imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

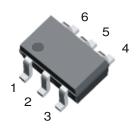
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

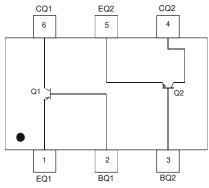
<u>LBN150B01</u>

150 mA LOAD SWITCH FEATURING COMPLEMENTARY BIPOLAR TRANSISTORS

General Description


 LMN150B01 is best suited for applications where the load needs to be turned on and off using control circuits like micro-controllers, comparators etc. particularly at a point of load. It features a discrete PNP pass transistor with stable V_{ce_sat} which does not depend on the input voltage and can support maximum continuous current of 150 mA up to 125 °C (see fig. 1). It also contains a discrete NPN that can be used as a control. The component devices can be used as a part of a circuit or as standalone discrete devices.

Features


- Epitaxial Planar Die Construction
- Ideally Suited for Automated Assembly Processes
- Lead Free By Design/ROHS Compliant (Note 1)
- "Green" Device (Note 2)

Mechanical Data

- Case: SOT-26
- Case Material: Molded Plastic. "Green Molding" Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminal Connections: See Diagram
- Terminals: Finish Matte Tin annealed over Copper leadframe. Solderable per MIL- STD -202, Method 208
- Marking Information: See Page 6
- Ordering Information: See Page 6
- Weight: 0.016 grams (approximate)

SOT-26

Schematic and Pin Configuration

Maximum Ratings, Total Device @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Output Current	l _{out}	150	mA

Thermal Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 3)	PD	300	mW
Power Derating Factor above 120 °C	P _{der}	2.33	mW/°C
Thermal Resistance, Junction to Ambient Air (Note 3) (Equivalent to one heated junction of PNP transistor)	R _{0JA}	417	°C/W
Junction Operation and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

Notes: 1. No purposefully added lead.

2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.

3. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Page 7.

Maximum Ratings: Discrete PNP Transistor (Q1) @T_A = 25°C unless otherwise specified

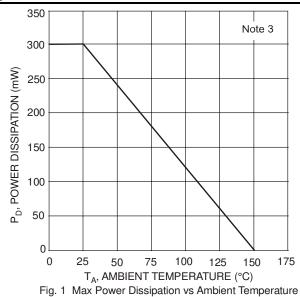
Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-40	V
Collector-Emitter Voltage	V _{CEO}	-40	V
Emitter-Base Voltage	V _{EBO}	-6	V
Output Current - continuous (Note 4)	Ι _C	-200	mA

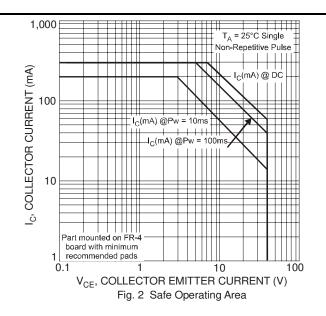
Maximum Ratings: Discrete NPN Transistor (Q2) @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	60	V
Collector-Emitter Voltage	V _{CEO}	40	V
Emitter-Base Voltage	V _{EBO}	6	V
Output Current - continuous (Note 4)	lc	200	mA

Electrical Characteristics: Discrete PNP Transistor (Q1) @T_A = 25°C unless otherwise specified

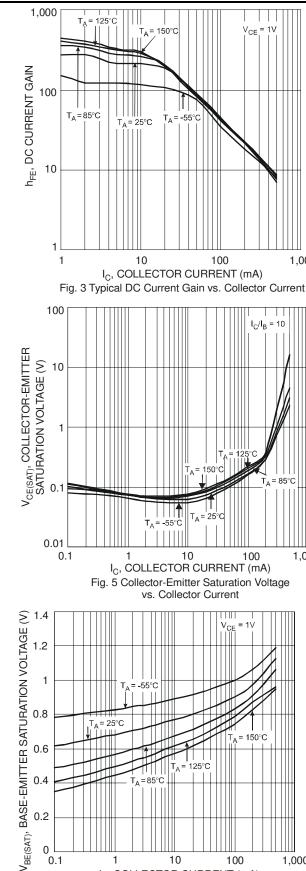
Characteristic	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 4)	-,				
Collector-Base Breakdown Voltage	V _{CBO}	-40		V	$I_{C} = -10 uA, I_{E} = 0$
Collector-Emitter Breakdown Voltage	V _{CEO}	-40		V	$I_{\rm C} = -1.0 {\rm mA}, I_{\rm B} = 0$
Emitter-Base Breakdown Voltage	V _{EBO}	-6		V	$I_{\rm E} = -10\mu A, I_{\rm C} = 0$
Collector Cutoff Current	ICEX		-50	nA	$V_{CE} = -30V, V_{EB(OFF)} = -3.0V$
Base Cutoff Current	I _{BL}		-50	nA	$V_{CE} = -30V, V_{EB(OFF)} = -3.0V$
Collector-Base Cut Off Current	I _{CBO}		-50	nA	$V_{CB} = -30V, I_E = 0$
Collector-Emitter Cut Off Current	I _{CEO}		-50	nA	$V_{CE} = -30V, I_B = 0$
Emitter-Base Cut Off Current	I _{EBO}		-50	nA	$V_{EB} = -5V, I_{C} = 0$
ON CHARACTERISTICS (Note 4)			_		· · · ·
		105	—	—	V _{CE} = -1V, I _C = -100 μA
		110	—	_	$V_{CE} = -1V, I_{C} = -1 \text{ mA}$
DC Current Gain	h	120	_	_	$V_{CE} = -1V, I_{C} = -10 \text{ mA}$
DC Gurrent Gain	h _{FE}	90	_	_	V _{CE} = -1V, I _C = -50 mA
		32	_	_	V _{CE} = -1V, I _C = -100 mA
		10	_		V _{CE} = -1V, I _C = -200 mA
Collector-Emitter Saturation Voltage			-0.08		I _C = - 10 mA, I _B = -1 mA
	V _{CE(SAT)}		-0.15	V	I _C = -50mA, I _B = -5mA
	. ,		-0.5		I _C = -200mA, I _B = -20mA
Equivalent on-resistance	R _{CE(SAT)}	_	2.5	Ω	I _C = -200mA, I _B = -20mA
Base-Emitter Turn-on Voltage	V _{BE(ON)}	_	-0.92	V	V _{CE} = -5V, I _C = -200mA
Base-Emitter Saturation Voltage		_	-0.95	V	$I_{\rm C} = -10 {\rm mA}, I_{\rm B} = -1 {\rm mA}$
Base-Emilier Saluration Voltage	V _{BE(SAT)}		-1.1	v	$I_{\rm C} = -50 {\rm mA}, I_{\rm B} = -5 {\rm mA}$
SMALL SIGNAL CHARACTERISTICS					
Output Capacitance	C _{OBO}		4	pF	$V_{CB} = -5.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}, \text{ I}_{E} = 0$
Input Capacitance	CIBO		8	pF	$V_{EB} = -5.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}, \text{ I}_{C} = 0$
Input Impedance	h _{IE}	2	12	KΩ	
Voltage Feedback ratio	h _{RE}	0.1	10	x 10E-4	V _{CE} = 1.0V, lc = 10mA, f = 1.0 KHz
Small Signal Current Gain	h _{FE}	100	400	_	$V_{CE} = 1.0V, IC = 10IIIA, I = 1.0 KHZ$
Output Admittance	h _{OE}	3	60	μS	
Current Gain-Bandwidth Product	fT	250	—	MHz	V _{CE} = - 20V, I _C = -10mA, f = 100 MHz
Noise Figure	NF	_	4	dB	V_{CE} = - 5V, Ic = -100 uA, R _s = 1 Ω , f =1 KHz
SWITCHING CHARACTERISTICS	· · · · ·		<u>.</u>		· · · · · · · · · · · · · · · · · · ·
Delay Time	t _d		35	ns	$V_{CC} = -3.0 \text{ V}, I_{C} = -10 \text{ mA},$
Rise Time	tr		35	ns	$V_{BE(OFF)} = 0.5V, I_{B1} = -1.0 \text{ mA}$
Storage Time	ts		225	ns	$V_{CC} = -3.0 \text{ V}, \text{ I}_{C} = -10 \text{ mA},$
Fall Time	t _f		75	ns	$I_{B1} = I_{B2} = -1.0 \text{ mA}$


Notes: 4. Short duration pulse test used to minimize self-heating effect.



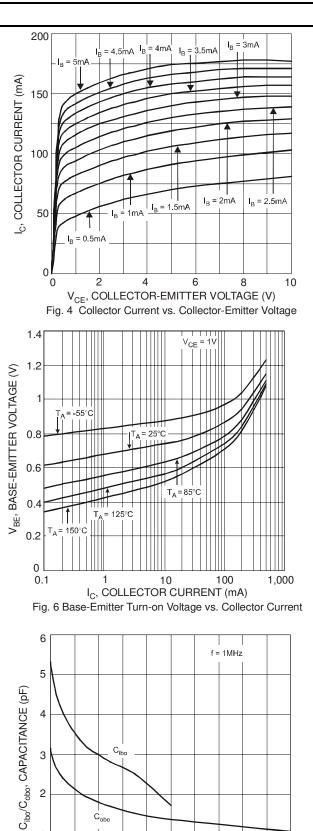
Electrical Characteristics: Discrete NPN Transistor (Q2) @TA = 25°C unless otherwise specified

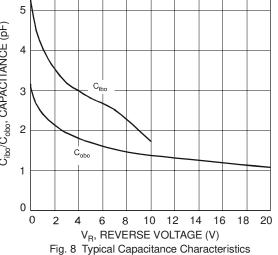
Characteristic	Symbol	Min	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 4)					
Collector-Base Breakdown Voltage	V _{CBO}	60	_	V	$I_{\rm C} = 10 \mu A, I_{\rm E} = 0$
Collector-Emitter Breakdown Voltage	V _{CEO}	40	_	V	$I_{\rm C} = 1.0 {\rm mA}, I_{\rm B} = 0$
Emitter-Base Breakdown Voltage	V _{EBO}	6	—	V	$I_{E} = 10 \mu A, I_{C} = 0$
Collector Cutoff Current	I _{CEX}		50	nA	$V_{CE} = 30V, V_{EB(OFF)} = 3.0V$
Base Cutoff Current	I _{BL}		50	nA	$V_{CE} = 30V, V_{EB(OFF)} = 3.0V$
Collector-Base Cut Off Current	I _{CBO}		50	nA	$V_{CB} = 30V, I_E = 0$
Collector-Emitter Cut Off Current	ICEO		50	nA	$V_{CE} = 30V, I_B = 0$
Emitter-Base Cut Off Current	I _{EBO}		50	nA	$V_{EB} = 5V, I_C = 0$
ON CHARACTERISTICS (Note 4)					
		150			$V_{CE} = 1V, I_{C} = 100 \ \mu A$
		170	—	—	$V_{CE} = 1V$, $I_C = 1$ mA
DC Current Gain	h _{FE}	160	—	—	$V_{CE} = 1V, I_{C} = 10 \text{ mA}$
	UFE	70			$V_{CE} = 1V, I_{C} = 50 \text{ mA}$
		30	—	—	$V_{CE} = 1V, I_{C} = 100 \text{ mA}$
		12			$V_{CE} = 1V, I_C = 200 \text{ mA}$
Collector-Emitter Saturation Voltage			0.08	v	$I_{C} = 10 \text{ mA}, I_{B} = 1 \text{ mA}$
	V _{CE(SAT)}		0.16		$I_C = 50mA$, $I_B = 5mA$
			0.36		$I_{C} = 200 \text{mA}, I_{B} = 20 \text{mA}$
Equivalent on-resistance	R _{CE(SAT)}		1.8	Ω	$I_{C} = 200 \text{mA}, I_{B} = 20 \text{mA}$
Base-Emitter Turn-on Voltage	V _{BE(ON)}		0.98	V	$V_{CE} = 5V, I_{C} = 200mA$
Base-Emitter Saturation Voltage	V _{BE(SAT)}		0.95	V	$I_{\rm C}$ = 10mA, $I_{\rm B}$ = 1mA
-	VBE(SAT)	_	1.1	v	$I_C = 50 \text{mA}, I_B = 5 \text{mA}$
SMALL SIGNAL CHARACTERISTICS					-
Output Capacitance	Сово		4	pF	$V_{CB} = 5.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}, \text{ I}_{E} = 0$
Input Capacitance	CIBO		8	pF	$V_{EB} = 5.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}, \text{ I}_{C} = 0$
Input Impedance	h _{IE}	2	12	KΩ	
Voltage Feedback ratio	h _{RE}	0.1	10	x 10E-4	V _{CE} = 1.0V, lc = 10mA, f = 1.0 KHz
Small Signal Current Gain	h _{FE}	100	400	—	
Output Admittance	h _{OE}	3	60	μS	
Current Gain-Bandwidth Product	f _T	250		MHz	V_{CE} = 20V, I_{C} = 0mA, f = 100 MHz
Noise Figure	NF	_	4	dB	V_{CE} = 5V, lc = 100 uA, R _s = 1 Ω , f =1 KHz
SWITCHING CHARACTERISTICS					
Delay Time	t _d		35	ns	$V_{CC} = -3.0 \text{ V}, \text{ I}_{C} = 10 \text{ mA},$
Rise Time	t _r	_	35	ns	$V_{BE(OFF)} = 0.5V, I_{B1} = 1.0 \text{ mA}$


Typical Characteristics

Characteristics of NPN Transistor (Q2):

10


I_C, COLLECTOR CURRENT (mA)


Fig. 7 Base-Emitter Saturation Voltage vs. Collector Current

1

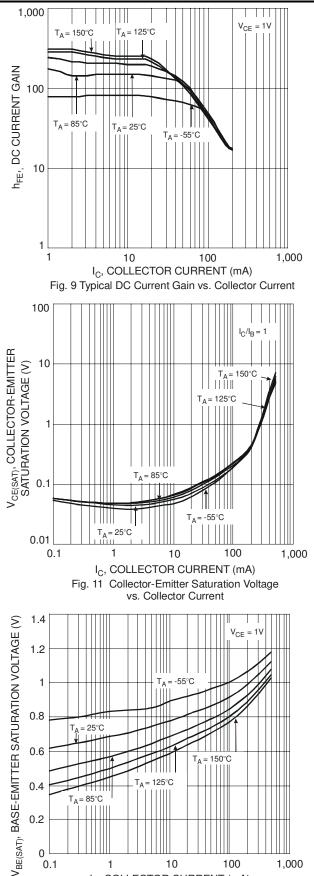
100

1,000

0

0.1

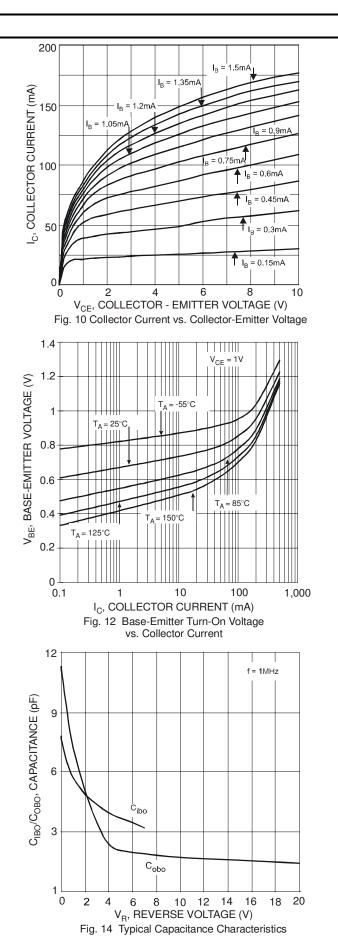
1,000


1,000

EW PRODUCT

z

Characteristics of PNP Transistor (Q1):



10

I_C, COLLECTOR CURRENT (mA)

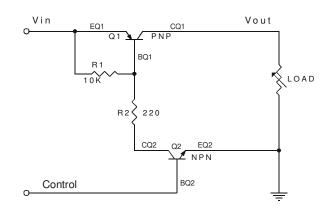
Fig. 13 Base-Emitter Saturation Voltage vs. Collector Current

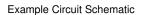
100

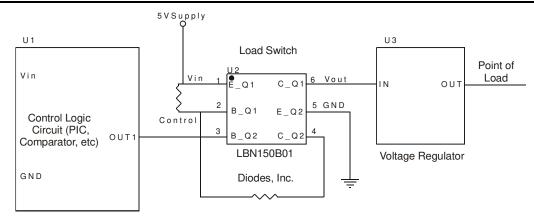
0

0.1

1

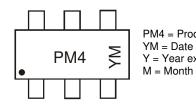

5 of 7 www.diodes.com


1,000


Application Details

PNP Transistor and NPN Transistor integrated as one in LBN150B01 can be used as a discrete entity for general purpose applications or as a part of a circuit to function as a Load Switch. When it is used as the latter as shown in Example Circuit Schematic, various input voltage sources can be used as long as they do not exceed the maximum rating of the device. These devices are designed to deliver continuous output load current up to maximum of 150 mA. The use of the NPN as a switch eliminates the need for higher current required to overcome the gate charge in the event an N-MOSFET is used. Care must be taken for higher levels of dissipation while designing for higher load conditions. These devices provide power on demand and also consume less space. It mainly helps in optimizing power usage, thereby conserving battery life in a controlled load system like portable battery powered applications. (Please see Figure below for one example of typical application circuit used in conjunction with a voltage regulator as a part of power management system).

Typical Application Circuit

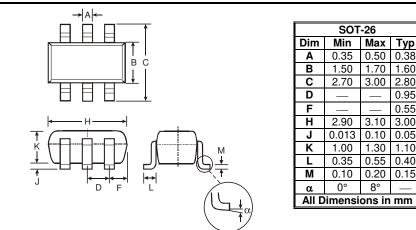


Ordering Information (Note 5)

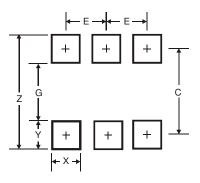
Device	Marking Code	Packaging	Shipping
LBN150B01-7	PM4	SOT-26	3000/Tape & Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information



PM4 = Product Type Marking Code YM = Date Code Marking Y = Year ex: T = 2006 M = Month ex: 9 = September


Date Code Key												
Year	2000	6	2007		2008	20	09	2010		2011	2	2012
Code	Т		U		V	V	V	Х		Y		Z
Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	Ν	D

Package Outline Dimensions

Suggested Pad Layout

Dimensions	Value (in mm)
Z	3.20
G	1.60
Х	0.55
Y	0.80
С	2.40
E	0.95

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.