imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LAN9353

3-Port 10/100 Managed Ethernet Switch with Single MII/RMII/Turbo MII or Dual RMII

Highlights

- High performance 3-port switch with VLAN, QoS packet prioritization, rate limiting, IGMP monitoring and management functions
- Interfaces at up to 200Mbps via Turbo MII
- Integrated Ethernet PHYs with HP Auto-MDIX
- Compliant with Energy Efficient Ethernet 802.3az
- · Wake on LAN (WoL) support
- Integrated IEEE 1588v2 hardware time stamp unit
- · Cable diagnostic support
- 1.8V to 3.3V variable voltage I/O
- Integrated 1.2V regulator for single 3.3V operation

Target Applications

- · Cable, satellite, and IP set-top boxes
- Digital televisions & video recorders
- · VoIP/Video phone systems, home gateways
- · Test/Measurement equipment, industrial automation

Key Benefits

- · Ethernet Switch Fabric
 - 32K buffer RAM, 512 entry forwarding table
 - Port based IEEE 802.1Q VLAN support (16 groups)
 Programmable IEEE 802.1Q tag insertion/removal
 - IEEE 802.1D spanning tree protocol support
 - 4 separate transmit queues available per port
 - Fixed or weighted egress priority servicing
 - QoS/CoS Packet prioritization
 - Input priority determined by VLAN tag, DA lookup, TOS, DIFFSERV or port default value
 - Programmable Traffic Class map based on input priority on per port basis
 - Remapping of 802.1Q priority field on per port basis
 - Programmable rate limiting at the ingress with coloring and random early discard, per port / priority
 - Programmable rate limiting at the egress with leaky bucket algorithm, per port / priority
 - IGMP v1/v2/v3 monitoring for Multicast packet filtering
 - Programmable broadcast storm protection with global %
 - control and enable per port
 - Programmable buffer usage limits
 - Dynamic queues on internal memory
 - Programmable filter by MAC address
- Switch Management
 - Port mirroring/monitoring/sniffing: ingress and/or egress traffic on any port or port pair
 - Fully compliant statistics (MIB) gathering counters

- Ports
 - Port 0: MII MAC, MII PHY, RMII PHY, RMII MAC modes
 - Port 1: Internal PHY, RMII MAC, RMII PHY modes
 - Port 2: Internal PHY
 - 2 internal 10/100 PHYs with HP Auto-MDIX support
- 200Mbps Turbo MII (PHY or MAC mode)
- Fully compliant with IEEE 802.3 standards
- 10BASE-T and 100BASE-TX support
- 100BASE-FX support via external fiber transceiver
- Full and half duplex support, full duplex flow control
- Backpressure (forced collision) half duplex flow control
- Automatic flow control based on programmable levels
- Automatic 32-bit CRC generation and checking
- Programmable interframe gap, flow control pause value
- Auto-negotiation, polarity correction & MDI/MDI-X
- IEEE 1588v2 hardware time stamp unit
 - Global 64-bit tunable clock
 - Boundary clock: master / slave, one-step / two-step, end-to-end / peer-to-peer delay
 - Transparent Clock with Ordinary Clock:
 - master / slave, one-step / two-step, end-to-end / peerto-peer delay
 - Fully programmable timestamp on TX or RX, timestamp on GPIO
 - 64-bit timer comparator event generation (GPIO or IRQ)
- Comprehensive power management features
 - 3 power-down levels
 - Wake on link status change (energy detect)
 - Magic packet wakeup, Wake on LAN (WoL), wake on broadcast, wake on perfect DA
 - Wakeup indicator event signal
- Power and I/O
 - Integrated power-on reset circuit
 - Latch-up performance exceeds 150mA per EIA/JESD78, Class II
 - JEDEC Class 3A ESD performance
 - Single 3.3V power supply
 - (integrated 1.2V regulator)
- Additional Features
 - Multifunction GPIOs
- Ability to use low cost 25MHz crystal for reduced BOM
- Packaging
 - Pb-free RoHS compliant 64-pin QFN or 64-pin TQFP-EP
- · Available in commercial and industrial temp. ranges

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Documentation

To obtain the most up-to-date version of this documentation, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1 0 Preface	4
2.0 General Description	+ 8
2.0 Central Description	
4.0 Power Connections	
5.0 Register Map	
6.0 Clocks, Resets, and Power Management	50
7.0 Configuration Straps	67
8.0 System Interrupts	84
9.0 Ethernet PHYs	
10.0 Switch Fabric	203
11.0 I2C Slave Controller	340
12.0 I2C Master EEPROM Controller	345
13.0 MII Data Interfaces	361
14.0 MII Management	378
15.0 IEEE 1588	394
16.0 General Purpose Timer & Free-Running Clock	481
17.0 GPIO/LED Controller	485
18.0 Miscellaneous	495
19.0 JTAG	500
20.0 Operational Characteristics	502
21.0 Package Outlines	516
22.0 Revision History	519

1.0 PREFACE

1.1 General Terms

TABLE 1-1: GENERAL TERMS

Term	Description		
10BASE-T	10 Mbps Ethernet, IEEE 802.3 compliant		
100BASE-TX	100 Mbps Fast Ethernet, IEEE802.3u compliant		
ADC	Analog-to-Digital Converter		
ALR	Address Logic Resolution		
AN	Auto-Negotiation		
BLW	Baseline Wander		
BM	Buffer Manager - Part of the switch fabric		
BPDU	Bridge Protocol Data Unit - Messages which carry the Spanning Tree Protocol informa- tion		
Byte	8 bits		
CSMA/CD	Carrier Sense Multiple Access/Collision Detect		
CSR	Control and Status Registers		
CTR	Counter		
DA	Destination Address		
DWORD	32 bits		
EPC	EEPROM Controller		
FCS	Frame Check Sequence - The extra checksum characters added to the end of an Ethernet frame, used for error detection and correction.		
FIFO	First In First Out buffer		
FSM	Finite State Machine		
GPIO	General Purpose I/O		
Host	External system (Includes processor, application software, etc.)		
IGMP	Internet Group Management Protocol		
Inbound	Refers to data input to the device from the host		
Level-Triggered Sticky Bit	This type of status bit is set whenever the condition that it represents is asserted. The bit remains set until the condition is no longer true and the status bit is cleared by writing a zero.		
lsb	Least Significant Bit		
LSB	Least Significant Byte		
LVDS	Low Voltage Differential Signaling		
MDI	Medium Dependent Interface		
MDIX	Media Independent Interface with Crossover		
MI	Media Independent Interface		
МІМ	Media Independent Interface Management		
MIL	MAC Interface Layer		
MLD	Multicast Listening Discovery		
MLT-3	Multi-Level Transmission Encoding (3-Levels). A tri-level encoding method where a change in the logic level represents a code bit "1" and the logic output remaining at the same level represents a code bit "0".		
msb	Most Significant Bit		
MSB	Most Significant Byte		

-

Term	Description
NRZI	Non Return to Zero Inverted. This encoding method inverts the signal for a "1" and leaves the signal unchanged for a "0"
N/A	Not Applicable
NC	No Connect
OUI	Organizationally Unique Identifier
Outbound	Refers to data output from the device to the host
PISO	Parallel In Serial Out
PLL	Phase Locked Loop
PTP	Precision Time Protocol
RESERVED	Refers to a reserved bit field or address. Unless otherwise noted, reserved bits must always be zero for write operations. Unless otherwise noted, values are not guaran- teed when reading reserved bits. Unless otherwise noted, do not read or write to reserved addresses.
RTC	Real-Time Clock
SA	Source Address
SFD	Start of Frame Delimiter - The 8-bit value indicating the end of the preamble of an Ethernet frame.
SIPO	Serial In Parallel Out
SMI	Serial Management Interface
SQE	Signal Quality Error (also known as "heartbeat")
SSD	Start of Stream Delimiter
UDP	User Datagram Protocol - A connectionless protocol run on top of IP networks
UUID	Universally Unique IDentifier
WORD	16 bits

TABLE 1-1: GENERAL TERMS (CONTINUED)

1.2 Buffer Types

TABLE 1-2: BUFFER TYPES

Buffer Type	Description
IS	Schmitt-triggered input
VIS	Variable voltage Schmitt-triggered input
VO8	Variable voltage output with 8 mA sink and 8 mA source
VOD8	Variable voltage open-drain output with 8 mA sink
VO12	Variable voltage output with 12 mA sink and 12 mA source
VOD12	Variable voltage open-drain output with 12 mA sink
VOS12	Variable voltage open-source output with 12 mA source
VO16	Variable voltage output with 16 mA sink and 16 mA source
PU	50 μA (typical) internal pull-up. Unless otherwise noted in the pin description, internal pull- ups are always enabled. Internal pull-up resistors prevent unconnected inputs from floating. Do not rely on internal resistors to drive signals external to the device. When connected to a load that must be pulled high, an external resistor must be added.
PD	50 μA (typical) internal pull-down. Unless otherwise noted in the pin description, internal pull-downs are always enabled. Internal pull-down resistors prevent unconnected inputs from floating. Do not rely on internal resistors to drive signals external to the device. When connected to a load that must be pulled low, an external resistor must be added.
AI	Analog input
AIO	Analog bidirectional
ICLK	Crystal oscillator input pin
OCLK	Crystal oscillator output pin
ILVPECL	Low voltage PECL input pin
OLVPECL	Low voltage PECL output pin
Р	Power pin

1.3 Register Nomenclature

Register Bit Type Notation	Register Bit Description
R	Read: A register or bit with this attribute can be read.
W	Read: A register or bit with this attribute can be written.
RO	Read only: Read only. Writes have no effect.
WO	Write only: If a register or bit is write-only, reads will return unspecified data.
WC	Write One to Clear: Writing a one clears the value. Writing a zero has no effect
WAC	Write Anything to Clear: Writing anything clears the value.
RC	Read to Clear: Contents is cleared after the read. Writes have no effect.
LL	Latch Low: Clear on read of register.
LH	Latch High: Clear on read of register.
SC	Self-Clearing: Contents are self-cleared after the being set. Writes of zero have no effect. Contents can be read.
SS	Self-Setting: Contents are self-setting after being cleared. Writes of one have no effect. Contents can be read.
RO/LH	Read Only, Latch High: Bits with this attribute will stay high until the bit is read. After it is read, the bit will either remain high if the high condition remains, or will go low if the high condition has been removed. If the bit has not been read, the bit will remain high regardless of a change to the high condition. This mode is used in some Ethernet PHY registers.
NASR	Not Affected by Software Reset. The state of NASR bits do not change on assertion of a software reset.
RESERVED	Reserved Field: Reserved fields must be written with zeros to ensure future compatibility. The value of reserved bits is not guaranteed on a read.

TABLE 1-3: REGISTER NOMENCLATURE

2.0 GENERAL DESCRIPTION

The LAN9353 is a full featured, 3 port 10/100 managed Ethernet switch designed for embedded applications where performance, flexibility, ease of integration and system cost control are required. The LAN9353 combines all the functions of a 10/100 switch system, including the Switch Fabric, packet buffers, Buffer Manager, Media Access Controllers (MACs), PHY transceivers, and serial management. IEEE 1588v2 is supported via the integrated IEEE 1588v2 hardware time stamp unit, which supports end-to-end and peer-to-peer transparent clocks. The LAN9353 complies with the IEEE 802.3 (full/half-duplex 10BASE-T and 100BASE-TX) Ethernet protocol, IEEE 802.3az Energy Efficient Ethernet (EEE) (100Mbps only), and 802.1D/802.1Q network management protocol specifications, enabling compatibility with industry standard Ethernet and Fast Ethernet applications. 100BASE-FX is supported via an external fiber transceiver.

At the core of the device is the high performance, high efficiency 3 port Ethernet Switch Fabric. The Switch Fabric contains a 3 port VLAN layer 2 Switch Engine that supports untagged, VLAN tagged, and priority tagged frames. The Switch Fabric provides an extensive feature set which includes spanning tree protocol support, multicast packet filtering and Quality of Service (QoS) packet prioritization by VLAN tag, destination address, port default value or DIFFSERV/TOS, allowing for a range of prioritization implementations. 32K of buffer RAM allows for the storage of multiple packets while forwarding operations are completed, and a 512 entry forwarding table provides ample room for MAC address forwarding tables. Each port is allocated a cluster of 4 dynamic QoS queues which allow each queue size to grow and shrink with traffic, effectively utilizing all available memory. This memory is managed dynamically via the Buffer Manager block within the Switch Fabric. All aspects of the Switch Fabric are managed via the Switch Fabric configuration and status registers, which are indirectly accessible via the system control and status registers.

The LAN9353 provides 3 switched ports. Each port is fully compliant with the IEEE 802.3 standard and all internal MACs and PHYs support full/half duplex 10BASE-T and 100BASE-TX operation. The LAN9353 provides 2 on-chip PHYs, 2 Virtual PHYs and 3 MACs. The Virtual PHY and the third MAC are used to connect the Switch Fabric to an external MAC or PHY. In MAC mode, the device can be connected to an external PHY via the MII/RMII/Turbo MII interface. In PHY mode, the device can be connected to an external MAC via the MII/RMII/Turbo MII interface. Optionally, the internal PHY on Port 1 can be disabled and the associated Switch Fabric port operated in the RMII PHY or RMII MAC modes. All ports support automatic or manual full duplex flow control or half duplex backpressure (forced collision) flow control. 2K jumbo packet (2048 byte) support allows for oversized packet transfers, effectively increasing throughput while decreasing CPU load. All MAC and PHY related settings are fully configurable via their respective registers within the device.

The integrated I²C and SMI slave controllers allow for full serial management of the device via the integrated I²C or MII interface, respectively. The inclusion of these interfaces allows for greater flexibility in the incorporation of the device into various designs. It is this flexibility which allows the device to operate in 2 different modes and under various management conditions. In both MAC and PHY modes, the device can be SMI managed or I²C managed. This flexibility in management makes the LAN9353 a candidate for virtually all switch applications.

The LAN9353 supports numerous power management and wakeup features. The LAN9353 can be placed in a reduced power mode and can be programmed to issue an external wake signal (IRQ) via several methods, including "Magic Packet", "Wake on LAN", wake on broadcast, wake on perfect DA, and "Link Status Change". This signal is ideal for triggering system power-up using remote Ethernet wakeup events. The device can be removed from the low power state via a host processor command or one of the wake events.

The LAN9353 contains an I²C master EEPROM controller for connection to an optional EEPROM. This allows for the storage and retrieval of static data. The internal EEPROM Loader can be optionally configured to automatically load stored configuration settings from the EEPROM into the device at reset. The I²C management slave and master EEPROM controller share common pins.

In addition to the primary functionality described above, the LAN9353 provides additional features designed for extended functionality. These include a configurable 16-bit General Purpose Timer (GPT), a 32-bit 25MHz free running counter, a configurable GPIO/LED interface, and IEEE 1588 time stamping on all ports and all GPIOs. The IEEE time stamp unit provides a 64-bit tunable clock for accurate PTP timing and a timer comparator to allow time based interrupt generation.

The LAN9353 can be configured to operate via a single 3.3V supply utilizing an integrated 3.3V to 1.2V linear regulator. The linear regulator may be optionally disabled, allowing usage of a high efficiency external regulator for lower system power dissipation.

The LAN9353 is available in commercial and industrial temperature ranges. Figure 2-1 provides an internal block diagram of the LAN9353.

FIGURE 2-1: INTERNAL BLOCK DIAGRAM

LAN9353

3.0 PIN DESCRIPTIONS AND CONFIGURATION

3.1 64-QFN Pin Assignments

FIGURE 3-1: 64-QFN PIN ASSIGNMENTS (TOP VIEW)

Note: When a "#" is used at the end of the signal name, it indicates that the signal is active low. For example, **RST#** indicates that the reset signal is active low.

The buffer type for each signal is indicated in the "Buffer Type" column of the pin description tables in Section 3.3, "Pin Descriptions". A description of the buffer types is provided in Section 1.2, "Buffer Types".

Table 3-1 details the 64-QFN package pin assignments in table format. As shown, select pin functions may change based on the device's mode of operation. For modes where a specific pin has no function, the table cell will be marked with "-".

Pin Number	1xMII/RMII Mode Pin Name	2xRMII Mode Pin Name	
1	OSCI		
2	OSCO		
3	OSCV	7DD12	
4	OSC	VSS	
5	VD	D33	
6	VDI	DCR	
7	REG	_EN	
8	FXLO	DSEN	
9	FXSDA/FXLO	SA/ <u>FXSDENA</u>	
10	FXSDB/FXLO	SB/ <u>FXSDENB</u>	
11	RS	Τ#	
12	GP	107	
13	GP	106	
14	VD	DIO	
15	P0_OUTD3	P1_OUTD1/ <u>P1_MODE2</u>	
16	P0_OUTD2/ <u>P0_MODE3</u>	P1_OUTD0/ <u>P1_MODE1</u>	
17	LED5/GPI05/ <u>PHYADD</u>		
18	LED4/GPI	04/ <u>1588EN</u>	
19	P0_OUTER/P0_SPEED	P0_SPEED	
20	VD	DIO	
21	P0_OUTD1/	P0 MODE2	
22	P0_OUTD0/	P0 MODE1	
23	P0_0	UTDV	
24	VDI	DCR	
25	P0_OUTCLK/P0_REFCLK/ <u>P0_MODE0</u> P0_REFCLK/ <u>P0_MODE0</u>		
26	P0_I	NDV	
27	P0_I	P0_IND0	
28	P0_I	ND1	
29	P0_INCLK	P1_REFCLK/ <u>P1_MODE0</u>	
30	P0_IND2 P1_IND0		
31	P0_IND3 P1_IND1		

TABLE 3-1: 64-QFN PACKAGE PIN ASSIGNMENTS

TABLE 3-1:	64-QFN PACKAGE PIN ASSIGNMENTS ((CONTINUED))
------------	----------------------------------	-------------	---

Pin Number	1xMII/RMII Mode Pin Name	2xRMII Mode Pin Name		
32	VDI	VDDIO		
33	P0_INER	P1_INDV		
34	LED3/GPI	03/ <u>EEEEN</u>		
35	RESERVED	P1_OUTDV		
36	P0_DU	PLEX		
37	VDI	DIO		
38	VDI	DCR		
39	P0_N	ADC		
40	P0_M	IDIO		
41	TEST	MODE		
42	I2CSDA/EI	ESDA/TMS		
43	I2CSCL/EI	ESCL/TCK		
44	IR	Q		
45	LED2/GPIC	2/ <u>E2PSIZE</u>		
46	LED1/GPIO1/T	LED1/GPIO1/TDI/ <u>P1_INTPHY</u>		
47	VDI	VDDIO		
48	LED0/GPIO0/	LED0/GPIO0/TDO/ <u>MNGT0</u>		
49	P0_CRS	P1_DUPLEX/P1_MDC		
50	P0_COL	P1_SPEED/P1_MDIO		
51	VDD33	IXRX1		
52	TX	NA		
53	TX	PA		
54	RX	NA		
55	RX	PA		
56	VDD1	2TX1		
57	RB	IAS		
58	VDD3.	3BIAS		
59	VDD1	VDD12TX2		
60	RX	RXPB		
61	RX	NB		
62	TX	PB		
63	ТХ	ТХИВ		
64	VDD33	VDD33TXRX2		
Exposed Pad	VS	VSS		

-

3.2 64-TQFP-EP Pin Assignments

FIGURE 3-2: 64-TQFP-EP PIN ASSIGNMENTS (TOP VIEW)

When a "#" is used at the end of the signal name, it indicates that the signal is active low. For example, RST# indicates that the reset signal is active low.
 The buffer type for each signal is indicated in the "Buffer Type" column of the pin description tables in Section 3.3, "Pin Descriptions". A description of the buffer types is provided in Section 1.2, "Buffer Types".

LAN9353

Table 3-2 details the 64-TQFP-EP package pin assignments in table format. As shown, select pin functions may change based on the device's mode of operation. For modes where a specific pin has no function, the table cell will be marked with "-".

Pin Number	1xMII/RMII Mode Pin Name	2xRMII Mode Pin Name	
1	OSCI		
2	OS	со	
3	OSCV	/DD12	
4	OSC	VSS	
5	VD	D33	
6	VDI	DCR	
7	REG	E_EN	
8	FXLO	DSEN	
9	FXSDA/FXLO	SA/ <u>FXSDENA</u>	
10	FXSDB/FXLO	SB/ <u>FXSDENB</u>	
11	RS	T#	
12	GP	107	
13	GP	106	
14	VD	DIO	
15	P0_OUTD3	P1_OUTD1/ <u>P1_MODE2</u>	
16	P0_OUTD2/ <u>P0_MODE3</u>	P1_OUTD0/ <u>P1_MODE1</u>	
17	LED5/GPIC	LED5/GPIO5/ <u>PHYADD</u>	
18	LED4/GPI	04/ <u>1588EN</u>	
19	P0_OUTER/P0_SPEED	P0_SPEED	
20	VD	DIO	
21	P0_OUTD1/	P0 MODE2	
22	P0_OUTD0/	P0 MODE1	
23	P0_0	UTDV	
24	VDI	DCR	
25	P0_OUTCLK/P0_REFCLK/ <u>P0_MODE0</u>	P0_REFCLK/ <u>P0_MODE0</u>	
26	P0_I	NDV	
27	P0_IND0		
28	P0_I	P0_IND1	
29	P0_INCLK	P1_REFCLK/ <u>P1_MODE0</u>	
30	P0_IND2	P1_IND0	
31	P0_IND3 P1_IND1		
32	VDDIO		

TABLE 3-2: 64-TQFP-EP PACKAGE PIN ASSIGNMENTS

Pin Number	1xMII/RMII Mode Pin Name	2xRMII Mode Pin Name		
33	P0_INER	P1_INDV		
34	LED3/GPI	03/ <u>EEEEN</u>		
35	RESERVED	P1_OUTDV		
36	P0_DU	PLEX		
37	VDI	DIO		
38	VDI	OCR		
39	P0_N	ADC .		
40	P0_N	IDIO		
41	TEST	MODE		
42	I2CSDA/EI	ESDA/TMS		
43	I2CSCL/EI	ESCL/TCK		
44	IR	Q		
45	LED2/GPIC	02/ <u>E2PSIZE</u>		
46	LED1/GPIO1/T	DI/ <u>P1_INTPHY</u>		
47	VDI	VDDIO		
48	LED0/GPIO0/	TDO/ <u>MNGT0</u>		
49	P0_CRS	P1_DUPLEX/P1_MDC		
50	P0_COL	P1_SPEED/P1_MDIO		
51	VDD33	VDD33TXRX1		
52	TX	TXNA		
53	ТХ	PA		
54	RX	NA		
55	RX	PA		
56	VDD1	2TX1		
57	RB	IAS		
58	VDD3.	3BIAS		
59	VDD1	2TX2		
60	RX	RXPB		
61	RX	RXNB		
62	ТХРВ			
63	TXNB			
64	VDD33	VDD33TXRX2		
Exposed Pad	VS	VSS		

TABLE 3-2: 64-TQFP-EP PACKAGE PIN ASSIGNMENTS (CONTINUED)

3.3 Pin Descriptions

This section contains descriptions of the various LAN9353 pins. The pin descriptions have been broken into functional groups as follows:

- LAN Port A Pin Descriptions
- LAN Port B Pin Descriptions
- LAN Port A & B Power and Common Pin Descriptions
- Switch Port 0 MII/RMII & Configuration Strap Pin Descriptions
- Switch Port 1 RMII & Configuration Strap Pin Descriptions
- I2C Management Pin Descriptions
- EEPROM Pin Descriptions
- GPIO, LED & Configuration Strap Pin Descriptions
- Miscellaneous Pin Descriptions
- JTAG Pin Descriptions
- Core and I/O Power Pin Descriptions

Num Pins	Name	Symbol	Buffer Type	Description
1	Port A TP TX/RX Positive Channel 1	ТХРА	AIO	Port A Twisted Pair Transmit/Receive Positive Channel 1. See Note 1
	Port A FX TX Positive		OLVPECL	Port A Fiber Transmit Positive.
1	Port A TP TX/RX Negative Channel 1	TXNA	AIO	Port A Twisted Pair Transmit/Receive Negative Channel 1. See Note 1.
	Port A FX TX Negative		OLVPECL	Port A Fiber Transmit Negative.
1	Port A TP TX/RX Positive Channel 2	RXPA	AIO	Port A Twisted Pair Transmit/Receive Positive Channel 2. See Note 1.
	Port A FX RX Positive		AI	Port A Fiber Receive Positive.
1	Port A TP TX/RX Negative Channel 2	RXNA	AIO	Port A Twisted Pair Transmit/Receive Negative Channel 2. See Note 1.
	Port A FX RX Negative		AI	Port A Fiber Receive Negative.

TABLE 3-3: LAN PORT A PIN DESCRIPTIONS

Num Pins	Name	Symbol	Buffer Type	Description
1	Port A FX Signal Detect (SD)	FXSDA	ILVPECL	Port A Fiber Signal Detect. When FX-LOS mode is not selected, this pin functions as the Signal Detect input from the external transceiver. A level above 2 V (typ.) indicates valid signal. When FX-LOS mode is selected, the input buffer is disabled.
	Port A FX Loss Of Signal (LOS)	FXLOSA	IS (PU)	Port A Fiber Loss of Signal. When FX-LOS mode is selected (via fx_los_strap_1), this pin functions as the Loss of Signal input from the external transceiver. A high indicates LOS while a low indicates valid signal. When FX-LOS mode is not selected, the input buffer and pull-up are disabled.
	Port A FX-SD Enable Strap	<u>FXSDENA</u>	AI	Port A FX-SD Enable. When FX-LOS mode is not selected, this strap input selects between FX-SD and copper twisted pair mode. A level above 1 V (typ.) selects FX-SD. When FX-LOS mode is selected, the input buffer is disabled. See Note 2.

TABLE 3-3:	LAN PORT A PIN DESCRIPTIONS (CONTINUED)
------------	---

- **Note 1:** In copper mode, either channel 1 or 2 may function as the transmit pair while the other channel functions as the receive pair. The pin name symbols for the twisted pair pins apply to a normal connection. If HP Auto-MDIX is enabled and a reverse connection is detected or manually selected, the RX and TX pins will be swapped internally.
- **Note 2:** Configuration strap pins are identified by an underlined symbol name. Configuration strap values are latched on power-on reset or **RST#** de-assertion. Refer to Section 7.0, "Configuration Straps," on page 67 for more information.

Note: Port A is connected to the Switch Fabric port 1.

TABLE 3-4:	LAN PORT B PIN DESCRIPTIONS	

Num Pins	Name	Symbol	Buffer Type	Description
1	Port B TP TX/RX Positive Channel 1	ТХРВ	AIO	Port B Twisted Pair Transmit/Receive Positive Channel 1. See Note 3
	Port B FX TX Positive		OLVPECL	Port B Fiber Transmit Positive.
1	Port B TP TX/RX Negative Channel 1	TXNB	AIO	Port B Twisted Pair Transmit/Receive Negative Channel 1. See Note 3.
	Port B FX TX Negative		OLVPECL	Port B Fiber Transmit Negative.

LAN9353

Num Pins	Name	Symbol	Buffer Type	Description
1	Port BTP TX/RX Positive Channel 2	RХРВ	AIO	Port B Twisted Pair Transmit/Receive Positive Channel 2. See Note 3.
	Port B FX RX Positive		AI	Port B Fiber Receive Positive.
1	Port B TP TX/RX Negative Channel 2	RXNB	AIO	Port B Twisted Pair Transmit/Receive Negative Channel 2. See Note 3.
	Port B FX RX Negative		AI F	Port B Fiber Receive Negative.
1	Port B FX Signal Detect (SD)	FXSDB	ILVPECL	Port B Fiber Signal Detect. When FX-LOS mode is not selected, this pin functions as the Signal Detect input from the external transceiver. A level above 2 V (typ.) indicates valid signal. When FX-LOS mode is selected, the input buffer is disabled.
	Port B FX Loss Of Signal (LOS)	FXLOSB	IS (PU)	Port B Fiber Loss of Signal. When FX-LOS mode is selected (via fx_los_strap_2), this pin functions as the Loss of Signal input from the external transceiver. A high indicates LOS while a low indicates valid signal. When FX-LOS mode is not selected, the input buffer and pull-up are disabled.
	Port B FX-SD Enable Strap	<u>FXSDENB</u>	AI	Port B FX-SD Enable. When FX-LOS mode is not selected, this strap input selects between FX-SD and copper twisted pair mode. A level above 1 V (typ.) selects FX-SD. When FX-LOS mode is selected, the input buffer is disabled. See Note 4.

TABLE 3-4: LAN PORT B PIN DESCRIPTIONS (CONTINUED)

Note 3: In copper mode, either channel 1 or 2 may function as the transmit pair while the other channel functions as the receive pair. The pin name symbols for the twisted pair pins apply to a normal connection. If HP Auto-MDIX is enabled and a reverse connection is detected or manually selected, the RX and TX pins will be swapped internally.

Note 4: Configuration strap pins are identified by an underlined symbol name. Configuration strap values are latched on power-on reset or **RST#** de-assertion. Refer to Section 7.0, "Configuration Straps," on page 67 for more information.

Note: Port B is connected to Switch Fabric port 2.

Num Pins	Name	Symbol	Buffer Type	Description
1	Bias Reference	RBIAS	AI	Used for internal bias circuits. Connect to an exter- nal 12.1 k Ω , 1% resistor to ground. Refer to the device reference schematic for connec- tion information. Note: The nominal voltage is 1.2 V and the resistor will dissipate approximately 1 mW of power.
1	Port A and B FX-LOS Enable Strap	<u>FXLOSEN</u>	AI	Port A and B FX-LOS Enable. This 3 level strap input selects between FX-LOS and FX-SD / copper twisted pair mode. A level below 1 V (typ.) selects FX-SD / copper twisted pair for ports A and B, further determined by FXSDENA and FXSDENB. A level of 1.5 V selects FX-LOS for port A and FX- SD / copper twisted pair for port B, further deter- mined by FXSDENB. A level above 2 V (typ.) selects FX-LOS for ports A and B.
1	+3.3 V Port A Analog Power Supply	VDD33TXRX1	Р	See Note 5.
1	+3.3 V Port B Analog Power Supply	VDD33TXRX2	Р	See Note 5.
1	+3.3 V Master Bias Power Supply	VDD33BIAS	Р	See Note 5.
1	Port A Transmitter +1.2 V Power Supply	VDD12TX1	Ρ	This pin is supplied from either an external 1.2 V supply or from the device's internal regulator via the PCB. This pin must be tied to the VDD12TX2 pin for proper operation. See Note 5.
1	Port B Transmitter +1.2 V Power Supply	VDD12TX2	Ρ	This pin is supplied from either an external 1.2 V supply or from the device's internal regulator via the PCB. This pin must be tied to the VDD12TX1 pin for proper operation. See Note 5.

TABLE 3-5:	LAN PORT A & B POWER AND COMMON PIN DESCRIPTIONS

Note 5: Refer to Section 4.0, "Power Connections," on page 38, the device reference schematics, and the device LANCheck schematic checklist for additional connection information.

Num Pins	Name	Symbol	Buffer Type	Description
	1 Port 0 MII Input Data 3 P0_IND3 VIS (PD) Input Data 3 - -	Port 0 MII P0_IND3 put Data 3	VIS (PD)	MII MAC Mode: This pin is the receive data 3 bit from the external PHY to the switch.
1			VIS (PD)	MII PHY Mode: This pin is the transmit data 3 bit from the external MAC to the switch. The pull-down and input buffer are disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_C- TRL_x).
		RMII MAC and RMII PHY Modes: This pin is not used.		
			VIS (PD)	MII MAC Mode: This pin is the receive data 2 bit from the external PHY to the switch.
1	Port 0 MII Input Data 2	P0_IND2	VIS (PD)	MII PHY Mode: This pin is the transmit data 2 bit from the external MAC to the switch. The pull-down and input buffer are disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_C- TRL_x).
			-	RMII MAC and RMII PHY Modes: This pin is not used.
			VIS (PD)	MII MAC Mode: This pin is the receive data 1 bit from the external PHY to the switch.
	Port 0 MII/RMII	Port 0 MII/RMII P0_IND1 Input Data 1	VIS (PD)	MII PHY Mode: This pin is the transmit data 1 bit from the external MAC to the switch. The pull-down and input buffer are disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_C- TRL_x).
1	Input Data 1		VIS (PD)	RMII MAC Mode: This pin is the receive data 1 bit from the external PHY to the switch.
			VIS (PD)	RMII PHY Mode: This pin is the transmit data 1 bit from the external MAC to the switch. The pull-down and input buffer are disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_C-TRL_x).

TABLE 3-6: SWITCH PORT 0 MII/RMII & CONFIGURATION STRAP PIN DESCRIPTIONS

-

Num Pins	Name	Symbol	Buffer Type	Description
		RMII P0_IND0	VIS (PD)	MII MAC Mode: This pin is the receive data 0 bit from the external PHY to the switch.
	Port 0 MII/RMII		VIS (PD)	MII PHY Mode: This pin is the transmit data 0 bit from the external MAC to the switch. The pull-down and input buffer are disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_C- TRL_x).
	Input Data 0		VIS (PD)	RMII MAC Mode: This pin is the receive data 0 bit from the external PHY to the switch.
			VIS (PD)	RMII PHY Mode: This pin is the transmit data 0 bit from the external MAC to the switch. The pull-down and input buffer are disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_C- TRL_x).
	Port 0 MII/RMII Input Data Valid	0 MII/RMII t Data Valid	VIS (PD)	MII MAC Mode: This pin is the RX_DV signal from the external PHY and indicates valid data on P0_IND[3:0] and P0_INER .
			VIS (PD)	MII PHY Mode: This pin is the TX_EN signal from the external MAC and indicates valid data on P0_IND[3:0] and P0_INER. The pull-down and input buffer are disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
			VIS (PD)	RMII MAC Mode: This pin is the CRS_DV signal from the external PHY.
			VIS (PD)	RMII PHY Mode: This pin is the TX_EN signal from the external MAC and indicates valid data on P0_IND[1:0] . The pull-down and input buffer are dis- abled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
	Port 0 MII/RMII Input Error	Port 0 MII/RMII Input Error P0_INER	VIS (PD)	MII MAC Mode: This pin is the RX_ER signal from the external PHY and indicates a receive error in the packet or that Lower Power Idle is being received.
1			VIS (PD)	MII PHY Mode: This pin is the TX_ER signal from the external MAC and indicates that the current packet should be aborted. The pull-down and input buffer are disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
			VIS (PD)	RMII MAC Mode: This pin is the RX_ER signal from the external PHY and indicates a receive error in the packet.
			-	RMII PHY Mode: This pin is not used.

TABLE 3-6: SWITCH PORT 0 MII/RMII & CONFIGURATION STRAP PIN DESCRIPTIONS

Num Pins	Name	Symbol	Buffer Type	Description
			VIS (PD)	MII MAC Mode: This pin is an input and is used as the reference clock for the P0_IND[3:0], P0_INER and P0_INDV pins. It is connected to the receive clock of the external PHY.
1	Port 0 MII Input Clock	P0_INCLK	VO12/ VO16 Note 6	MII PHY Mode: This pin is an output and is used as the reference clock for the P0_IND[3:0], P0_INER and P0_INDV pins. It is connected to the transmit clock of the external MAC. The output driver is dis- abled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x). When operating at 200 Mbps, the choice of drive strength is based on the setting of the RMII/Turbo MII Clock Strength bit in the Port 0 Port x Virtual PHY Special Control/Sta- tus Register (VPHY_SPECIAL_CONTROL_STA- TUS_x). A low selects a 12 mA drive, while a high selects a 16 mA drive.
			-	RMII MAC and RMII PHY Modes: This pin is not used.
	Port 0 MII Output Data 3	Port 0 MII Output Data 3 P0_OUTD3	VO8	MII MAC Mode: This pin is the transmit data 3 bit from the switch to the external PHY.
1			VO8	MII PHY Mode: This pin is the receive data 3 bit from the switch to the external MAC. The output driver is disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
			-	RMII MAC and RMII PHY Modes: This pin is not used.
	Port 0 MII Output Data 2	MII Data 2 P0_OUTD2	VO8	MII MAC Mode: This pin is the transmit data 2 bit from the switch to the external PHY.
			VO8	MII PHY Mode: This pin is the receive data 2 bit from the switch to the external MAC. The output driver is disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
			-	RMII MAC and RMII PHY Modes: This pin is not used.
	Port 0 Mode[3] Configuration Strap	<u>P0 MODE3</u>	VIS (PU) Note 8	This strap configures the mode for Port 0. See Note 7. Refer to Table 7-3, "Port 0 Mode Strap Mapping," on page 83 for the Port 0 strap settings.

TABLE 3-6: SWITCH PORT 0 MII/RMII & CONFIGURATION STRAP PIN DESCRIPTIONS

Num Pins	Name	Symbol	Buffer Type	Description
	Port 0 MII/RMII		VO8	MII MAC Mode: This pin is the transmit data 1 bit from the switch to the external PHY.
			VO8	MII PHY Mode: This pin is the receive data 1 bit from the switch to the external MAC. The output driver is disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
	Output Data 1	10_00101	VO8	RMII MAC Mode: This pin is the transmit data 1 bit from the switch to the external PHY.
1			VO8	RMII PHY Mode: This pin is the receive data 1 bit from the switch to the external MAC. The output driver is disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
	Port 0 Mode[2] Configuration Strap	<u>P0 MODE2</u>	VIS (PU) Note 8	This strap configures the mode for Port 0. See Note 7. Refer to Table 7-3, "Port 0 Mode Strap Mapping," on page 83 for the Port 0 strap settings.
	Port 0 MII/RMII	/III/RMII Data 0 P0_OUTD0	VO8	MII MAC Mode: This pin is the transmit data 0 bit from the switch to the external PHY.
			VO8	MII PHY Mode: This pin is the receive data 0 bit from the switch to the external MAC. The output driver is disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
	Output Data 0		VO8	RMII MAC Mode: This pin is the transmit data 0 bit from the switch to the external PHY.
1			VO8	RMII PHY Mode: This pin is the receive data 0 bit from the switch to the external MAC. The output driver is disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
	Port 0 Mode[1] Configuration Strap	<u>P0 MODE1</u>	VIS (PU) Note 8	This strap configures the mode for Port 0. See Note 7. Refer to Table 7-3, "Port 0 Mode Strap Mapping," on page 83 for the Port 0 strap settings.

TABLE 3-6: SWITCH PORT 0 MII/RMII & CONFIGURATION STRAP PIN DESCRIPTIONS

Num Pins	Name	Symbol	Buffer Type	Description
		rt 0 MII/RMII	VO8	MII MAC Mode: This pin is the TX_EN signal to the external PHY and indicates valid data on P0_OUTD[3:0].
1	Port 0 MII/RMII Output Data		VO8	MII PHY Mode: This pin is the RX_DV signal to the external MAC. The output driver is disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BA-SIC_CTRL_x).
	Valid		TypeTypeVO8MVO8PVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVO8ftVISftVISftVISftVISftVISftVISftVISftVISftVISftVISftIft </td <td>RMII MAC Mode: This pin is the TX_EN signal to the external PHY.</td>	RMII MAC Mode: This pin is the TX_EN signal to the external PHY.
			VO8	RMII PHY Mode: This pin is the CRS_DV signal to the external MAC. The output driver is disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x).
	Port 0 MII Output Data Error	P0_OUTER	VO8	MII MAC Mode: This pin is the TX_ER signal to the external PHY and is used to send Lower Power Idle.
1	Port 0 Speed	P0_SPEED	VIS (PU)	RMII MAC Mode: This pin can be changed at any time (live value) and is typically tied to the speed indication from the external PHY. It can be overrid- den by the Speed Select LSB (VPHY SPEED_SEL_LSB) bit in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_C- TRL_x) by clearing the Auto-Negotiation (VPHY_AN) bit in the same register. The polarity of this pin is determined by the
		-	-	MII PHY and RMII PHY Modes: This pin is not
1	Port 0 MII/RMII Duplex	P0_DUPLEX	VIS (PU)	MII MAC and RMII MAC Modes: This pin can be changed at any time (live value) and is typically tied to the duplex indication from the external PHY. It can be overridden by the Duplex Mode (VPHY_DU- PLEX) bit in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x) by clear- ing the Auto-Negotiation (VPHY_AN) bit in the same register. The polarity of this pin is determined by the duplex- _pol_strap_0.
			-	MII PHY and RMII PHY Modes: This pin is not used.

TABLE 3-6: SWITCH PORT 0 MII/RMII & CONFIGURATION STRAP PIN DESCRIPTIONS

Num Pins	Name	Symbol	Buffer Type	Description
			VIS (PD)	MII MAC Mode: This pin is an input and is used as the reference clock for the P0_OUT[3:0], P0_OUTDV and P0_OUTER pins. It is connected to the transmit clock of the external PHY.
1	Port 0 MII Output Clock	P0_OUTCLK	VO12/ VO16 Note 6	MII PHY Mode: This pin is an output and is used as the reference clock for the P0_OUT[3:0] and P0_OUTDV pins. It is connected to the receive clock of the external MAC. The output driver is disabled when the Isolate (VPHY_ISO) bit is set in the Port 0 Port x Virtual PHY Basic Control Register (VPHY_BASIC_CTRL_x). When operating at 200 Mbps, the choice of drive strength is based on the setting of the RMII/Turbo MII Clock Strength bit in the Port 0 Port x Virtual PHY Special Control/Sta- tus Register (VPHY_SPECIAL_CONTROL_STA- TUS_x). A low selects a 12 mA drive, while a high selects a 16 mA drive.

TABLE 3-6: SWITCH PORT 0 MII/RMII & CONFIGURATION STRAP PIN DESCRIPTIONS