mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LA73076V

Monolithic Linear IC Video Driver for DVC/DSC, Cell Phone

Overview

The LA73076V is a low voltage drive (2.7V to 3.6V) video driver developed for portable appliances including digital video cameras, digital still cameras and cell phones. It incorporates a minus-voltage generator that allows the LA73076V to generate its output with the pedestal voltage set to 0V, so that no output coupling capacitor is required. This enables substantial reduction in mounting space without concerned about V-sag.

Features

- Output coupling capacity not required
- Low-voltage drive ($V_{CC} = 2.7V$ to 3.6V)
- No V-sag
- Sextic LPF incorporated (fc = 10MHz)
- 6dB amplifier
- Current drain of $0\mu A$ in the standby mode
- Output drive capable of covering maximum 75Ω output, one channel

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		4.0	V
Allowable power dissipation	Pd max	Ta \leq 80°C, *Mounted on a specified board	220	mW
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-55 to +150	°C

*: Mounted on a specified board: 114.3mm×76.1mm×1.6mm, glass epoxy

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended Operating supply voltage	V _{CC} STD		3.1	V
Operating supply voltage range	V _{CC} RANGE		2.7 to 3.6	V

Electrical Characteristics at Ta = 25° C, V_{CC} = 3.1V

Devenuetur	Querra ha a l	Conditions	Ratings			l la it	
Parameter	Symbol	Conditions	min	typ	max	Unit	
Current dissipation part							
Current dissipation 1 (Non-signal active mode)	Icc	2pin = Low, Input = White50%	25	37	44	mA	
Current dissipation 2 (Non-signal active mode)	I _{CC} 2	2pin = Low, Input = No signal	10.0	14	17.5	mA	
Current dissipation 3 (Standby mode)	I _{CC} -STBY	2pin = High		0	5.0	μA	
Control terminal part							
Stand-by control pin H voltage (SET = STANDBY MODE)	ontrol pin H voltage $V_{TH-STBY-H}$ 2 pin voltage range at which Icc $\leq 5\mu$ A		V _{CC} -0.5		V _{CC}	V	
Stand-by control pin L voltage (SET = ACTIVE MODE)	VTH-STBY-L	2 pin voltage range at which $I_{CC} \ge 5\mu A$	GND		0.5	V	
Output control pin H voltage range (SET=MIX_OUT)	V _{OUT_M}	Voltage in which only output of MIX is selected	2.2		V _{CC}	V	
Output control pin M voltage range (SET=Y,C_OUT)	VOUT_YC	Voltage in which output of Y and C is selected	1.5		1.7	V	
Output control pin L voltage range (SET=ALL_OUT)	VOUT_ALL	Voltage in which all outputs are selected	GND		0.5	V	
SW, MUTE control pin voltage range (SET=MUTE MODE)	V _{SW_MUTE}	As for this voltage, SW selects MUTE	V _{CC} -0.5		V _{CC}	V	
SW, through control pin voltage range (SET=through MODE)	V _{SW_THR}	As for this voltage, SW selects through	GND		0.5	V	
Y-in	·	•					
Voltage gain	V _{Gain} Y	100% white $V_{YIN} = 1Vp-p$	5.7	6.2	6.7	dB	
Freq. characteristics	V _{f7.2Y}	f = 100kHz/7.2MHz	-1.0	0	+1.0	dB	
	V _{f20Y}	f = 100kHz/20MHz			-30	dB	
Allowable sync input level	lowable sync input level V _{IN-Sync} V _{YIN} = Black burst, Output R condit Mix out: 150Ω, Y out: 150Ω		200			mVp-p	
C-in							
Voltage gain	e gain V _{gainc} V _{CIN} = 350mVp-p		5.7	6.2	6.7	dB	
Freq. characteristics	V _{f20C}	f = 4MHz/20MHz			-25	dB	

Package Dimensions

unit : mm (typ) 3178B

LA73076V

Pin Assignment, Pin Function Diagram and Block Diagram

(Note 6)

As the minus power supply in this IC generates the clock for charge pump power supply by extracting the sink component of the input video signal (synchronous isolation) and by detecting its fall, the portion around the V-syncrhonization of this IC output may be reduced when the pseudo V signal without cut-in pulse is inserted as in the case of certain analog VCR special play (search). On the contrary, there is no problem when the pseudo V signal has the cut-in pulse. Pay due attention on this fact during use.

Pin Functions

Pin No	Symbol	Voltage	Description	Equivalent Circuit
1	S-CTL	V _{CC} or OPEN or OV	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14 $V_{CC}A$ $5k\Omega$ $40k\Omega$ REF $1.6V$ BUF $2.4V$ 16 $A-GND$
2	P-SAV- CTL	V _{CC} or 0V	$\begin{array}{ c c c c c } \hline Power save mode select pin \\ \hline \hline Control of Pin2 & Mode \\ \hline L(GND) & 0V to 0.5V & \Rightarrow Active \\ \hline U(V_{CC}) & OPEN & \\ H(V_{CC}) & or & \Rightarrow Standby \\ \hline V_{CC} \pm 0.5V & \Rightarrow Standby \\ \hline \end{array}$	$ \begin{array}{c} 14 \\ V_{CC} \\ 50 \\ K\Omega \\ 50 \\$
3	C-OUT	1.55V	Video output terminal (Push-pull output low-impedance) 1.55V -> -	14 V _{CC_A} 3 C-OUT 49kΩ 50kΩ 50kΩ 50kΩ
4	C-MUTE- CTL	V _{CC} or 0V	$\begin{array}{c c c c c c c c } \mbox{Mute select pin} & & & & & & \\ \hline \hline & Control of Pin & & & & & \\ \hline & & & & & & \\ \hline & & & & &$	$\begin{bmatrix} 14 \\ V_{CC}A \\ 10k\Omega \\ C-MUTE-CTL \\ 40k\Omega \\ 16 \\ A-GND \\ 16 \\ A-GND \\ 10 \\ 10 \\ 10 \\ 1.2V$

Continued on next page.

Continued from preceding page.						
Pin No	Symbol	Voltage	Description	Equivalent Circuit		
5	C-IN	1.55V	Video input terminal (Input high-impedance) 1.55V ->	14 V _{CC} _A 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ		
6	RIP-FIL	1.2V		14 V _{CC} _A 6 RIP-FIL 8kΩ 1kΩ 1kΩ 1kΩ 16 A-GND		
7	Y-IN	1.1V	Video input terminal (Sync-chip clamp (Input high-impedance))	14 V_{CC} $1k\Omega$ $1k\Omega$ 200Ω 200Ω 200Ω $2k\Omega$ 7 $Y-IN$ $2k\Omega$ $Power On$ $Reset$ 16 $A-GND$		
8	GND	0V				

Continued on next page.

Continue	d from preced	ing page.				
Pin	Symbol	Voltage	Description	Equivalent Circuit		
9	CLK-OUT	Vcc ↑↓ ov	Pin 9: Clock output terminal	12 V _{CC_NVG} 9 CLK-OUT 50kΩ 50kΩ 50kΩ 2.4V 8 GND		
10	ND	+0.5V ↑↓ -2.5V (-V _{CC})	Pin 10: The terminal which transmits an electric charge Pin 11: -V _{CC}	12 V _{CC} NVG B GND		
11	-Vcc	0V ↑↓ -2.2V (-V _{CC})		11 -V _{CC} 10 _{ND}		
12	V _{CC} _NVG	2.7V to 3.6V				
13 15	MIX-OUT Y-OUT	0V	Video output terminal (Push-pull output low-impedance) 1.4V 2Vp-p 0V -0.6V (MIX-OUT: burst be absent)	14 50kΩ 13Pin: MIX-OUT 250Ω 15Pin: Y-OUT 49Ω 16 50kΩ 11 -V _{CC}		
14	V _{CC} _A	2.7V to 3.6V	Analog V _{CC}			
16	A-GND	0V	Analog GND			

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indeminify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa