: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Panasonic ideas for life

ELECTRONIC COUNTER (with pre-scaling function)

LC4H-S
 Counters

UL File No.: E122222

C-UL File No.: E122222
${ }^{\text {ch }} \mathrm{N}_{\mathrm{Ls}} \mathrm{C} \in$

Features

1. Bright and Easy-to-Read Display

A brand new bright 2-color backlight LCD display. The easy-to-read screen in any location makes checking and setting procedures a cinch.

2. Easy to use, simple operation, simple settings

- Operation modes (input/output modes) can be set easily, using DIP switches on the side panel.
- Values can be set easily, using key switches on the front panel.

3. Pre-scaling function provided A pre-scaling function enables conversion of lengths and volumes to any desired values, and displays the results.
4. Built-in power supply for highcapacitance sensor
An internal power supply drives a 12 VDC, 100 mA high-capacitance sensor. (AC power supply types only) Photoelectric switches, proximity switches and encoders can be directly connected.
5. Dual-path AC sensor can be connected.
6. Basic insulation between the power supply and the input terminal (only for the sensor type model with power supply)
There is no need for caution when connecting between terminals.

7. Conforms to IP66's Weather

Resistant Standards

The water-proof panel keeps out water and dirt for reliable operation even in poor environments.

8. 4-digit or 6-digit display

Two sizes of displays are offered for you to choose the one that suits your needs.

9. Screw terminal and Pin Type are Both Standard Options

The two terminal types are standard options to support either front panel installation or embedded installation.
10. Compliant with UL, c-UL and CE. 11. Low Price

All this at an affordable price to provide you with unmatched cost performance.

RoHS Directive compatibility information http://www.nais-e.com/

Product types

Digit	Count speed	Operation mode	Output	Operation voltage	Power for sensor	Terminal	Part No.
4	$30 \mathrm{~Hz} / 5 \mathrm{KHz}$ switchable	- Maintain output/hold count - Maintain output/over count I - Maintain output/over count II - One shot/over count - One shot/recount I - One shot/recount II - One shot/hold count (7 modes)	Relay	100 to 240 V AC	12 V DC 100mA	11 pins	LC4H-PS-R4-AC240V
						Screw terminal	LC4H-PS-R4-AC240VS
				$\begin{gathered} 12 \text { to } 24 \mathrm{~V} \text { DC } \\ / 24 \mathrm{~V} \text { AC } \end{gathered}$	None	11 pins	LC4H-S-R4-24V
						Screw terminal	LC4H-S-R4-24VS
			Transistor	$\begin{gathered} 12 \text { to } 24 \mathrm{~V} \mathrm{DC} \\ / 24 \mathrm{~V} \mathrm{AC} \end{gathered}$	None	11 pins	LC4H-S-T4-24V
						Screw terminal	LC4H-S-T4-24VS
6			Relay	100 to 24 V AC	12 V DC 100mA	11 pins	LC4H-PS-R6-AC240V
						Screw terminal	LC4H-PS-R6-AC240VS
				$\begin{gathered} 12 \text { to } 24 \text { V DC } \\ / 24 \vee \mathrm{AC} \end{gathered}$	None	11 pins	LC4H-S-R6-24V
						Screw terminal	LC4H-S-R6-24VS
			Transistor	$\begin{gathered} 12 \text { to } 24 \mathrm{~V} \text { DC } \\ / 24 \mathrm{~V} \text { AC } \end{gathered}$	None	11 pins	LC4H-S-T6-24V
						Screw terminal	LC4H-S-T6-24VS

Notes) 1. Rubber packing (ATC18002) and an mounting frame (AT8-DA4) are included.
2. 100 to 240 VAC Tr outputs (11-pin terminal, screw-tightening terminal) types are also supported.

Part names

- 4-digit display type

-6-digit display type

Specifications

Applicable standard

Safety standard	EN61812-1	Pollution Degree 2/Overvoltage Category II
EMC	(EMI)EN61000-6-4 Radiation interference electric field strength Noise terminal voltage (EMS)EN61000-6-2 Static discharge immunity RF electromagnetic field immunity EFT/B immunity Surge immunity Conductivity noise immunity Power frequency magnetic field immunity Voltage dip/Instantaneous stop/Voltage fluctuation immunity	EN55011 Group1 ClassA EN55011 Group1 ClassA EN61000-4-2 4 kV contact 8 kV air EN61000-4-3 $10 \mathrm{~V} / \mathrm{m}$ AM modulation (80 MHz to 1 GHz) $10 \mathrm{~V} / \mathrm{m}$ pulse modulation (895 MHz to 905 MHz) EN61000-4-4 2 kV (power supply line) 1 kV (signal line) EN61000-4-5 1 kV (power line) EN61000-4-6 $10 \mathrm{~V} / \mathrm{m}$ AM modulation (0.15 MHz to 80 MHz) EN61000-4-8 $30 \mathrm{~A} / \mathrm{m}(50 \mathrm{~Hz})$ EN61000-4-11 $10 \mathrm{~ms}, 30 \%$ (rated voltage) $100 \mathrm{~ms}, 60 \%$ (rated voltage) $1,000 \mathrm{~ms}, 60 \%$ (rated voltage) $5,000 \mathrm{~ms}, 95 \%$ (rated voltage)

Pin type (Flush mount/Surface mount)

Screw terminal type: M3.5 (Flush mount)

(* 6-digit display type has the same dimensions.)

- Dimensions for flush mounting (with adapter installed)

Screw terminal type

Pin type

- Dimensions for front panel installations

- Installation panel cut-out dimensions

The standard panel cut-out dimensions are shown below. Use the mounting frame (AT8-DA4) and rubber gasket (ATC18002).

- For connected installations

When n units are attached in a continuous series, the dimension of (A) is.

$$
A=(48 \times n-2.5)^{-0.6}
$$

Note 1: The installation panel thickness should be between 1 and 5 mm .039 and .197 inch.
Note 2: For connected installations, the waterproofing ability between the unit and installation panel is lost.

LC4H-S

Terminal layouts and Wiring diagrams

- Pin type

- Screw terminal type

Transistor output type

Transistor output type

* With power supply for sensor

Relay output type

Transistor output type

* With power supply for sensor

Relay output type

Transistor output type

Note) For connecting the output leads of the transistor output type, refer to 5) Transistor output on page 141.

Setting the operation mode and counter

Setting procedure 1) Setting the operation mode (input mode and output mode)

 Set the input and output modes with the DIP switches on the side of the counter.DIP switches Table 1: Setting the output mode

	Item	DIP switch		DIP switch No.			Output mode
		OFF	ON	1	2	3	
1	Output mode	Refer to table 1		ON	ON	ON	SHOT-A
2				OFF	OFF	OFF	SHOT-B
3				ON	OFF	OFF	SHOT-C
4	Minimum reset input signal width	20 ms	1 ms	OFF	ON	OFF	SHOT-D
5	Maximum counter setting	30 Hz	5 kHz	ON	ON	OFF	HOLD-A
6	Input mode	Refer to table 2		OFF	OFF	ON	HOLD-B
7				ON	OFF	ON	HOLD-C
8				OFF	ON	ON	- (See note 1)

Table 2: Setting the input mode

DIP switch No.			Input mode	
6	7	8		
ON	ON	ON	Addition input	
OFF	OFF	OFF	Subtraction input	
ON	OFF	OFF	Directive input	
OFF	ON	OFF	Independent input	
ON	ON	OFF	Phase input	
OFF	OFF	ON	- (See note 1)	
ON	OFF	ON	- (See note 1)	
OFF	ON	ON	- (See note 1)	

Notes:1) The counter and set value displays will display DIP Err
2) Set the DIP switches before installing the counter on the panel.
3) When the DIP SW setting is changed, turn off the power once.
4) The DIP switches are set as ON before shipping.

Setting procedure 2) Setting the set value

Set the set value with the UP and DOWN keys on the front of the counter.

Front display section

- 4-digit display type
(1) Counter display
(2) Set value display
(3) Controlled output indicator
(4) Reset indicator
(5) Lock indicator
(6) UP keys

Changes the corresponding digit of the set value in the addition direction (upwards)

-6-digit display type

(1) Counter display
(2) Set value display
(3) Controlled output indicator
(4) Reset indicator
(5) Lock indicator
(7) DOWN keys

Changes the corresponding digit of the set value in the subtraction direction (downwards)
(8) RESET switch

Resets the counting value and the output
(9) SET/LOCK switch

This is used to handle pre-scaling values, one-shot times, decimal point position settings, and key lock operations (to disable Up key, Down key, and Reset key operations).
(6) UP keys

Changes the corresponding digit of the set value in the addition direction (upwards)
(7) RESET switch

Resets the counting value and the output
(8) SET/LOCK switch

This is used to handle pre-scaling values, one-shot times, decimal point position settings, and key lock operations (to disable Up key, Down key, and Reset key operations).

Setting procedure 3) Setting the input mode

The input mode is set using the key switch in the [Display] section on the front of the counter.

- Decimal point position setting mode
(1) Holding down the [SET/LOCK] key, press the key for the second digit to access the decimal point position setting mode.

(2) When the setting mode has been accessed, release the [SET/LOCK] key.
(3) The decimal point is set using the [UP] and [DOWN] keys to specify the 2nd, 3rd, and 4th digits (this applies only to 4-digit models). (The 1st digit is set using the [UP] key or [DOWN] key in settings where there is no decimal point (this applies only to 4-digit models).)

Example) 6-digit type
Example shows 2nd digit displayed using [UP] key
(4) Press the [RESET] key to set the displayed decimal point position and return to normal operation.

- Setting the pre-scaling value

(1) Holding down the [SET/LOCK] key, press the key for the first digit to access the pre-scaling value setting mode.

Example) 4-digit type

Example) 6-digit type

Pre-scaling value setting mode displayed
(Example shows default values displayed)
(2) When the setting mode has been accessed, release the [SET/LOCK] key.
(3) Use the [UP] or [DOWN] key to set the pre-scaling value (this applies only to 4-digit models).

Select either: 0.001 to 9.999 (4-digit) or 0.001 to 99.999 (6-digit)
(4) Press the [RESET] key to set the displayed pre-scaling value and return to normal operation.

- Setting the one-shot output time

(1) Holding down the [SET/LOCK] key, press the key for the third digit to access the one-shot output time setting mode.

Example) 6-digit type
One-shot output time setting mode displayed
(Example shows default value displayed)
(2) When the setting mode has been accessed, release the [SET/LOCK] key.
(3) Each time the 1st-digit [UP] key is pressed, the one-shot output time changes in the following sequence, moving to the right:

$$
\rightarrow 1 \mathrm{~s} \rightarrow 0.5 \mathrm{~s} \rightarrow 0.2 \mathrm{~s} \rightarrow 0.1 \mathrm{~s} \rightarrow 0.05 \mathrm{~s} \rightarrow 0.01 \mathrm{~s} \square
$$

(With a 4-digit type, the [DOWN] key can also be used to move to the left.)
(4) Press the [RESET] key to set the displayed one-shot output time and return to normal operation.

Changing the set value

1. It is possible to change the set value with the up and down keys (4digit type only) even during counting. However, be aware of the following points.
1) If the set value is changed to less than the count value with counting set to the addition direction, counting will continue until it reaches full scale (9999 with the 4-digit type and 999999 with the 6 -digit type), returns to zero, and then reaches the new set value. If the set value is changed to a value above the count value, counting will continue until the count value reaches the new set value.
2) Suppose that thew counter is preset to count down. Whether a preset countdown value is smaller or larger than the count value, the counter counts down to "0 (zero)".
2. If the set value is changed to " 0 ," the unit will not complete count-up. It starts counting up when the counting value comes to " 0 (zero)" again.
1) Up-count (addition) input

When counting is set to the addition direction, counting will continue until full scale is reached (9999 with the 4-digit type and 999999 with the 6 -digit type), return to zero, and then complete countup.
2) Down-count (subtraction) input When counting is set to the subtraction direction, counting will continue until full scale is reached (-999 with the 4-digit type and -99999 with the 6-digit type), and then the display will change to 0000 with the 4 -digit type and 000000 with the 6 -digit type. The counting value does not become " 0 (zero)" and so the counter does not count up.
3) Directive, independent, and phase inputs
The counting value is counted up or down to any number other than " 0 " once. When it comes to " 0 (zero)" again, the counter starts counting up.

CAUTIONS FOR USE

For more information regarding the cautions for use of LC4H series counter, refer to page 140 "PRECAUTIONS IN USING THE LC4H SERIES".

Operation mode

1. Input mode

For the input mode, you can choose one of the following five modes

- Addition	UP
- - Subtraction	DOWN
- Directive	DIR
- Independent	IND
- Phase	PHASE

Input mode	Operation	*Minimum input signal width $30 \mathrm{~Hz}: 16.7 \mathrm{~ms} ; 5 \mathrm{kHz}$: 0.1 ms
Addition $\begin{array}{\|c\|} \hline \text { UP } \\ \hline \end{array}$	IN1 or IN2 works as an input block (gate) for the other input.	- Example where IN1 is the counting input and IN2 is the input block (gate). IN1 IN2
		Counting (addition)
Subtraction DOWN		- Example where IN2 is the counting input and IN1 is the input block (gate). * "A" must be more than the minimum input signal width.
Directive \square DIR	IN1 is the counting input and IN2 is the addition or subtraction directive input. IN2 adds at L level and subtracts at H level.	* " A " must be more than the minimum input signal width.
Independent \square	IN1 is addition input and IN2 is subtraction input.	* IN1 and IN2 are completely independent, so there is no restriction on signal timing.
$\begin{aligned} & \text { Phase } \\ & \text { PHASE } \end{aligned}$	Addition when the IN1 phase advances beyond IN2, and subtraction when the IN2 phase advances beyond IN1.	* "B" must be more than the minimum input signal width.

LC4H-S

2. Output mode

For the output mode, you can choose one of the following seven modes

	- Maintain output/hold count
- MOLD-A	
- Maintain output/over count I	HOLD-B
- Maintain output/over count II	HOLD-C
- One shot/over count	SHOT-A
- One shot/recount I	SHOT-B
- One shot/recount II	SHOT-C
- One shot/hold count	SHOT-D

All Rights Reserved © COPYRIGHT Matsushita Electric Works, Ltd.

Input connections

- Signal input type

1) Open collector

2) Contact input

Input 1, input 2, and reset input specifications

- Impedance during short-circuit: $1 \mathrm{k} \Omega$ max.
(At 0Ω, the outflow current is approximately 12 mA .)
- Residual voltage during short-circuit: 2 V max.
- Impedance when released: $100 \mathrm{k} \Omega \mathrm{min}$.
- Max. applied voltage: 40 VDC max.
* There is no 12 V DC with $12-24 \mathrm{~V}$ DC/24 V AC types.

5) For a dual-line sensor

Dual-line sensor specifications

- Leakage current: 1.5 mA max.
- Breaker capacitance: 5 mA min.
- Residual voltage: 3.0 V max.
- Usable voltage: Runs on 10 VDC
* If a dual-line sensor is connected to a 12-24 VDC/24 VAC type, 24 VDC (21.6 to 26.4 VDC) and 24 VAC (21.6 to 26.4 VAC) should be applied to the power supply voltage of the counter.

2) For voltage output

3) For a rotary encoder

Lock input specifications

- Impedance during short-circuit: $1 \mathrm{k} \Omega$ max.
(At 0Ω, the outflow current is approximately 1.5 mA .)
- Residual voltage during short-circuit: 2 V max.
- Impedance when released: $100 \mathrm{k} \Omega \mathrm{min}$.
- Max. applied voltage: 40 DVC max.
- The contact relay should be one which can open/close 5 V , 1.5 mA .

What is the prescale function?

The prescale function converts the count into an actual value (amount) and displays it.

Example

For a device that outputs 500 pulses when 1 m has been fed:

1. Set decimal position to the last 3rd place.
2. Set the prescale value to $0.002(1 / 500)$.

