imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Two-Channel Electronic Volume Control System

ON

ON Semiconductor®

www.onsemi.com

SOIC-10 NB

Overview

The LC75344MD is a two-channel electronic volume control IC that is controlled by data input over a serial interface.

Functions

- Volume control: 0 dB to −50 dB in 1 dB steps, −52 dB to −78 dB in 2 dB steps, and −∞, for a total of 66 positions.
 - A balance function can be implemented by controlling the left and right channels independently.

Features

- Built-in buffer amplifiers minimize the number of external components required.
- Fabricated in a silicon gate CMOS process to minimize the switching noise generated by internal switches.
- Built-in reference voltage generation circuit for the analog ground level.
- All settings are controlled by data input over a serial interface that conforms to the CCB* specifications.

Specifications

Absolute Maximum Ratings at Ta = 25°C, V_{SS} = 0 V

	-			
Parameter	Symbol	Conditions	Ratings	unit
Maximum supply voltage	V _{DD} max	V _{DD}	11	V
		CE, CL, DI	-0.3 to +11.0	
Input voltage	V _{IN} max	LIN, RIN	V _{SS} –0.3 to V _{DD} +0.3	V
Output wells as	V _{OUT} 1	OSC	–0.3 to V _{DD} +0.3	
Output voltage	V _{OUT} 2	S1 to S87, COM1 to COM4, P1 to P8	–0.3 to V _{LCD} +0.3	V
Allowable power dissipation	Pd max	Ta ≤ 75°C *1: When mounted on a PCB.	300	mW
Operating temperature	Topr		-30 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

*1: Printed Circuit Board size : 76.1 x 114.3 x 1.6 tmm : Glass Epoxy Board

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

* Computer Control Bus (CCB) is an ON Semiconductor's original bus format and the bus addresses are controlled by ON Semiconductor.

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

Allowable Operating Ranges at Ta = -30 to $+75^{\circ}C$, $V_{SS} = 0V$

Deveneter	Currente el	Dia Marra	Conditions		Ratings		Unit	
Parameter	Symbol	Pin Name	Conditions	min	typ	max	Unit	
Supply voltage	V _{DD}	V _{DD}		4.5		10	V	
High-level input voltage	VIH	CL, DI, CE		2.0		10	V	
	VIL	CL, DI, CE	$7.5 \le V_{DD} \le 10$	V _{SS}		0.8	V	
Low-level input voltage		CL, DI, CE	$4.5 \le V_{DD} \le 7.5$	V _{SS}		0.3	V	
Input voltage amplitude	VIN	LIN, RIN		V _{SS}		V _{DD}	Vp-p	
Input pulse width	tøW	CL		1			μs	
Setup time	tsetup	CL, DI, CE		1			μS	
Hold time	thold	CL, DI, CE		1			μS	
Operating frequency	fopg	CL				500	kHz	

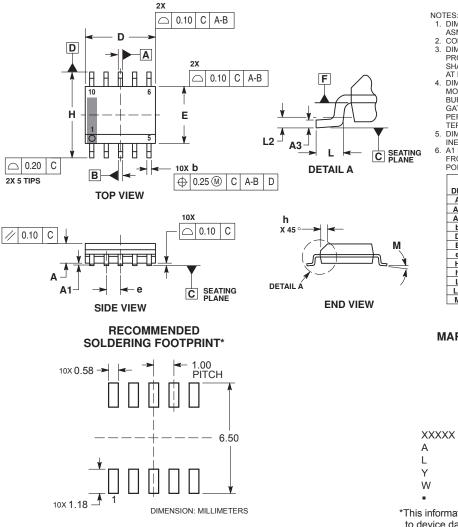
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characterristics at Ta = 25° C, V_{DD} = 9V, V_{SS} = 0V

Parameter	Svmbol	Din Nomo	Pin Name Conditions		Ratings		Unit
Farameter	Symbol	Fill Name		min	typ	max	Unit
Input resistance	Rin	LIN, RIN			50		kΩ

Overall Characteristics

Parameter	Cumbol	Conditions		Ratings		Unit	
Parameter	Symbol	Conditions	min	typ	max	Unit	
Total barmania distantian	TUD	V _{IN} = 1 Vrms, f = 1 kHz With all settings flat overall		0.002	0.01	%	
Total harmonic distortion	THD	V _{IN} = 1 Vrms, f = 20 kHz With all settings flat overall		0.003		%	
Crosstalk	СТ	V_{IN} = 1 Vrms, f = 1 kHz, Rg = 1 k Ω With all settings flat overall	90			dB	
Output noise voltage	V _N	80 kHz L.P.F, Rg = 1 kΩ With all settings flat overall		6.0		μV	
Maximum attenuation	Vomin	V _{IN} = 1 Vrms, f = 1 kHz With all settings flat overall		-92		dB	
Current drain	IDD	VDD – VSS = +9 V		12		mA	
High-level input current	IIH	CL, DI, CE: V _{IN} = 10 V, V _{DD} = 10 V			10	μA	
Low-level input current	IIL	CL, DI, CE: V _{IN} = 0 V, V _{DD} = 10 V	-10			μA	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Package Dimensions

unit : mm

SOIC-10 NB

CASE 751BQ **ISSUE B**

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

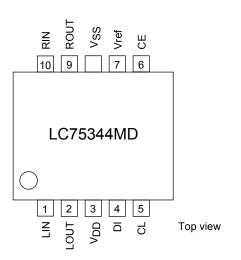
NOTES:
DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS.
DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10mm TOTAL IN EXCESS OF 'b' AT MAXIMUM MATERIAL CONDITION.
DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15mm PER SIDE. DIMENSIONS D AND E ARE DE-TERMINED AT DATUM F.
DIMENSIONS A AND B ARE TO BE DETERM-INED AT DATUM F.
A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

	MILLIN	IETERS	
DIM	MIN	MAX	
Α	1.25	1.75	
A1	0.10	0.25	
A3	0.17	0.25	
b	0.31	0.51	
D	4.80	5.00	
Е	3.80	4.00	
е	1.00) BSC	
Н	5.80	6.20	
h	0.37	7 REF	
L	0.40	0.80	
L2		5 BSC	
М	0°	8 °	

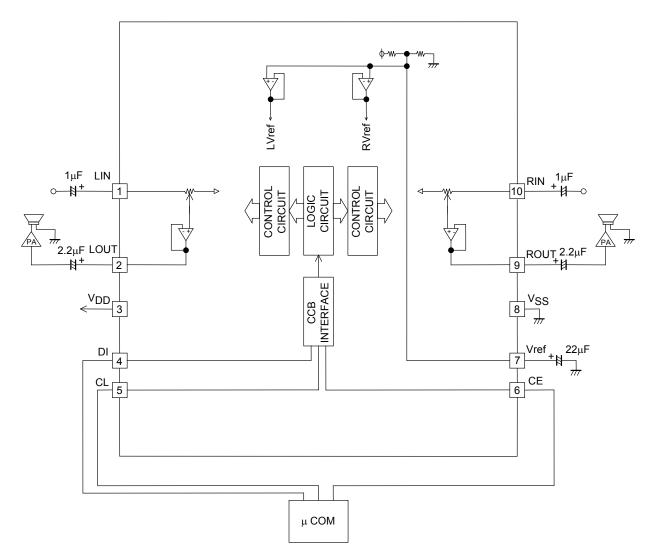
GENERIC **MARKING DIAGRAM***

0		<u>f</u> xx			
		AL			2
	0				
1	Ħ	H	H	H	Ή

XXXXX = Specific Device Code

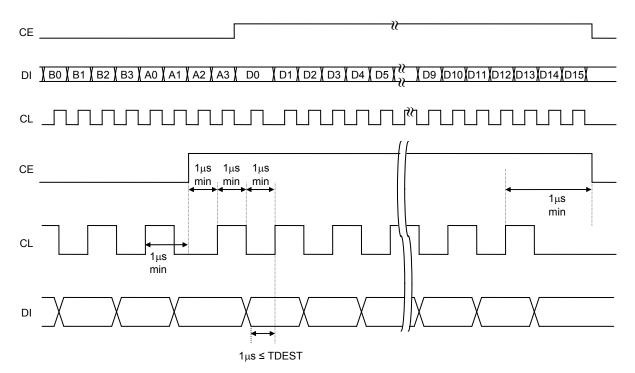

- = Assembly Location
- = Wafer Lot
- = Year

1


- = Work Week
- = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

Pin Arrangement



Equivalent Circuit

Control System Timing and Data Format

The LC75344MD is controlled by inputting the stipulated data serially to the CL, DI, and CE pins. The data consists of a total of 24 bits, of which 8 bits are the address and 16 bits are the data.

• Address Code (B0 to A3)

The data has an 8-bit address field, and conforms to the CCB serial bus specifications.

Address code	B0	B1	B2	B3	A0	A1	A2	A3	
(LSB)	0	0	0	1	0	0	0	1	(88HEX)

Control Code Allocations

Volume control

D0	D1	D2	D3	D4	D5	D6	D7	Operatio
0	0	0	0	0	0	0	0	0dB
1	0	0	0	0	0	0	0	–1dB
0	1	0	0	0	0	0	0	–2dB
1	1	0	0	0	0	0	0	–3dB
0	0	1	0	0	0	0	0	–4dB
1	0	1	0	0	0	0	0	–5dB
0	1	1	0	0	0	0	0	–6dB
1	1	1	0	0	0	0	0	–7dB
0	0	0	1	0	0	0	0	-8dB
1	0	0	1	0	0	0	0	–9dB
0	1	0	1	0	0	0	0	-10dB
1	1	0	1	0	0	0	0	-11dB
0	0	1	1	0	0	0	0	-12dB
1	0	1	1	0	0	0	0	-13dB
0	1	1	1	0	0	0	0	-14dB
1	1	1	1	0	0	0	0	-15dB
0	0	0	0	1	0	0	0	-16dB
1	0	0	0	1	0	0	0	-17dB
0	1	0	0	1	0	0	0	-18dB
1	1	0	0	1	0	0	0	-19dB
0	0	1	0	1	0	0	0	-20dB
1	0	1	0	1	0	0	0	-21dB
0	1	1	0	1	0	0	0	-22dB
1	1	1	0	1	0	0	0	-23dB
0	0	0	1	1	0	0	0	-24dB
1	0	0	1	1	0	0	0	-25dB
0	1	0	1	1	0	0	0	-26dB
1	1	0	1	1	0	0	0	-27dB
0	0	1	1	1	0	0	0	-28dB
1	0	1	1	1	0	0	0	-29dB
0	1	1	1	1	0	0	0	-30dB
1	1	1	1	1	0	0	0	-31dB
0	0	0	0	0	1	0	0	-32dB
1	0	0	0	0	1	0	0	-33dB
0	1	0	0	0	1	0	0	-34dB
1	1	0	0	0	1	0	0	-35dB
0	0	1	0	0	1	0	0	-36dB
1	0	1	0	0	1	0	0	-37dB
0	1	1	0	0	1	0	0	-38dB
1	1	1	0	0	1	0	0	-39dB
0	0	0	1	0	1	0	0	-40dB

Continued on next page.

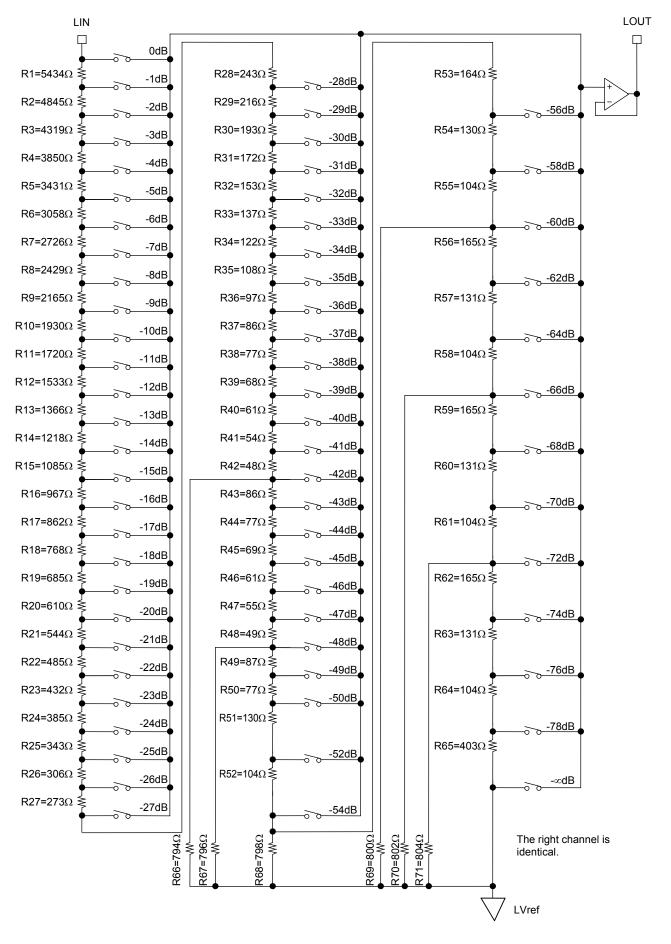
Continued from preceding page.

Volume control

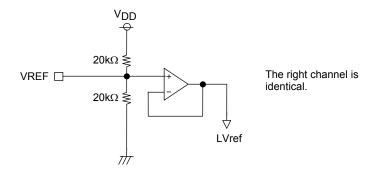
D0	D1	D2	D3	D4	D5	D6	D7	Operation
1	0	0	1	0	1	0	0	-41dB
0	1	0	1	0	1	0	0	-42dB
1	1	0	1	0	1	0	0	-43dB
0	0	1	1	0	1	0	0	-44dB
1	0	1	1	0	1	0	0	-45dB
0	1	1	1	0	1	0	0	-46dB
1	1	1	1	0	1	0	0	-47dB
0	0	0	0	1	1	0	0	-48dB
1	0	0	0	1	1	0	0	-49dB
0	1	0	0	1	1	0	0	-50dB
0	0	1	0	1	1	0	0	-52dB
0	1	1	0	1	1	0	0	–54dB
0	0	0	1	1	1	0	0	-56dB
0	1	0	1	1	1	0	0	-58dB
0	0	1	1	1	1	0	0	-60dB
0	1	1	1	1	1	0	0	-62dB
0	0	0	0	0	0	1	0	-64dB
0	1	0	0	0	0	1	0	-66dB
0	0	1	0	0	0	1	0	-68dB
0	1	1	0	0	0	1	0	-70dB
0	0	0	1	0	0	1	0	-72dB
0	1	0	1	0	0	1	0	-74dB
0	0	1	1	0	0	1	0	-76dB
0	1	1	1	0	0	1	0	-78dB
0	0	0	0	1	0	1	0	-∞

Channel selection

D8	D9	Operation		
0	0	Normally not used		
1	0	RCH		
0	1	LCH		
1	1	Left and right channels together		

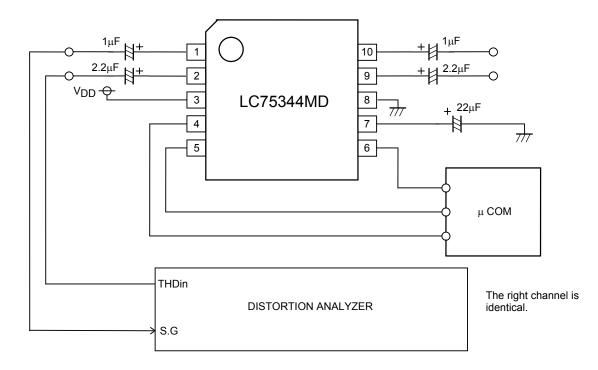

Test mode

D10	D11	D12	D13	D14	D15	Operation		
0	0	0	0	0	0			
These bi	These bits specify the IC test mode. They must be set to zero for normal operation.							

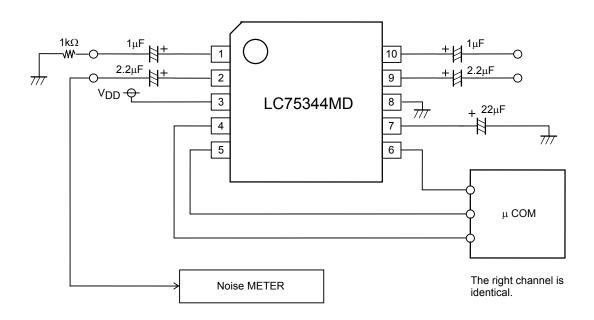

Pin Functions

Pin name	Pin No.	Function	Notes
LIN RIN	1 10	Volume control inputs	
LOUT ROUT	2 9	Volume control outputs	vDD ↓ ↓ ↓ ↓ ↓ ↓ ↓
Vref	7	VDD × 0.5 voltage generator block for the analog ground level. A capacitor with a value a few times 10 μF must be inserted between Vref and AVSS (VSS) to minimize power supply ripple.	VDD Vref 7/7
V _{SS}	8	Ground	
V _{DD}	3	Power supply	
CE	6	Chip enable The internal latch data is written and the analog switches operate at the point this pin goes from high to low. Data transfer is enabled when this pin is at the high level.	
DI	4	Serial data and clock inputs for IC control.	
CL	5		\overline{m}

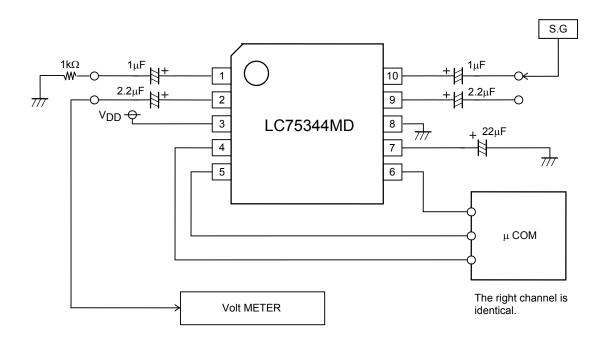
Equivalent Circuit



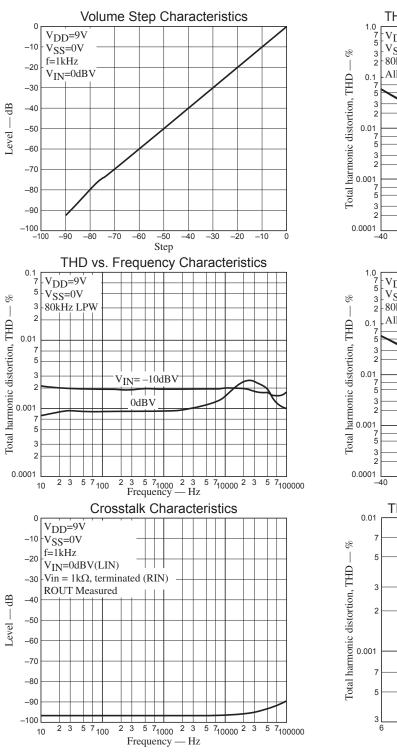
Reference Voltage Generator Equivalent Circuit

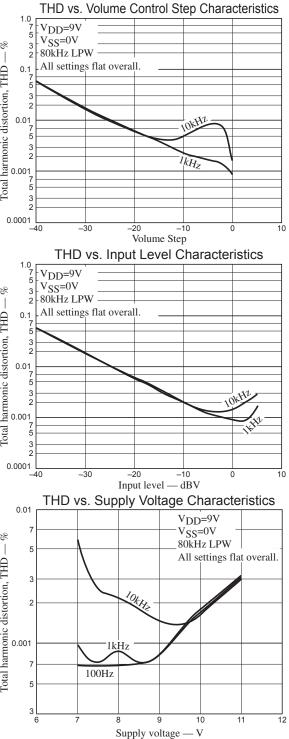


Test Circuit


Total harmonic distortion

Output noise voltage




Crosstalk

Usage Notes

- The states of the internal analog switches are undefined after power is first applied. Muting must be applied externally until the control data has been sent.
- When performing the initial settings after power is first applied, both the left and right channel initial settings data must be sent before releasing the external mute.
- Either cover the CL, DI, and CE lines with the ground pattern or use shielded lines to prevent high-frequency digital noise from entering the analog signal system from these lines.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC75344MD-AH	SOIC-10 NB (Pb-Free / Halogen Free)	2500 / Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, di