: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LC72131K, LC72131KMA

PLL Frequency Synthesizer for Tuners in Radio/Cassette Players

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

PDIP22 / DIP22S (300 mil)
[LC72131K]

SOIC20W / MFP20J (300 mil) [LC72131KMA]

[^0]
ORDERING INFORMATION

See detailed ordering and shipping information on page 23 of this data sheet.

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Pins	Conditions	Ratings	Unit
Supply voltage	$V_{\text {DD }}$ max	VDD		-0.3 to +7.0	V
Maximum input voltage	VIN1 max	CE, CL, DI, AIN		-0.3 to +7.0	V
	$V_{\text {IN } 2}$ max	XIN, FMIN, AMIN, IFIN		-0.3 to $\mathrm{VDD}^{+0.3}$	V
	$\mathrm{V}_{1 \times} 3$ max	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$		-0.3 to +15	V
Maximum output voltage	$\mathrm{V}_{\mathrm{O}} 1$ max	DO		-0.3 to +7.0	V
	$\mathrm{V}_{\mathrm{O}} 2$ max	XOUT, PD		-0.3 to $\mathrm{VDD}^{+0.3}$	V
	$\mathrm{V}_{\mathrm{O}} 3$ max	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO}}, \overline{\mathrm{IO} 1}, \overline{\mathrm{IO} 2}$, AOUT		-0.3 to +15	V
Maximum output current	$\mathrm{l}^{1} 1$ max	$\overline{\mathrm{BO} 1}$		0 to 3.0	mA
	$\mathrm{l}_{0} 2$ max	DO, AOUT		0 to 6.0	mA
	$\mathrm{l}^{1} 3$ max	$\overline{\mathrm{BO} 2}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}$		0 to 10	mA
Allowable power dissipation	Pd max		$\begin{aligned} & \mathrm{Ta} \leq 85^{\circ} \mathrm{C} \\ & {[\mathrm{LC} 72131 \mathrm{~K}]} \end{aligned}$	350	mW
			$\mathrm{Ta} \leq 85^{\circ} \mathrm{C}$ [LC72131KMA]	180	mW
Operating temperature	Topr			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-55 to +125	${ }^{\circ} \mathrm{C}$

Note 1: Power pins VDD and $\mathrm{V}_{\text {SS }}$: Insert a capacitor with a capacitance of 2,000pF or higher between these pins when using the IC.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Allowable Operating Ranges at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{SS}=0 \mathrm{~V}$

Parameter	Symbol	Pins	Conditions	Ratings			unit
				min	typ	max	
Supply voltage	VDD	VDD		4.5		5.5	V
Input high-level voltage	$\mathrm{V}_{\mathrm{IH}}{ }^{1}$	CE, CL, DI		$0.7 \mathrm{~V}_{\mathrm{DD}}$		6.5	V
	$\mathrm{V}_{\mathrm{IH}}{ }^{2}$	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$		13	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}$	CE, CL, DI, $\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$		0		0.3 V DD	V
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	DO		0		6.5	V
	$\mathrm{V}_{\mathrm{O}}{ }^{2}$	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{BO}}, \overline{\mathrm{IO} 2}$, AOUT		0		13	V
Input frequency	flN1	XIN	$\mathrm{V}_{\text {IN }}{ }^{1}$	1.0		8.0	MHz
	fin2	FMIN	$\mathrm{V}_{\text {IN }}$	10		160	MHz
	fin3	AMIN	$\mathrm{V}_{\text {IN }}$	2.0		40	MHz
	fin4	AMIN	$\mathrm{V}_{\text {IN }}{ }^{4}$	0.5		10	MHz
	fin5	IFIN	$\mathrm{V}_{\text {IN }}{ }^{\text {a }}$	0.4		12	MHz
Supported crystals	X'tal	XIN, XOUT	Note 1	4.0		8.0	MHz
Input amplitude High-level clock pulse width $\mathrm{t} \varphi \mathrm{H}$ CL [Figure 1] [Figure 2] 160 ns Low-level clock pulse width	$\mathrm{V}_{\text {IN }} 1$	XIN	flN1	400		1500	mVrms
	$\mathrm{V}_{\text {IN }} \mathrm{V}^{2-1}$	FMIN	$\mathrm{f}=10$ to 130 MHz	40		1500	mV rms
	$\mathrm{V}_{\text {IN }} \mathrm{V}^{2-2}$	FMIN	$\mathrm{f}=130$ to 160 MHz	70		1500	mVrms
	$\mathrm{V}_{1}{ }^{3}$	AMIN	fin3	40		1500	mVrms
	$\mathrm{V}_{\mathrm{IN}}{ }^{4}$	AMIN	fin4	40		1500	mV rms
	$\mathrm{V}_{\text {IN }} 5$	IFIN	flN5 (IFS=1)	40		1500	mV rms
	$\mathrm{V}_{\text {IN }}{ }^{6}$	IFIN	flN5 (IFS=0)	70		1500	mV rms
Data setup time	tSU	DI, CL	Note 2	0.75			$\mu \mathrm{s}$
Data hold time	tHD	DI, CL	Note 2	0.75			$\mu \mathrm{S}$
Clock low-level time	tCL	CL	Note 2	0.75			$\mu \mathrm{S}$
Clock high-level time	tCH	CL	Note 2	0.75			$\mu \mathrm{S}$
CE wait time	tEL	CE, CL	Note 2	0.75			$\mu \mathrm{S}$
CE setup time	tES	CE, CL	Note 2	0.75			$\mu \mathrm{S}$
CE hold time	tEH	CE, CL	Note 2	0.75			$\mu \mathrm{S}$
Data latch change time	tLC		Note 2			0.75	$\mu \mathrm{S}$
Data output time	tDC	DO, CL	Differs depending on the value of the pull-up resistor. Note 2				
	tDH	DO, CE				0.35	$\mu \mathrm{S}$

LC72131K, LC72131KMA

Note 1: Recommended crystal oscillator Cl values:
$\mathrm{Cl} \leq 120 \Omega$ (For a 4.5 MHz crystal)
$\mathrm{Cl} \leq 70 \Omega$ (For a 7.2 MHz crystal)
The characteristics of the oscillation circuit depends on the printed circuit board, circuit constants, and other factors. Therefore we recommend consulting with the anufacturer of the crystal for evaluation and reliability.
Note 2: Refer to "Serial Data Timing".
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics in the Allowable Operating Ranges

Parameter	Symbol	Pins	Conditions	Ratings			unit
				min	typ	max	
Built-in feedback resistance	Rf1	XIN			1.0		$\mathrm{M} \Omega$
	Rf2	FMIN			500		k Ω
	Rf3	AMIN			500		$\mathrm{k} \Omega$
	Rf4	IFIN			250		$\mathrm{k} \Omega$
Built-in pull-down resistor	Rpd1	FMIN			200		$\mathrm{k} \Omega$
	Rpd2	AMIN			200		$\mathrm{k} \Omega$
Hysteresis	VHYS	CE, CL, DI, $\overline{\mathrm{IO} 1}, \overline{\mathrm{IO} 2}$			$0.1 \mathrm{~V}_{\text {DD }}$		V
Output high-level voltage	V_{OH}	PD	$\mathrm{I} \mathrm{O}=1 \mathrm{~mA}$	$V_{D D}-0.1$			V
Output low-level voltage	VOL1	PD	$\mathrm{I} \mathrm{O}=1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	$\overline{\mathrm{BO} 1}$	$\mathrm{I}^{\mathrm{O}}=0.5 \mathrm{~mA}$			0.5	V
			$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{3}$	DO	$\mathrm{I}^{\mathrm{O}}=1 \mathrm{~mA}$			0.2	V
			$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}} 4$	$\overline{\mathrm{BO} 2}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}$	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			0.2	V
			$\mathrm{I}^{\mathrm{O}}=5 \mathrm{~mA}$			1.0	V
			$\mathrm{I} \mathrm{O}=8 \mathrm{~mA}$			1.6	V
	$\mathrm{V}_{\mathrm{OL}} 5$	AOUT	$\begin{aligned} & \mathrm{I} \mathrm{O}=1 \mathrm{~mA} \\ & \mathrm{AIN}=1.3 \mathrm{~V} \end{aligned}$			0.5	V
Input high-level current	$\mathrm{I}_{1 \mathrm{H}^{1}}$	CE, CL, DI	$\mathrm{V}_{\mathrm{I}}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	IIH^{2}	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}$	$\mathrm{V}_{\mathrm{I}}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	IIH^{3}	XIN	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	2.0		11	$\mu \mathrm{A}$
	${ }_{1 \mathrm{IH}^{4}}$	FMIN, AMIN	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	4.0		22	$\mu \mathrm{A}$
	${ }_{1 / \mathrm{H}}{ }^{\text {5 }}$	IFIN	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	8.0		44	$\mu \mathrm{A}$
	IIH^{6}	AIN	$\mathrm{V}_{\mathrm{I}}=6.5 \mathrm{~V}$			200	nA
Input low-level current	IIL1	CE, CL, DI	$\mathrm{V}_{1}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 2$	$\overline{\mathrm{IO} 1, ~ \overline{\mathrm{IO}} 2}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 3$	XIN	$\mathrm{V}_{1}=0 \mathrm{~V}$	2.0		11	$\mu \mathrm{A}$
	IIL 4	FMIN, AMIN	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	4.0		22	$\mu \mathrm{A}$
	IIL5	IFIN	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	8.0		44	$\mu \mathrm{A}$
	IIL6	AIN	$\mathrm{V}_{1}=0 \mathrm{~V}$			200	nA
Output off leakage current	IOFF1	$\begin{aligned} & \overline{\mathrm{BO} 1} \text { to } \overline{\mathrm{BO}}, \mathrm{AOUT}, \\ & \overline{\mathrm{IO} 1}, \overline{\mathrm{IO} 2} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	IOFF2	DO	$\mathrm{V}_{\mathrm{O}}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
High-level three-state off leakage current	IOFFH	PD	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$		0.01	200	nA
Low-level three-state off leakage current	IOFFL	PD	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		0.01	200	nA
Input capacitance	CIN	FMIN			6		pF
Current drain	lDD1	VDD	$\begin{aligned} & \hline \text { X'tal }=7.2 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN} 2}=130 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN}} 2=40 \mathrm{mVrms} \\ & \hline \end{aligned}$		5	10	mA
	${ }^{\prime} \mathrm{DD}^{2}$	VDD	PLL block stopped (PLL INHIBIT) X'tal oscillator operating (X'tal $=7.2 \mathrm{MHz}$)		0.5		mA
	IDD3	VDD	PLL block stopped X'tal oscillator operating			10	$\mu \mathrm{A}$

[^1]
Serial Data Timing

When stopped with CL low

When stopped with CL high

Package Dimensions

unit : mm
[LC72131K]
PDIP22 / DIP22S (300 mil)
CASE 646AV
ISSUE A

Package Dimensions

unit : mm
[LC72131KMA]
SOIC20W / MFP20J (300 mil)
CASE 751DE
ISSUE O
12.7 ± 0.3

LC72131K, LC72131KMA

Pin Assignments

Block Diagram

Pin Functions

Symbol	Pin No.		Type	Functions	Circuit configuration
	LC72131K	LC72131KMA			
$\begin{gathered} \text { XIN } \\ \text { XOUT } \end{gathered}$	$\begin{gathered} 1 \\ 22 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	X'tal OSC	Crystal resonator connection ($4.5 \mathrm{MHz} / 7.2 \mathrm{MHz}$)	
FMIN	16	14	Local oscillator signal input	FMIN is selected when the serial data input DVS bit is set to 1 . The input frequency range is from 10 to 160 MHz . The input signal passes through the internal divide-by-two prescaler and is input to the swallow counter. The divisor can be in the range 272 to 65535 . However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value.	
AMIN	15	13	Local oscillator signal input	AMIN is selected when the serial data input DVS bit is set to 0 . When the serial data input SNS bit is set to 1: - The input frequency range is 2 to 40 MHz . - The signal is directly input to the swallow counter. - The divisor can be in the range 272 to 65535 , and the divisor used will be the value set. When the serial data input SNS bit is set to 0 : - The input frequency range is 0.5 to 10 MHz . - The signal is directly input to a 12 -bit programmable divider. - The divisor can be in the range 4 to 4095 , and the divisor used will be the value set.	
CE	3	2	Chip enable	Set this pin high when inputting (DI) or outputting (DO) serial data.	$\square 50$
DI	4	3	Input data	Inputs serial data transferred from the controller to the LC72131K/KMA.	So
CL	5	4	Clock	Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	
DO	6	5	Output data	Outputs serial data transferred from the LC72131K/KMA to the controller. The content of the output data is determined by the serial data DOC0 to DOC2.	
V_{DD}	17	15	Power supply	The LC72131K/KMA power supply pin ($\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V) The power on reset circuit operates when power is first applied.	-
$\mathrm{V}_{\text {SS }}$	21	19	Ground	The LC72131K/KMA ground	-
$\overline{\mathrm{BO} 1}$ $\overline{\mathrm{BO} 2}$ $\overline{\mathrm{BO} 3}$ $\overline{\mathrm{BO} 4}$	$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	Output port	Dedicated output pins The output states are determined by $\overline{\mathrm{BO1}}$ to $\overline{\mathrm{BO4}}$ bits in the serial data. Data: 0=open, $1=$ low A time base signal $(8 \mathrm{~Hz})$ can be output from the $\overline{\mathrm{BO}} \mathrm{pin}$. (When the serial data TBC bit is set to 1.) Care is required when using the $\overline{\mathrm{BO1}}$ pin, since it has a higher on impedance that the other output ports (pins $\overline{\mathrm{BO} 2}$ to $\overline{\mathrm{BO} 4}$).	
$\overline{\overline{\mathrm{O} 1}}$	$\begin{aligned} & 11 \\ & 13 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	I/O port	I/O dual-use pins The direction (input or output) is determined by bits IOC1 and IOC2 in the serial data. Data: 0=input port, 1=output port When specified for use as input ports: The state of the input pin is transmitted to the controller over the DO pin. Input state: low=0 data value high=1 data value When specified for use as output ports: The output states are determined by the IO1 and IO2 bits in the serial data. Data: 0=open, 1=low These pins function as input pins following a power on reset.	

Continued on next page

Continued from preceding page.

Symbol			Type	Functions	Circuit configuration
	LC72131K	LC72131KMA			
PD	18	16	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level is output from the PD pin. Similarly, when that frequency is lower, a low level is output. The PD pin goes to the high impedance state when the frequencies match.	
AIN AOUT	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	LPF amplifier transistors	The n-channel MOS transistor used for the PLL active low-pass filter.	
IFIN	12	11	IF counter	Accepts an input in the frequency range 0.4 to 12 MHz . The input signal is directly transmitted to the IF counter. The result is output starting the MSB of the IF counter using the DO pin. Four measurement periods are supported: $4,8,32$, and 64 ms .	

DI Control Data (Serial Data Input) Structure

[1] IN1 mode
address

$\mathrm{DI} \leftarrow 0$| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[2] IN2 mode
address
DI

Control Data Functions

Continued on next page.

Continued from preceding page.

Continued on next page.

Continued from preceding page.

No.	Control block/data	Functions	Related data
(8)	Phase comparator control data DZ0, DZ1	- Controls the phase comparator dead zone. Dead zone width: DZA<DZB<DZC<DZD	
(9)	Clock time base TBC	Setting TBC to one causes an $8 \mathrm{~Hz}, 40 \%$ duty clock time base signal to be output from the $\overline{\mathrm{BO} 1}$ pin. (BO1 data is invalid in this mode.)	B01
(10)	Charge pump control data DLC	Forcibly controls the charge pump output. Note: If deadlock occurs due to the VCO control voltage (Vtune) going to zero and the VCO oscillator stopping, deadlock can be cleared by forcing the charge pump output to low and setting Vtune to V_{C}. (This is the deadlock clearing circuit.)	
(11)	IF counter control data IFS	This data must be set 1 in normal mode. IFS Though if this value is set to zero, the system enters input sensitivity degradation mode, and the sensitivity is reduced to 10 to 30 mVrms . * See the "IF Counter Operation" item for details.	
(12)	LSI test data TESTO to 2	$\left.\begin{array}{l}\text { LSI test data } \\ \text { TEST0 } \\ \text { TEST1 } \\ \text { TEST2 }\end{array}\right]$ These values must all be set to 0 . These test data are set to 0 automatically after the power-on reset.	
(13)	DNC	Don't care. This data must be set to 0 .	

DO Control Data (Serial Data Output) Structure

[3] OUT Mode

\longleftarrow Fist Data OUT

Control Data Functions

No.	Control block/data	Functions	Related data
(1)	I/O port data I2, I1	Latched from the pin states of the $\overline{\mathrm{IO} 1}$ and $\overline{\mathrm{IO} 2} \mathrm{I} / \mathrm{O}$ ports. These values follow the pin states regardless of the input or output setting. $\left.\begin{array}{l} 11 \leftarrow \overline{\mathrm{IO} 1} \text { pin state } \\ \mathrm{I} 2 \leftarrow \overline{\mathrm{O} 2} \text { pin state } \end{array}\right] \begin{aligned} & \text { High: } 1 \\ & \text { Low: } 0 \end{aligned}$	$\begin{aligned} & \text { IOC1 } \\ & \text { IOC2 } \end{aligned}$
(2)	PLL unlock data UL	Latched from the state of the unlock detection circuit. UL $\leftarrow 0$: Unlocked $\mathrm{UL} \leftarrow 1$: Locked or detection stopped mode	ULO UL1
(3)	IF counter binary counter C19 to C0	Latched from the value of the IF counter (20-bit binary counter). $\mathrm{C} 19 \leftarrow$ MSB of the binary counter $\mathrm{C} 0 \leftarrow$ LSB of the binary counter	CTE GTO GT1

Serial Data I/O Methods

The LC72131K/KMA inputs and outputs data using Our CCB (computer control bus) audio LSI serial bus format. This LSI adopts an 8-bit address format CCB.

LC72131K, LC72131KMA

1. Serial Data Input (IN1/IN2) tSU, tHD, $\mathrm{tES}, \mathrm{tEH} \geq 0.75 \mu \mathrm{~s}$ tLC $<0.75 \mu \mathrm{~s}$
(1) CL: Normal high

(2) CL: Normal low

2. Serial Data Output (OUT) $\mathrm{tSU}, \mathrm{tHD}, \mathrm{tEL}, \mathrm{tES}, \mathrm{tEH} \geq 0.75 \mu \mathrm{~s} \mathrm{tDC}, \mathrm{tDH}<0.35 \mu \mathrm{~s}$
(1) CL: Normal high

(2) CL: Normal low

Note: Since the DO pin is an N -channel open-drain pin, the time for the data to change (tDC and tDH) will differ depending on the value of the pull-up resistor and printed circuit board capacitance.

LC72131K, LC72131KMA

Programmable Divider Structure

	DVS	SNS	Input pin	Set divisor	Actual divisor: N	Input frequency range
(A)	1	$*$	FMIN	272 to 65535	Twice the set value	10 to 160 MHz
(B)	1	1	AMIN	272 to 65535	The set value	2 to 40 MHz
(C)	0	0	AMIN	4 to 4095	The set value	0.5 to 10 MHz

*: Don't care

Programmable Divider Calculation Examples

(1) FM, 50 kHz steps (DVS $=1$, SNS=*: FMIN selected)

FM RF=90.0MHz (IF $=+10.7 \mathrm{MHz})$
FM VCO $=100.7 \mathrm{MHz}$
PLL fref $=25 \mathrm{kHz}$ (R0 to R1=1, R2 to R3=0)
$100.7 \mathrm{MHz}($ FMVCO $) \div 25 \mathrm{kHz}$ (fref) $\div 2$ (FMIN: divide-by-two prescaler) $=2014 \rightarrow 07 \mathrm{DE}(\mathrm{HEX})$

(2) SW 5 kHz steps (DVS=0, SNS=1: AMIN high-speed side selected)

SW RF=21.75MHz (IF $=+450 \mathrm{kHz})$
SW VCO $=22.20 \mathrm{MHz}$
PLL fref $=5 \mathrm{kHz}(\mathrm{R} 0=\mathrm{R} 2=0, \mathrm{R} 1=\mathrm{R} 3=1)$
22.2 MHz (SW VCO) $\div 5 \mathrm{kHz}$ (fref) $=4440 \rightarrow 1158$ (HEX)

0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
O	$\bar{\square}$	N	๓	\pm	$\stackrel{1}{0}$	Q	人	∞	8	$\stackrel{\circ}{2}$	$\stackrel{\bar{i}}{\mathrm{a}}$	$\stackrel{N}{\grave{L}}$	$\frac{m}{\grave{a}}$	$\underset{i}{\pi}$	$\frac{10}{2}$	$\begin{aligned} & \infty \\ & \mathbf{~} \\ & \hline \end{aligned}$	$\stackrel{\infty}{2}$	$\underset{\sim}{\underset{\sim}{w}}$	∞	운	\bar{q}		$\stackrel{\sim}{\square}$

(3) MW 10kHz steps (DVS=0, SNS=0: AMIN low-speed side selected)

MW RF $=1000 \mathrm{kHz}(\mathrm{IF}=+450 \mathrm{kHz})$
MW VCO $=1450 \mathrm{kHz}$
PLL fref $=10 \mathrm{kHz}$ (R 0 to $\mathrm{R} 2=0, \mathrm{R} 3=1$)
1450 kHz (MW VCO) $\div 10 \mathrm{kHz}$ (fref) $=145 \rightarrow 091$ (HEX)

LC72131K, LC72131KMA

IF Counter Structure

The LC72131K/KMA IF counter is a 20-bit binary counter. The result, i.e., the counter's msb, can be read serially from the DO pin.

GT1	GT0	Measurement time	
		Measurement time (GT) (ms)	Wait time (twu) (ms)
0	0	4	3 to 4
0	1	8	3 to 4
1	0	32	7 to 8
1	1	64	7 to 8

The IF frequency (Fc) is measured by determining how many pulses were input to an IF counter in a specified measurement period, GT.

$$
\mathrm{Fc}=\frac{\mathrm{C}}{\mathrm{GT}}(\mathrm{C}=\mathrm{Fc} \times \mathrm{GT}) \quad \mathrm{C}: \text { Count value (number of pulses) }
$$

IF Counter Frequency Calculation Examples

(1) When the measurement period (GT) is 32 ms , the count (C) is 53980 hexadecimal (342400 decimal):

IF frequency $(\mathrm{Fc})=342400 \div 32 \mathrm{~ms}=10.7 \mathrm{MHz}$

(2) When the measurement period (GT) is 8 ms , the count (C) is E10 hexadecimal (3600 decimal):

IF frequency $(\mathrm{Fc})=3600 \div 8 \mathrm{~ms}=450 \mathrm{kHz}$

IF Counter Operation

Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0 . The IF count is started by changing the CTE bit in the serial data from 0 to 1 . The serial data is latched by the LC72131K/KMA when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF counter at the end of the measurement period must be read out during the period that CTE is 1 . This is because the IF counter is reset when CTE is set to 0 .

Note: When operating the IF counter, the control microprocessor must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.

IFIN minimum input sensitivity standard f [MHz]

IFS	$0.4 \leq f<0.5$	$0.5 \leq f<8$	$8 \leq f \leq 12$
1: Normal mode	$40 \mathrm{mVrms}(0.1$ to 3 mVrms$)$	40 mVrms	$40 \mathrm{mVrms}(1$ to 10 mVrms$)$
0 : Degradation mode	$70 \mathrm{mVrms}(10$ to 15 mVrms$)$	70 mVrms	$70 \mathrm{mVrms}(30$ to 40 mVrms$)$

Note: Values in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

Unlock Detection Determination Timing
Unlocked state detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

Figure 1 Unlocked State Detection Timing
For example, if fref is 1 kHz , i.e., the period is 1 ms , after changing the divisor N , the system must wait at least 2 ms before checking for the unlocked state.

Figure 2 Circuit Structure

Figure 3

Unlocked State Data Output Using Serial Data Output

In the LC72131K/KMA, once an unlocked state occurs, the unlocked state serial data (UL) will not be reset until a data input (or output) operation is performed. At the data output (1) point in Figure 3, although the VCO frequency has stabilized (locked), since no data output has been performed since the divisor N was changed the unlocked state data remains in the unlocked state. As a result, even though the frequency has stabilized (locked), the system remains (from the standpoint of the data) in the unlocked state.
Therefore, the unlocked state data acquired at data output (1), which occurs immediately after the divisor N was changed, should be treated as a dummy data output and ignored. The second data output (data output (2)) and following outputs are valid data.
<Locked State Determination Flowchart Example>

Wait for at least two reference
frequency periods.

Valid data can be output at
intervals of one reference
frequency period or longer.
*: Locking state determination is more reliable if it is based on reading valid output data several times

LC72131K, LC72131KMA

Directly Outputting Unlocked State Data from the DO Pin (Set by the DO pin control data)
Since the unlocked state (high=locked, low=unlocked) is output directly from the DO pin, the dummy data processing described in section 3 above is not required. After changing the divisor N , the locking state can be checked after waiting at least two reference frequency periods.

Clock Time Base Usage Notes

The pull-up resistor used on the clock time base output pin ($\overline{\mathrm{BO} 1}$) should be at least $100 \mathrm{k} \Omega$. This is to prevent degrading the VCO C/N characteristics when a loop filter is formed using the built-in low-pass filter transistor. Since the clock time base output pin and the low-pass filter have a common ground internal to the IC, it is necessary to minimize the time base output pin current fluctuations and to suppress their influence on the low-pass filter. Also, to prevent chattering we recommend using a Schmitt input at the controller (microprocessor) that receives this signal.

Other Items

[1] Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	$--0 s$
0	1	DZB	ON/ON	-0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD	OFF/OFF	++0 s

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.
The following problems may occur in the ON/ON state.
(1) Side band generation due to reference frequency leakage
(2) Side band generation due to both the correction pulse envelope and low frequency leakage

Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C / N ratio can be difficult. On the other hand, although it is easy to acquire a high C / N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/N ratio in excess of 90 to 100 dB , or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

The phase comparator compares fp to a reference frequency (fr) as shown in Figure 1. Although the characteristics of this circuit (see Figure 2) are such that the output voltage is proportional to the phase difference \emptyset (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S / N ratio.
However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularlypriced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

[2] Notes on the FMIN, AMIN, and IFIN Pins
Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100 pF is desirable. In particular, if a capacitance of 1000 pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.
[3] Notes on IF Counting \rightarrow SD must be used in conjunction with the IF counting time
When using IF counting, always implement IF counting by having the microprocessor determine the presence of the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in which auto-searches are performed with only IF counting are not recommended, since they can cause false detection where there is no signal due to overflow from the IF counter buffer.
[4] DO Pin Usage Techniques
In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.

Pin States After the Power ON Reset [LC72131K]

LC72131K, LC72131KMA

Pin States After the Power ON Reset [LC72131KMA]

Application System Example [LC72131K]

LC72131K, LC72131KMA

Application System Example [LC72131KMA]

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC72131K-E	PDIP22 / DIP22S (300 mil) (Pb-Free)	$-/-$
LC72131KMA-AE	SOIC20W / MFP20J (300 mil) (Pb-Free)	2000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

[^2]
[^0]: * Computer Control Bus (CCB) is an ON Semiconductor's original bus format and the bus addresses are controlled by ON Semiconductor.

[^1]: Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

[^2]: ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

