mathrm{~V}, 3.35 \mathrm{~V}$ and 3.85 V is applied to T 24 A $\text { LMOD }=\frac{\mathrm{f} 3.35-(\mathrm{f} 3.85+\mathrm{f} 2.85) / 2}{\mathrm{f} 3.85-\mathrm{f} 2.85} \times 100$	-2	0	+2	\%
Emphasis gain	GEMP	T24A	T20	With V_{IN} a $300 \mathrm{mVp}-\mathrm{p} 10 \mathrm{kHz}$ sine wave, Measure the ratio of the levels on T24A and T20	-7.5	-6.0	-4.5	dB
Main linear emphasis characteristics(1)	GME1	T24A	T20	With V_{IN} a 300 mVp -p 500 kHz sine wave, Measure the ratio of the levels on T24A and T20	0.0	1.5	3.0	dB
Main linear emphasis characteristics(2)	GME2	T24A	T20	With V_{IN} a $300 \mathrm{mVp}-\mathrm{p} 2 \mathrm{MHz}$ sine wave, Measure the ratio of the levels on T24A and T20	4.0	5.5	7.0	dB
White clipping level	LWC	T24A	T20	With V_{IN} a 1.5 Vp -p 100% white video signal. Measure the white clipping level on T20	180	200	220	\%
Dark clipping level	LDC	T24A	T20	With V_{IN} a 1.5 Vp -p 100% white video signal. Measure the dark clipping level on T20.	-60	-50	-40	\%
FM stop beginning delay time (VD characteristic 1B)	TC1	T5	T3	C7 $=0.01 \mu \mathrm{~F}$, Time from fall of T 5 signal to doing of FM carrier of T3 STOP	240	300	360	$\mu \mathrm{s}$
FM stop time (VD characteristic2A)	TC2	T5	T3	C8 $=0.001 \mu \mathrm{~F}$, Stop time of FM carrier of T3	30	40	50	$\mu \mathrm{S}$
Minimum VD pulse width	VDT	T5	T3	$\mathrm{C} 7=0.01 \mu \mathrm{~F}$, Minimum VD pulse width to which TC1B is normally output	63			$\mu \mathrm{S}$

LA72912V
Video FM De-modulation Block (DEMOD) T6 $=0.4 \mathrm{~V}, \mathrm{~T} 17=2.0 \mathrm{~V}$

Parameter	Symbol	In	OUT	Conditions	Ratings			Unit
					min	typ	max	
Current dissipation	$\mathrm{I}_{\mathrm{CCP}}$			Measure the currents into pin 2 (DEMOD mode)	26.0	32.0	38.0	mA
Video output level	VOUT	T5A	T3	Demodulation level, when the FM signal of 2.2 MHz deviation. Load impedance $=1 \mathrm{k} \Omega$ T3-GND.	2.09	2.2	2.31	Vp-p
Video output level B	$\mathrm{V}_{\text {OUT }}{ }^{\text {B }}$	T5A	T3	Demodulation level, when the FM signal of 2.0 MHz deviation. Load impedance $=1 \mathrm{k} \Omega$ T3-GND. (In this case only, V_{CC} make 4.5 V to 5.5 V .)	1.9	2.0	2.1	Vp-p
FM stop detection level (DOC characteristic 1)	DOC1	$\begin{aligned} & \mathrm{T} 5 \mathrm{~A} \\ & \mathrm{~T} 20 \end{aligned}$	$\begin{aligned} & \hline \text { T18 } \\ & \text { T20 } \end{aligned}$	$\mathrm{T} 5=11.5 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}$. Measure T20 voltage (V20). Set T20 V20 (AGC-Fix). T5 input level when $T 5$ amplitude is decrease gradually, and T18 becomes "Low"		40	60	mVp-p
(Drop Delay Down)	DDD	$\begin{aligned} & \text { T5A } \\ & \text { T20 } \end{aligned}$	$\begin{aligned} & \hline \text { T18 } \\ & \text { T20 } \end{aligned}$	Shift time from T5 $=300 \mathrm{mV}$ p-p $\rightarrow 0 \mathrm{mV}$ p-p to T18 "Low".	0.5	1.5	2.5	$\mu \mathrm{s}$
FM return judgment level	DOC2	$\begin{aligned} & \text { T5A } \\ & \text { T20 } \end{aligned}$	$\begin{aligned} & \hline \text { T18 } \\ & \text { T20 } \end{aligned}$	T5 $=11.5 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}$, Measure T20 Voltage (V20). Set T20 V20 (AGC-Fix). T5 inputs the level when T5 amplitude is increase gradually, and T18 becomes "High"		60	90	mVp-p
Video DC level when returning	DOC2B	$\begin{aligned} & \mathrm{T} 5 \mathrm{~A} \\ & \mathrm{~T} 20 \end{aligned}$	T23	Confirmation of output of Video signal from T3. Measurement of DC level.	0.5	1.0	1.5	V
(Drop Delay Rise) Return operation delay time	DWR	$\begin{aligned} & \hline \text { T5A } \\ & \text { T20 } \end{aligned}$	$\begin{aligned} & \hline \text { T18 } \\ & \text { T20 } \end{aligned}$	Shift time from $\mathrm{T} 5=0 \mathrm{mVp}-\mathrm{p} \rightarrow 300 \mathrm{mVp}$-p to T18 "High"	0.2	1.5	2.5	$\mu \mathrm{sec}$
4V Regulator	VREG		T4	Measurement of T4 DC level.	3.9	4.0	4.3	\checkmark
Range of input Dynamic range	ACIN5	T5A	T3	DEV $=2.0 \mathrm{MHz}$. Input amplitude level of FM signal. (T5A: 11.5 MHz to 13.5 MHz)		500	1000	mVp-p
DG	DG	T5A	T3		0	6	10	\%
DP	DP	T5A	T3		0	6	10	deg
Output voltage at mute	MUV		T3	Mute level measurement of T3	0	10	20	IRE
FM demodulation voltage (11.0M)	VDEM11 VDEM12 VDEM13	T5A	T23	T5A $=11.0 \mathrm{MHz}, 100 \mathrm{mV}$ p-p, $200 \mathrm{mV} \mathrm{p}-\mathrm{p}$ and 400 mVp -p. Each T23 voltage measurement	0.3	0.8	1.3	V
FM demodulation voltage (12.5M)	VDEM21 VDEM22 VDEM23	T5A	T23	$\mathrm{T} 5 \mathrm{~A}=12.5 \mathrm{MHz}, 100 \mathrm{mVp}-\mathrm{p}, 200 \mathrm{mV} \mathrm{p}-\mathrm{p}$ and 400 mVp -p. Each T23 voltage measurement	0.7	1.2	1.7	V
FM demodulation voltage (14.0M)	VDEM31 VDEM32 VDEM33	T5A	T23	$\begin{aligned} & \text { T5A }=14 \mathrm{MHz}, 100 \mathrm{mVp}-\mathrm{p}, 200 \mathrm{mVp}-\mathrm{p} \text { and } \\ & 400 \mathrm{mVp}-\mathrm{p} \\ & \text { Each } \mathrm{T} 23 \text { voltage measurement } \end{aligned}$	1.1	1.6	2.1	V
FM demodulation linearity $1,2,3$	LDEM1 LDEM2 LDEM3			$\begin{aligned} & \text { Calculate FM demodulation linearity } \\ & \text { LDEM1 }=\{[\text { VDEM21 }-(\text { VDEM11 }+ \text { VDEM31 }) / 2] \\ &/(\text { VDEM3 }- \text { VDEM11 })\} \times 100 \\ & \text { LDEM2 }=\{[\text { VDEM22 }-(\text { VDEM12 }+ \text { VDEM32 }) / 2] \\ &/(\text { VDEM } 22-\text { VDEM12 })\} \times 100 \\ & \text { LDEM3 }=\{[\text { VDEM23 }-(\text { VDEM13 }+ \text { VDEM33 }) / 2] \\ &/(\text { VDEM } 33-\text { VDEM13 })\} \times 100 \end{aligned}$	-2	0	+2	\%
FM demodulation Sensitivity1,2,3	$\begin{aligned} & \text { SDEM1 } \\ & \text { SDEM2 } \\ & \text { SDEM3 } \end{aligned}$			Calculate FM recovery Sensitivity with consider pin 3 output level conversion ratio. SDEM1 = (VDEM31-VDEM11)/3.0 SDEM2 $=($ VDEM32-VDEM12 $) / 3.0$ SDEM3 $=($ VDEM $33-V D E M 13) / 3.0$	0.28	0.33	0.38	V/MHz
Main linear de-emphasis amplitude	GMED	T5A	T23	$\begin{aligned} & \hline \mathrm{T} 5=200 \mathrm{mVp}-\mathrm{p} \text { FM signal } \\ & (\mathrm{fm}=10 \mathrm{kHz}, \text { Center Carrier }=12.5 \mathrm{MHz}, \\ & \mathrm{DEV}=2.0 \mathrm{MHz}) \text { Signal level of } \mathrm{T} 23 \end{aligned}$	481	535	589	mVp-p
Main linear de-emphasis Characteristics(1)	GMED1	T5A	T23	T5 $=200 \mathrm{mVp}$-p FM signal ($\mathrm{fm}=500 \mathrm{kHz}$, Center Carrier $=12.5 \mathrm{MHz}, \mathrm{DEV}=2.0 \mathrm{MHz}$). Signal level of T23 versus GMRD (Ratio of GMED).	-3.5	-1.5	+0.5	dB
Main linear de-emphasis Characteristics(2)	GMED2	T5A	T23	T5 $=200 \mathrm{mV}$ p-p FM signal ($\mathrm{fm}=2 \mathrm{MHz}$, Center Carrier $=9.25 \mathrm{MHz}, \mathrm{DEV}=2.0 \mathrm{MHz}$). Signal level of T23 versus GMRD (Ratio of GMED)	-6.5	-4.5	-2.5	dB

LA72912V
ASK Block T17=0.4V

Parameter	Symbol	In	OUT	Conditions	Ratings			Unit
					min	typ	max	
Current dissipation at standby	${ }^{1} \mathrm{CCS}$	T17		At standby mode, measures include current to pin2,9. T17 $=0.4 \mathrm{~V}, \mathrm{~T} 15$ and T20:open	10.8	13.0	15.5	mA
Current dissipation at standby at MOD-AGC-OFF	${ }^{\mathrm{I} C \mathrm{C}} \mathrm{Sb}$	$\begin{aligned} & \text { T17 } \\ & \text { T15 } \end{aligned}$		At standby mode, measures include current to pin2,9. $\mathrm{T} 17=0.4 \mathrm{~V}, \mathrm{~T} 15=5 \mathrm{~V}$, T 20 :open	12.8	16.0	19.2	mA
Current dissipation at standby at DEMOD-AGC-OFF	${ }^{\text {I CCS }}$	$\begin{aligned} & \hline \text { T17 } \\ & \text { T15 } \\ & \text { T20 } \\ & \hline \end{aligned}$		At standby mode, measures include current to pin2,9. $\mathrm{T} 17=0.4 \mathrm{~V}, \mathrm{~T} 15=5 \mathrm{~V}, \mathrm{~T} 20=5 \mathrm{~V}$	16.8	21.0	25.2	mA
Standby release time(1) (FM stop \rightarrow release)	SASK^{1}	$\begin{gathered} \text { T6 } \\ \text { T17 } \end{gathered}$	T3	T6 $=2.0 \mathrm{VDC}$ T17 $=0 \mathrm{~V} \rightarrow 2 \mathrm{~V}$ (Standby release) Time until FM carrier is output to T 3 .	0.0	6.0	12.0	$\mu \mathrm{s}$
Standby release time(2) (Video signal stop \rightarrow release)	SASK^{2}	$\begin{gathered} \text { T6 } \\ \text { T5A } \\ \text { T17 } \end{gathered}$	T3	$\mathrm{T} 6=0.4 \mathrm{~V}, \mathrm{~T} 5=\mathrm{DEV}=2.0 \mathrm{MHz} 100 \%$ white video signal of FM signal. $\mathrm{T} 17=0 \mathrm{~V} \rightarrow 2 \mathrm{~V}$ (Standby release) Time until white 100% signal is output to T3	2.0	7.0	12.0	$\mu \mathrm{S}$
ASK Transmitting time "transmission"	$\mathrm{T}_{\text {ASK }}{ }^{1}$	$\begin{gathered} \mathrm{T} 10 \mathrm{~A} \\ \mathrm{~T} 11 \\ \hline \end{gathered}$	T12	$\mathrm{T} 10 \mathrm{~A}=1 \mathrm{MHz}, 0 / 2 \mathrm{~V}$ Pulse $\mathrm{T} 11=20 \mathrm{KHz}$, 0/2VPulse. Measure T12 signal appear time			0.1	ms
ASK Transmitting time "Receive"	$\mathrm{T}_{\text {ASk }}{ }^{2}$	T16A	T13	$\mathrm{T} 16=1 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}-\mathrm{SIN}$ wave Measure time T13 appear detected T16 signal			0.1	ms
ASK transmission setup time	W ${ }_{\text {ASK }}$	$\begin{gathered} \mathrm{T} 10 \mathrm{~A} \\ \mathrm{~T} 11 \end{gathered}$	T12	$\mathrm{T} 10 \mathrm{~A}=1 \mathrm{MHz}, 0-2 \mathrm{~V} \text {-pulse } \mathrm{T} 11=20 \mathrm{KHz}, 0-2 \mathrm{~V} \text {-pulse }$ Measure T11 input interval time when T10A input		10	100	ms
ASK minimum detect level	$V_{\text {ASK }}$	T16A	T13	Measure T16 minimum level at T13 is normally condition	0.2		3	Vp-p
ASK start up time	OASK	T16A	T13	Measure time ASK working from Power-ON	-	30	300	ms
ASK demodulation duty ratio	DASK	T16A	T13	T16 = T12 output signal (0-2Vp-p) Measure ASK Duty difference with 50% $\text { DASK }=(\text { pulse width } \mu \mathrm{s} / 50 \mu \mathrm{~s})-50 \% \times 100 \%$	-15	-2	11	\%

Package Dimensions

unit : mm (typ)
3175C

Pin Assignment

LA72912V
Block Diagram and Application Circuit Exanple1 Modulation (Outside camera)

Application Circuit Exanple2 Demodulation (Inside monitor)

LA72912V
Pin Function

Pin No.	Pin name	FM MOD mode(Outside camera)	FM DEMOD mode(Inside Monitor)	Note
1	Emphasis filter	Emphasis filter connection pin	Non connect(Hi-Z)	If you no need, this pin is open.
2	$\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}$	V_{CC} for FM modulation.	V_{CC} for FM demodulation.	
3	FM/Video Output	FM Output $\left(\mathrm{R}_{\mathrm{O}}=200 \Omega: 1.8 \mathrm{~V} p-\mathrm{p}\right)$	Video Output $\left(\mathrm{R}_{\mathrm{O}}=1 \mathrm{k} \Omega: 2 \mathrm{Vp}-\mathrm{p}\right)$	Push-pull output
4	4V Regulator	FM modulate block and ASK bock supply reference voltage.	FM demodulate block and ASK bock supply reference voltage.	
5	FM/VD input	VD Input. (Hi: over 2V, Low: under 0.4V) (VD DET: High)	FM Input. (Recommend Level: 100 to 620 mVp -p)	DEMOD mode: Set 3.3 V by internal bias. ($34 \mathrm{k} \Omega / 66 \mathrm{k} \Omega$)
6	MOD/DEMOD Control	Set over 2V DC voltage.	Set under 0.4V DC voltage.	Outside camera / Inside monitor setting.
7	TC1(MOD)/ FMAGC monitor Out control	Set capacitor for TC1	FMAGC monitor out control GND: Monitor ON / VCC: Monitor OFF	Can do second inside monitor addition
8	TC2(DEMOD)/ FMAGC monitor Output	Set capacitor for TC2	FMAGC monitor output	Can do second inside monitor addition
9	ASK-V $\mathrm{CC}^{5} \mathrm{~V}$	$\mathrm{V}_{\text {CC }}$ for ASK	\leftarrow	
10	ASK CAR IN	ASK carrier Input. (Recommend below 3Vp-p)	\leftarrow	2.1V by internal bias. ($50 \mathrm{k} \Omega$)
11	ASK DATA IN	ASK Data Input. (Hi: more than 2 V , Lo: below 0.4 V)	\leftarrow	
12	ASK TX Output	ASK modulated signal Output	\leftarrow	Push-pull output
13	ASK RX Output	ASK Demodulated Output	\leftarrow	Open collector output ASK carrier detect = Lo
14	ASK DET filter	ASK Detector filter	\leftarrow	
15	ASK AGC filter IAGC OFF	AGC filter for ASK. (When AGC operate voltage is 0 V to 3 V , AGC stop when you add over 4.5V.)	\leftarrow	
16	ASK RX input	ASK Demodulate Input	\leftarrow	3.3V by internal bias. (34k $/ 66 \mathrm{k} \Omega$)
17	Standby control	FM blocks standby control. (FM block operate: over 2V, FM block standby: under 0.4 V)	\leftarrow	
18	DOC-OUT /2nd-Call input	2ND-Call input, 2ND-Call: Low (High: over 2V, Low: under 0.4V)	DOC output (When DO-DET, output is Low)	DEMOD mode: Open collector output.
19	B-GND	Circuit GND	\leftarrow	
20	FM AGC filter	Emphasis monitor output	FM AGC control filter (AGC-ON:0 to 3 V DC, AGC-OFF:4.5V to 5 V by external DC voltage.)	MOD mode: Don't connect capacitor.
21	De-emphasis filter	Non connect(Hi-Z)	De-emphasis filter connection pin.	If you don't need, this pin is open.
22	A-GND	Circuit GND	\leftarrow	
23	De-emphasis output N -2V select	DFF for V-diff control (ON: over 2 V , OFF: under 0.4 V)	DE-emphasis output	MOD mode; VD diff. Count select OV : VD through 2V: VD 1/2 diff
24	Video input	Video signal input. (from outside CCD camera: 1Vp-p).	Video signal input. (from de-emphasis block: 0.5Vp-p).	MOD mode: Maximum video input level is $1.5 \mathrm{Vp}-\mathrm{p}$.

LA72912V

Pin Description

Pin No.	Pin Name	Description	Equivalent circuit
1	Emphasis filter	Main Emphasis filter pin. Before FM Modulation, make emphasis characteristic at video signal. Emphasis time constant must be matching at de-emphasis time constant. (If you don't need the emphasis, this pin is open.)	
2	$\mathrm{V}_{\mathrm{CC}} 5 \mathrm{~V}$	V_{CC} pin. Supply voltage is 5 V DC. Please connect de-coupling capacitor.	
3	FM/Video OUT	Push-Pull output pin. MOD mode: FM carrier output. (1.8Vp-p: Rout=200 $)$ DEMOD mode: Video signal output. (2.0Vp-p: Rout=1k Ω)	
4	Regulator filter	Internal regulator filter pin. Please connect $0.1 \mu \mathrm{~F}(\mathrm{C} 1)$.	
5	FM/VD input	DEMOD mode: FM signal input. Internal DC bias is 3.3 V . Please use capacitor (C1) coupling. MOD mode: VD signal input. Please input VD signal directory. Please consider input impedance.	
6	MOD/DEMOD Control	MOD mode / DEMOD mode setting pin. MOD mode: Please set over 2V DC voltage. (2 to 5 V). DEMOD mode: Please set under 0.4V DC voltage. (0 to 0.4 V).	
7	TC1(MOD)/ FMAGC monitor Control	MOD mode: TC1 filter pin. Please connect C1. DEMOD mode: FM-AGC monitor on/off control. GND: AGC-monitor ON $V_{C C}$: AGC-monitor OFF	

Continued on next page.

Continued from preceding page.

Pin No.	Pin Name	Description	Equivalent circuit
8	TC2(DEMOD)/ FMAGC monitor Output	MOD mode: TC2 filter pin. Please connect C1. DEMOD mode: FM-AGC-monitor output	
9	ASK-VCC5V	ASK block V_{C}. Please supply DC 5 V with use capacitor for de-coupling.	
10	ASK CAR IN	ASK carrier input Pin. Please connect with capacitor, 2.1V by internal biased.	
11	ASK DATA IN	ASK data input pin. L level is lower than 0.4 V H level is more than 2 V	
12	ASK TX Output	ASK output pin. Push-pull type output.	
13	ASK RX Output	ASK detect output. Open corrector type output.	
14	ASK DET filter	ASK detect filter. Connect capacitor for reject of ASK AC component.	

Continued on next page.

LA72912V
Continued from preceding page.

Pin No.	Pin Name	Description	Equivalent circuit
15	ASK AGC filter IAGC OFF	AGC filter pin for ASK. Please connect pull-up resistance to this pin, and do more than 4.5 V at voltage of this pin.	
16	ASK RX input	ASK input pin. Please connect with capacitor, 3.3 V by internal biased.	
17	Standby control	Standby control pin. FM block standby: under 0.4 V DC voltage. (0 to 0.4 V) FM block operate: over 2 V DC voltage. (2 to 5 V)	
18	DOC-OUT /2nd-Call input	DEMOD mode: Drop-out output pin. This pin is open collector output, so please connect pull up resistor. MOD mode: 2ND-CALL input. 2ND-CALL input: under 0.4 V DC voltage. (0 to 0.4 V) Normal: over 2V DC voltage. (2 to 5 V)	
19	B-GND	Circuit GND.	
20	FM AGC filter	MOD mode: Emphasis monitor pin. DEMOD mode: FM AGC filter pin. If FM AGC no need (= AGC Off), Please set pin 12 voltage over 4.5V DC voltage. (4.5 to 5 V)	
21	De-emphasis filter	DEMOD mode: De-emphasis filter pin. De-emphasis time constant must be matching at emphasis time constant. (If you don't need the emphasis, this pin is open.)	
22	A-GND	Circuit GND.	

Continued on next page.

LA72912V

Continued from preceding page.

Pin No.	Pin Name	Description	Equivalent circuit
23	De-emphasis output V -2V select	DEMOD mode: Video signal output after De-emphasis. Output level is $0.5 \mathrm{Vp}-\mathrm{p}$. Connect capacitor to clamp input (pin 16). MOD mode: DFF control pin. DFF is ON at over 2V DC voltage. (2 to 5 V)	
24	Video input	MOD mode: Video signal input pin (from camera). Input level is $1 \mathrm{Vp}-\mathrm{p}$. DEMOD mode: Video signal input pin (from de-emphasis). Input level is $0.5 \mathrm{Vp}-\mathrm{p}$.	

Test Circuit

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

