: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LC75812PT

1/8, 1/9-Duty Dot Matrix LCD Controller / Driver with Key Input Function

Overview

The LC75812PT is $1 / 8,1 / 9$ duty dot matrix LCD display controllers/drivers that support the display of characters, numbers, and symbols. In addition to generating dot matrix LCD drive signals based on data transferred serially from a microcontroller, the LC75812PT also provide on-chip character display ROM and RAM to allow display systems to be implemented easily. These products also provide up to 3 general-purpose output ports and incorporate a key scan circuit that accepts input from up to 35 keys to reduce printed circuit board wiring.

TQFP100 14x14 / TQFP100

- Key input function for up to 35 keys
(A key scan is performed only when a key is pressed.)
- Controls and drives a 5×7 or 5×8 dot matrix LCD.
- Supports accessory display segment drive (up to 65 segments)
- Display technique: $1 / 8$ duty $1 / 4$ bias drive (5×7 dots) $1 / 9$ duty $1 / 4$ bias drive (5×8 dots)
- Display digits: 13 digits $\times 1$ line (5×7 dots), 12 digits $\times 1$ line (5×8 dots)
- Display control memory

CGROM: 240 characters (5×7 or 5×8 dots)
CGRAM: 16 characters (5×7 or 5×8 dots)
ADRAM: 13×5 bits
DCRAM: 52×8 bits

- Instruction function

Display on/off control
Display shift function

- Sleep mode can be used to reduce current drain.
- Built-in display contrast adjustment circuit
- Switching between key scan output and general-purpose output ports can be controlled with instructions.
- PWM output for adjusting the LED backlight brightness
- The frame frequency of the common and segment output waveforms can be controlled by instructions.
- Serial data control of switching between the RC oscillator operating mode and external clock operating mode.
- Independent LCD driver block power supply VLCD
- A voltage detection type reset circuit is provided to initialize the IC and prevent incorrect display.
- The $\overline{\mathrm{INH}}$ pin is provided. This pin turns off the display, disables key scanning, and forces the general-purpose output ports to the low level.
- RC oscillator circuit
* Computer Control Bus (CCB) is an ON Semiconductor's original bus format and the bus addresses are controlled by ON Semiconductor.

See detailed ordering and shipping information on page 55 of this data sheet.

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {DD }}$ max	VDD	-0.3 to +4.2	V
	$V_{\text {LCD }}$ max	VLCD	-0.3 to +11.0	
Input voltage	$\mathrm{V}_{\text {IN }} 1$	CE, CL, DI, $\overline{\mathrm{INH}}$	-0.3 to +4.2	V
		$\begin{aligned} & \hline \mathrm{CE}, \mathrm{CL}, \mathrm{DI}, \overline{\mathrm{INH}} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \text { to } 3.6 \mathrm{~V} \\ & \hline \end{aligned}$	-0.3 to +6.5	
	$\mathrm{V}_{\mathrm{IN}}{ }^{2}$	OSC, KI1 to KI5, TEST	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
	$V_{\text {IN }} 3$	$\mathrm{V}_{\mathrm{LCD}}{ }^{1}, \mathrm{~V}_{\mathrm{LCD}}{ }^{2}, \mathrm{~V}_{\mathrm{LCD}}{ }^{3}, \mathrm{~V}_{\mathrm{LCD}} 4$	-0.3 to $\mathrm{V}_{\mathrm{LCD}}+0.3$	
Output voltage	VOUT1	DO	-0.3 to +6.5	V
	$\mathrm{V}_{\text {OUT }}{ }^{2}$	OSC, KS1 to KS7, P1 to P3	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
	$\mathrm{V}_{\text {OUT }}{ }^{3}$	$\mathrm{V}_{\mathrm{LCD}} 0$, S1 to S65, COM1 to COM9	-0.3 to $\mathrm{V}_{\mathrm{LCD}}+0.3$	
Output current	IOUT1	S1 to S65	300	$\mu \mathrm{A}$
	IOUT2	COM1 to COM9	3	mA
	IOUT3	KS1 to KS7	1	
	IOUT4	P1 to P3	5	
Allowable power dissipation	Pd max	$\mathrm{Ta}=85^{\circ} \mathrm{C}$	200	mW
Operating temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Allowable Operating Range at $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{SS}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			unit
			min	typ	max	
Supply voltage	VDD	$\mathrm{V}_{\text {DD }}$	2.7		3.6	
	VLCD	VLCD When the display contrast adjustment circuit is used.	7.0		10.0	V
		VLCD When the display contrast adjustment circuit is not used.	4.5		10.0	
Output voltage	$\mathrm{V}_{\text {LCD }} 0$	$\mathrm{V}_{\text {LCD }} 0$	$\begin{array}{r} \hline \mathrm{V}_{\mathrm{LCD}{ }^{4}} \\ +4.5 \end{array}$		VLCD	V
Input voltage	VLCD1	VLCD1		(VLCD ${ }^{0-}$ $\left.\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right)$	VLCD 0	V
	VLCD ${ }^{2}$	$\mathrm{V}_{\mathrm{LCD}}{ }^{2}$		($\mathrm{V}_{\mathrm{LCD}}{ }^{0-}$ $\left.\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right)$	VLCD 0	
	VLCD ${ }^{3}$	VLCD ${ }^{3}$		$\left(\mathrm{V}_{\mathrm{LCD}}{ }^{0}\right.$ $\left.\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right)$	VLCD 0	
	V LCD^{4}	VLCD4	0		1.5	
Input high level voltage	$\mathrm{V}_{\mathrm{IH}}{ }^{1}$	CE, CL, DI, $\overline{\mathrm{INH}}$	0.8 V DD		3.6	v
		$\begin{aligned} & \text { CE, CL, DI, } \overline{\mathrm{INH}} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \text { to } 3.6 \mathrm{~V} \end{aligned}$	0.8V $\mathrm{VD}^{\text {d }}$		5.5	
	$\mathrm{V}_{1 \mathrm{H}}{ }^{2}$	OSC external clock operating mode	0.8 V DD		V_{DD}	
	$\mathrm{V}_{1 \mathrm{H}^{3}}$	KI1 to KI5	$0.6 \mathrm{~V}_{\text {DD }}$		$V_{\text {DD }}$	
Input low level voltage	$\mathrm{V}_{\text {IL }}{ }^{\text {l }}$	CE, CL, DI, $\overline{\mathrm{NH}}, \mathrm{KI1}$ to KI5	0		$0.2 \mathrm{~V}_{\text {DD }}$	V
	$\mathrm{V}_{\text {IL }}{ }^{2}$	OSC external clock operating mode	0		$0.2 \mathrm{~V}_{\mathrm{DD}}$	

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			unit
			min	typ	max	
Output pull-up voltage	V OUP	DO	0		5.5	V
Recommended external resistor for RC oscillation	Rosc	OSC RC oscillator operating mode		10		k Ω
Recommended external capacitor for RC oscillation	Cosc	OSC RC oscillator operating mode		470		pF
Guaranteed range of RC oscillation	fosc	OSC RC oscillator operating mode	150	300	600	kHz
External clock operating frequency	${ }^{\text {f CK }}$	OSC external clock operating mode [Figure 4]	100	300	600	kHz
External clock duty cycle	DCK	OSC external clock operating mode [Figure 4]	30	50	70	\%
Data setup time	tds	CL, DI [Figure 2],[Figure 3]	160			ns
Data hold time	tdh	CL, DI [Figure 2],[Figure 3]	160			ns
CE wait time	tcp	CE, CL [Figure 2],[Figure 3]	160			ns
CE setup time	tcs	CE, CL [Figure 2],[Figure 3]	160			ns
CE hold time	tch	CE, CL [Figure 2],[Figure 3]	160			ns
High level clock pulse width	t $\phi \mathrm{H}$	CL [Figure 2],[Figure 3]	160			ns
Low level clock pulse width	t $\phi \mathrm{L}$	CL [Figure 2],[Figure 3]	160			ns
DO output delay time	tdc	$\begin{array}{r} \hline \text { DO RPU }=4.7 \mathrm{k} \Omega \mathrm{CL}_{\mathrm{L}}=10 \mathrm{pF} \text { *1 } \\ {[\text { [Figure 2],[Figure 3] }} \end{array}$			1.5	$\mu \mathrm{S}$
DO rise time	tdr	$\begin{array}{r} \mathrm{DO} \mathrm{RPU}^{=} 4.7 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} * 1 \\ \\ {[\text { Figure 2],[Figure 3] }} \end{array}$			1.5	$\mu \mathrm{S}$

Note: *1. Since the DO pin is an open-drain output, these times depend on the values of the pull-up resistor RPU and the load capacitance CL.

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics for the Allowable Operating Ranges

Parameter	Symbol	Pins	Conditions	Ratings			unit
				min	typ	max	
Hysteresis	V_{H}	$\begin{aligned} & \hline \mathrm{CE}, \mathrm{CL}, \mathrm{DI}, \overline{\mathrm{INH}}, \\ & \mathrm{KI} 1 \text { to } \mathrm{KI5} \end{aligned}$			0.1 V DD		V
Power-down detection voltage	VDET			2.0	2.2	2.4	V
Input high level current	${ }^{1} \mathrm{H}^{1}$	CE, CL, DI, $\overline{\mathrm{NNH}}$	$\mathrm{V}_{\mathrm{I}}=3.6 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \text { to } 3.6 \mathrm{~V} \end{aligned}$			5.0	
	${ }_{1 / \mathrm{H}}{ }^{2}$	OSC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ external clock operating mode			5.0	
Input low level current	IIL1	CE, CL, DI, $\overline{\mathrm{INH}}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	-5.0			$\mu \mathrm{A}$
	${ }_{\text {ILI }}{ }^{2}$	OSC	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ external clock operating mode	-5.0			
Input floating voltage	$\mathrm{V}_{\text {IF }}$	KI1 to KI5				0.05VDD	V
Pull-down resistance	RPD	KI1 to KI5	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	50	100	250	k Ω
Output off leakage current	IOFFH	DO	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$			6.0	$\mu \mathrm{A}$
Output high level voltage	VOH^{1}	S1 to S65	$\mathrm{I}^{\mathrm{O}}=-20 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{LCD}} 0-0.6$			V
	VOH^{2}	COM1 to COM9	$\mathrm{IO}=-100 \mu \mathrm{~A}$	VLCD $0-0.6$			
	$\mathrm{V}_{\mathrm{OH}}{ }^{3}$	KS1 to KS7	$\mathrm{I}_{\mathrm{O}}=-250 \mu \mathrm{~A}$	$\mathrm{V}_{\text {DD }}-0.8$	$\mathrm{V}_{\text {DD }}-0.4$	$\mathrm{V}_{\mathrm{DD}}{ }^{-0.1}$	
	$\mathrm{V}_{\mathrm{OH}}{ }^{4}$	P1 to P3	$\mathrm{O}=-1 \mathrm{~mA}$	VDD-0.9			
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}{ }^{1}$	S1 to S65	$\mathrm{I}^{\mathrm{O}}=20 \mu \mathrm{~A}$			$\mathrm{V}_{\text {LCD }}{ }^{+0.6}$	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	COM1 to COM9	$\mathrm{I}^{\mathrm{O}}=100 \mu \mathrm{~A}$			$\mathrm{V}_{\mathrm{LCD}}{ }^{++0.6}$	
	$\mathrm{V}_{\mathrm{OL}}{ }^{3}$	KS1 to KS7	$\mathrm{I}^{\mathrm{O}}=12.5 \mu \mathrm{~A}$	0.1	0.4	1.2	
	$\mathrm{V}_{\mathrm{OL}} 4$	P1 to P3	$\mathrm{I}^{\mathrm{O}}=1 \mathrm{~mA}$			0.9	
	$\mathrm{V}_{\mathrm{OL}}{ }^{5}$	DO	$\mathrm{I}^{\mathrm{O}}=1 \mathrm{~mA}$		0.1	0.3	

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pins	Conditions	Ratings			unit
				min	typ	max	
Output middle level voltage *2	$\mathrm{V}_{\text {MID }}{ }^{1}$	S1 to S65	$\mathrm{I}_{\mathrm{O}}= \pm 20 \mu \mathrm{~A}$	$\begin{array}{r} 2 / 4 \\ \left(\mathrm{~V}_{\mathrm{LCD}} 0\right. \\ \left.-\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right) \\ -0.6 \\ \hline \end{array}$		$\begin{array}{r} 2 / 4 \\ \left(\mathrm{~V}_{\mathrm{LCD}} 0\right. \\ \left.-\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right) \\ +0.6 \\ \hline \end{array}$	V
	$\mathrm{V}_{\mathrm{MID}^{2}}$	COM1 to COM9	$\mathrm{I}^{\mathrm{O}}= \pm 100 \mu \mathrm{~A}$	$\begin{array}{r} 3 / 4 \\ \left(\mathrm{~V}_{\mathrm{LCD}} 0\right. \\ \left.-\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right) \\ -0.6 \\ \hline \end{array}$		$\begin{array}{r} 3 / 4 \\ \left(\mathrm{~V}_{\mathrm{LCD}} 0\right. \\ \left.-\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right) \\ +0.6 \\ \hline \end{array}$	
	$\mathrm{V}_{\mathrm{MID}^{3}}$	COM1 to COM9	$\mathrm{I}= \pm 100 \mu \mathrm{~A}$	$\begin{array}{r} 1 / 4 \\ \left(\mathrm{~V}_{\mathrm{LCD}} 0\right. \\ \left.-\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right) \\ -0.6 \end{array}$		$\begin{array}{r} 1 / 4 \\ \left(\mathrm{~V}_{\mathrm{LCD}} 0\right. \\ \left.-\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right) \\ +0.6 \end{array}$	
Oscillator frequency	fosc	OSC	$\begin{aligned} & \text { Rosc }=10 \mathrm{k} \Omega, \\ & \mathrm{Cosc}=470 \mathrm{pF} \\ & \hline \end{aligned}$	210	300	390	kHz
Current drain	IDD1	VDD	sleep mode			100	$\mu \mathrm{A}$
	IDD^{2}	VDD	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \text {, output open, } \\ & \text { fosc }=300 \mathrm{kHz} \end{aligned}$		500	1000	
	ILCD1	VLCD	sleep mode			15	
	${ }^{\text {l }}$ LCD ${ }^{2}$	VLCD	$\mathrm{V}_{\mathrm{LCD}}=10.0 \mathrm{~V} \text {, output }$ open, fosc $=300 \mathrm{kHz}$, When the display contrast adjustment circuit is used.		450	900	
	${ }^{\text {L LCD }} 3$	VLCD	$\mathrm{V}_{\mathrm{LCD}}=10.0 \mathrm{~V}$, output open, fosc $=300 \mathrm{kHz}$, When the display contrast adjustment circuit is not used.		200	400	

Note: *2. Excluding the bias voltage generation divider resistor built into the $\mathrm{V}_{\mathrm{LCD}} 0, \mathrm{~V}_{\mathrm{LCD}} 1, \mathrm{~V}_{\mathrm{LCD}} 2, \mathrm{~V}_{\mathrm{LCD}} 3$, and VLCD4. (See Figure 1.)

[Figure 1]

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
(1) When CL is stopped at the low level

[Figure 2]
(2) When CL is stopped at the high level

[Figure 3]
(3) OSC pin clock timing in external clock operating mode
osc

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{CK}}=\frac{1}{\mathrm{t}_{\mathrm{CK}}+\mathrm{t}_{\mathrm{CK}} \mathrm{~L}} \quad[\mathrm{kHz}] \\
& \mathrm{D}_{\mathrm{CK}}=\frac{\mathrm{t}_{\mathrm{CK}} \mathrm{H}}{\mathrm{t}_{\mathrm{CK}} \mathrm{H}+\mathrm{t}_{\mathrm{CK}} \mathrm{~L}} \times 100[\%]
\end{aligned}
$$

[Figure 4]

Package Dimensions

unit : mm
TQFP100 14x14 / TQFP100
CASE 932AY
ISSUE A

SOLDERING FOOTPRINT*

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
$Y=$ Year
M = Month
DDD = Additional Traceability Data
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

NOTE: The measurements are not to guarantee but for reference only.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

LC75812PT

Pin Assignments

Block Diagram

Pin Functions

Pin	Pin No.	Function	Active	I/O	Handling when unused
$\begin{aligned} & \text { S1 to S64 } \\ & \text { S65/COM9 } \end{aligned}$	$\begin{gathered} 1 \text { to } 64 \\ 65 \end{gathered}$	Segment driver outputs. S65/COM9 can be used as common driver output pin under the "set display technique" instruction.	-	0	OPEN
COM1 to COM8	73 to 66	Common driver outputs.		0	OPEN
$\begin{gathered} \text { KS1/P1 } \\ \text { KS2/P2 } \\ \text { KS3 to KS6 } \\ \text { KS7/P3 } \end{gathered}$	$\begin{gathered} 74 \\ 75 \\ 76 \text { to } 79 \\ 85 \end{gathered}$	Key scan outputs. Although normal key scan timing lines require diodes to be inserted in the timing lines to prevent shorts, since these outputs are unbalanced CMOS transistor outputs, these outputs will not be damaged by shorting when these outputs are used to form a key matrix. KS1/P1, KS2/P2, and KS7/P3 can be used as general-purpose output ports under the "set key scan output port/general-purpose output port state" instruction.	-	0	OPEN
KI1 to KI5	80 to 84	Key scan inputs. These pins have built-in pull-down resistors.	H	1	GND
OSC	95	Oscillator connections. An oscillator circuit is formed by connecting an external resistor and capacitor to this pin. This pin can also be used as the external clock input pin with the "set display technique" instruction.	-	I/O	$V_{D D}$
CE	98	Serial data interface connections to the controller. Note that DO,	H	1	
CL	99		\uparrow	1	GND
DI	100	CL: Synchronization clock	-	1	
DO	97	DO: Output data	-	O	OPEN
$\overline{\mathrm{INH}}$	96	Input that turns the display off, disables key scanning, and forces the general-purpose output ports low. - When $\overline{\mathrm{NH}}$ is low (V_{SS}): - Display off S1 to S64="L" (VLCD $\left.{ }^{4}\right)$ S65/COM9="L" (VLCD ${ }^{4}$) COM1 to COM8="L" (VLCD ${ }^{4}$) - General-purpose output ports P1 to P3=low (VSS) - Key scanning disabled: KS1 to KS7=low (VSS) - All the key data is reset to low. - When $\overline{\mathrm{NH}}$ is high (VD): - Display on - The state of the pins as key scan output pins or general-purpose output ports can be set with the "set key scan output port/general-purpose output port state" instruction. - Key scanning is enabled. However, serial data can be transferred when the $\overline{\mathrm{NH}}$ pin is low.	L	1	$V_{D D}$
TEST	94	This pin must be connected to ground.	-	1	-
$\mathrm{V}_{\mathrm{LCD}}{ }^{0}$	88	LCD drive 4/4 bias voltage (high level) supply pin. The level on this pin can be changed by the display contrast adjustment circuit. However, ($\mathrm{V}_{\mathrm{LCD}}{ }^{0}-\mathrm{V}_{\mathrm{LCD}}{ }^{4}$) must be greater than or equal to 4.5 V . Also, external power must not be applied to this pin since the pin circuit includes the display contrast adjustment circuit.	-	O	OPEN
$\mathrm{V}_{\mathrm{LCD}}{ }^{1}$	89	LCD drive $3 / 4$ bias voltage (middle level) supply pin. This pin can be used to supply the $3 / 4\left(\mathrm{~V}_{\mathrm{LCD}}-\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right)$ voltage level externally.	-	1	OPEN
$\mathrm{V}_{\mathrm{LCD}}{ }^{2}$	90	LCD drive $2 / 4$ bias voltage (middle level) supply pin. This pin can be used to supply the $2 / 4\left(\mathrm{~V}_{\mathrm{LCD}}{ }^{0}-\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right)$ voltage level externally.	-	1	OPEN

Continued on next page.

Continued from preceding page.

Pin	Pin No.	Function	Active	I/O	Handling when unused
$\mathrm{V}_{\mathrm{LCD}}{ }^{3}$	91	LCD drive $1 / 4$ bias voltage (middle level) supply pin. This pin can be used to supply the $1 / 4\left(\mathrm{~V}_{\mathrm{LCD}}{ }^{0}-\mathrm{V}_{\mathrm{LCD}}{ }^{4}\right)$ voltage level externally.	-	1	OPEN
$\mathrm{V}_{\mathrm{LCD}}{ }^{4}$	92	LCD drive 0/4 bias voltage (low level) supply pin. Fine adjustment of the display contrast can be implemented by connecting an external variable resistor to this pin. However, ($\mathrm{V}_{\mathrm{LCD}} 0-\mathrm{V}_{\mathrm{LCD}} 4$) must be greater than or equal to 4.5 V , and $\mathrm{V}_{\mathrm{LCD}} 4$ must be in the range 0 V to 1.5 V , inclusive.	-	1	GND
$V_{\text {DD }}$	86	Logic block power supply connection. Provide a voltage of between 2.7 to 3.6 V .	-	-	-
VLCD	87	LCD driver block power supply connection. Provide a voltage of between 7.0 to 10.0 V when the display contrast adjustment circuit is used and provide a voltage of between 4.5 to 10.0 V when the circuit is not used.	-	-	-
$V_{S S}$	93	Power supply connection. Connect to ground.	-	-	-

Block Functions

- AC (address counter)

AC is a counter that provides the addresses used for DCRAM and ADRAM.
The address is automatically modified internally, and the LCD display state is retained.

- DCRAM (data control RAM)

DCRAM is RAM that is used to store display data expressed as 8-bit character codes. (These character codes are converted to 5×7 or 5×8 dot matrix character patterns using CGROM or CGRAM.) DCRAM has a capacity of 52×8 bits, and can hold 52 characters. The table below lists the correspondence between the 6 -bit DCRAM address loaded into AC and the display position on the LCD panel.

- When the DCRAM address loaded into AC is 00 H .

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13
DCRAM address (hexadecimal)	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$

However, when the display shift is performed by specifying MDATA, the DCRAM address shifts as shown below.

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13
DCRAM address (hexadecimal)	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13
DCRAM address (hexadecimal)	33	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$

Note: *3. The DCRAM address is expressed in hexadecimal.

Example: When the DCRAM address is 2EH.

DA0	DA1	DA2	DA3	DA4	DA5
0	1	1	1	0	1

[^0]
LC75812PT

- ADRAM (Additional data RAM)

ADRAM is RAM that is used to store the ADATA display data. ADRAM has a capacity of 13×5 bits, and the stored display data is displayed directly without the use of CGROM or CGRAM. The table below lists the correspondence between the 4-bit ADRAM address loaded into AC and the display position on the LCD panel.

- When the ADRAM address loaded into AC is 0 H . (Number of digit displayed: 13)

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13
ADRAM address (hexadecimal)	0	1	2	3	4	5	6	7	8	9	A	B	C

However, when the display shift is performed by specifying ADATA, the ADRAM address shifts as shown below.

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13
ADRAM address (hexadecimal)	1	2	3	4	5	6	7	8	9	A	B	C	0

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13
ADRAM address (hexadecimal)	C	0	1	2	3	4	5	6	7	8	9	A	B

Note: *5. The ADRAM address is expressed in hexadecimal.

Example: When the ADRAM address is AH.

RA0	RA1	RA2	RA3
0	1	0	1

Note: *6. 5×7 dots
5×8 dots $\cdots \cdots \cdots 13$ th digit display 4 dots

- CGROM (Character generator ROM) CGROM is ROM that is used to generate the 240 kinds of 5×7 or 5×8 dot matrix character patterns from the 8 -bit character codes. CGROM has a capacity of 240×40 bits. When a character code is written to DCRAM, the character pattern stored in CGROM corresponding to the character code is displayed at the position on the LCD corresponding to the DCRAM address loaded into AC.
- CGRAM (Character generator RAM)

CGRAM is RAM to which user programs can freely write arbitrary character patterns. Up to 16 kinds of 5×7 or 5×8 dot matrix character patterns can be stored. CGRAM has a capacity of 16×40 bits.

LC75812PT

Serial Data Input

(1) When CL is stopped at the low level

(2) When CL is stopped at the high level

- B0 to B3, A0 to A3: CCB address 42 H
- D0 to D119: Instruction data

The data is acquired on the rising edge of the CL signal and latched on the falling edge of the CE signal. When transferring instruction data from the microcontroller, applications must assure that the time from the transfer of one set of instruction data until the next instruction data transfer is significantly longer than the instruction execution time.

Instruction Table

X : don't care
Notes: *7. Be sure to execute the "set display technique" instruction first after power-on (VDET-based system reset). Note that the execution time of this first instruction is $108 \mu \mathrm{~s}$ (fosc $=300 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}$).
*8. When the sleep mode $(\mathrm{SP}=1)$ is set, the execution time is $27 \mu \mathrm{~s}$ (when fosc $=300 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}$).
*9. The data format differs when the DCRAM data write instruction is executed in the normal increment mode (IM1 $=1$, $\mathrm{IM} 2=0$) or in the super increment mode (IM1 $=0$, IM2 $=1$).
Note that the execution time for the DCRAM data write instruction executed in the super increment mode is tips (fosc $=300 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}$)
(See the detailed descriptions.)
*10. The data format differs when the ADRAM data write instruction is executed in the normal increment mode (IM1=1, IM2=0) or in the super increment mode
(IM1 $=0, \mathrm{IM} 2=1$). Note that the execution time for the ADRAM data write instruction executed in the super increment mode is $\mathrm{ti} \mu \mathrm{s}(\mathrm{fosc}=300 \mathrm{kHz}, \mathrm{f} \mathrm{CK}=300 \mathrm{kHz}$). (See the detailed descriptions.)
${ }^{*} 11$. The execution times listed here apply when fosc $=300 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}$. The execution times differ when the oscillator frequency fosc or the external clock frequency f_{CK} differs.
Example: When fosc $=210 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=210 \mathrm{kHz}$

$$
27 \mu \mathrm{~s} \times \frac{300}{210}=39 \mu \mathrm{~s}, 108 \mu \mathrm{~s} \times \frac{300}{210}=155 \mu \mathrm{~s}, \mathrm{ti} \mu \mathrm{~s} \times \frac{300}{210}=\mathrm{ti} \times 1.43 \mu \mathrm{~s}
$$

LC75812PT

Detailed Instruction Descriptions

- Set display technique ... $<$ Sets the display technique $>$
(Display technique)

Code							
D112	D113	D114	D115	D116	D117	D118	D119
DT	FC0	FC1	OC	0	0	0	1
X: don't care							

Note: Be sure to execute the "set display technique" instruction first after power-on (VDET-based system reset).

DT: Sets the display technique

DT	Display technique	Output pins
		S65/COM9
0	$1 / 8$ duty, $1 / 4$ bias drive	S65
1	$1 / 9$ duty, $1 / 4$ bias drive	COM 9

Note: *12. S65: Segment output COM9: Common output

FC0, FC 1 : Sets the frame frequency of the common and segment output waveforms

FC0	FC1	Frame frequency	
		1/8 duty, 1/4 bias drive $\mathrm{f8}[\mathrm{~Hz}]$	1/9 duty, 1/4 bias drive $\mathrm{f9}[\mathrm{~Hz}]$
0	0	fosc/3072, f ${ }^{\text {CK }} / 3072$	fosc/3456, f $\mathrm{CK}^{\text {/34 }}$
1	0	fosc/1536, f $\mathrm{CK}^{\text {/ }} 1536$	fosc/1728, feK/1728
0	1	fosc/768, f CK^{1768}	fosc/864, f $\mathrm{CK}^{\prime} / 864$

OC: Sets the RC oscillator operating mode and external clock operating mode.

OC	OSC pin function
0	RC oscillator operating mode
1	External clock operating mode

Note: *13. When selecting the RC oscillator operating mode, be sure to connect an external resistor Rosc and an external capacitor Cose to the OSC pin.

- Display on/off control ... <Turns the display on or off> (Display ON/OFF control)

Code																
D96 D97 D98 D99 D100	D101	D102	D103	D104	D105 D106 D107 D108		D110	0111	D112	D113	D114	D115	D116	D117	D118	D119
DG1 DG2 DG3 DG4 DG5	DG6	DG7	DG8	DG9	DG10 DG11 DG12 DG13	X	X	x	M	A	SC	SP	0	0	1	0

M, A: Specifies the data to be turned on or off

M	A	Display operating state
0	0	Both MDATA and ADATA are turned off (The display is forcibly turned off regardless of the DG1 to DG13 data.)
0	1	Only ADATA is turned on (The ADATA of display digits specified by the DG1 to DG13 data are turned on.)
1	0	Only MDATA is turned on (The MDATA of display digits specified by the DG1 to DG13 data are turned on.)
1	1	Both MDATA and ADATA are turned on (The MDATA and ADATA of display digits specified by the DG1 to DG13 data are turned on.)

Note: *14. MDATA, ADATA
5×7 dot matrix display
00000 ----- ADATA

--- MDATA
5×8 dot matrix display

LC75812PT

DG1 to DG13: Specifies the display digit

Display digit	1	2	3	4	5	6	7	8	9	10	11	12	13
Display digit data	DG1	DG2	DG3	DG4	DG5	DG6	DG7	DG8	DG9	DG10	DG11	DG12	DG 13

For example, if DG1 to DG7 are 1, and DG8 to DG13 are 0, then display digits 1 to 7 will be turned on, and display digits 8 to 13 will be turned off (blanked).

SC: Controls the common and segment output pins

SC	Common and segment output pin states
0	Output of LCD drive waveforms
1	Fixed at the $V_{\text {LCD }} 4$ level (all segments off)

Note: *15. When SC is 1, the S1 to S65 and COM1 to COM9 output pins are set to the $\mathrm{V}_{\mathrm{LCD}} 4$ level, regardless of the M, A, and DG1 to DG13 data.

SP: Controls the normal mode and sleep mode

SP	Mode
0	Normal mode
1	Sleep mode The common and segment pins go to the $\mathrm{V}_{\mathrm{LCD}}{ }^{4}$ level and the oscillator on the OSC pin is stopped (although it operates during $)$ key scan operations) in RC oscillator operating mode ($O C=" 0$ ") and reception of the external clock is stopped (external clock is received during key scan operations) in external clock operating mode ($O C=" 1$ "), to reduce current drain. Although the "display on/off control", "set display contrast" and "set key scan output port/general-purpose output port state" (disallowed to set pins P1 to P3 for PWM signal output and pin P3 for clock signal output) instructions can be executed in this mode, applications must return the IC to normal mode to execute any of the other instruction setting. When the IC is in external clock operating mode, be sure to stop the external clock input after the lapse of the instruction execution time ($27 \mu \mathrm{~s}$: $\mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}$).

- Display shift ... <Shifts the display>
(Display shift)

Code								
D112	D113	D114	D115	D116	D117	D118	D119	
M	A	R/L	X	0	0	1	1	

X: don't care
M, A: Specifies the data to be shifted

M	A	Shift operating state
0	0	Neither MDATA nor ADATA is shifted
0	1	Only ADATA is shifted
1	0	Only MDATA is shifted
1	1	Both MDATA and ADATA are shifted

R/L: Specifies the shift direction

R / L	Shift direction
0	Shift left
1	Shift right

- Set AC address... $<$ Specifies the DCRAM and ADRAM address for AC $>$ (Set AC)

Code															
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
DAO	DA1	DA2	DA3	DA4	DA5	X	X	RA0	RA1	RA2	RA3	0	1	0	0

X: don't care
DA0 to DA5: DCRAM address

DA0	DA1	DA2	DA3	DA4	DA5
LSB					MSB
\uparrow					\uparrow
Least significant bit				Most significant bit	

RA0 to RA3: ADRAM address

RA0	RA1	RA2	RA 3
LSB			
\uparrow		MSB	
\uparrow		\uparrow	
Least significant bit	Most significant bit		

This instruction loads the 6-bit DCRAM address DA0 to DA5 and the 4-bit ADRAM address RA0 to RA3 into the AC.

- DCRAM data write $\ldots<$ Specifies the DCRAM address and stores data at that address>
(Write data to DCRAM)

Code																							
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	DA0	DA1	DA2	DA3	DA4	DA5	X	X	IM1	IM2	X	X	0	1	0	1

X: don't care
DA0 to DA5: DCRAM address

DA0	DA1	DA2	DA3	DA4	DA5
LSB \uparrow Least significant bit	MSB				
Lest significant bit					

AC0 to AC7: DCRAM data (character code)

AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7
LSB							MSB
\uparrow							\uparrow
Least significant bit						Most significant bit	

This instruction writes the 8 bits of data AC0 to AC7 to DCRAM. This data is a character code, and is converted to a 5×7 or 5×8 dot matrix display data using CGROM or CGRAM.

IM1, IM2: Sets the method of writing data to DCRAM

IM1	IM2	
0	0	Normal DCRAM data write (Specifies the DCRAM address and writes the DCRAM data.)
1	0	Normal increment mode DCRAM data write (Increments the DCRAM address by +1 each time data is written to DCRAM.)
0	1	Super increment mode DCRAM data write (Writes 2 to 13 characters of DCRAM data in single operation.)

Notes: *16.

- DCRAM data write method when $\mathrm{IM} 1=0, \mathrm{IM} 2=0$

- DCRAM data write method when $\mathrm{IM} 1=1, \mathrm{IM} 2=0$
(Instructions other than the "DCRAM data write" instruction cannot be executed.)

- DCRAM data write method when $\mathrm{IM} 1=0, \mathrm{IM} 2=1$

$\mathrm{ti}=13.5 \mu \mathrm{~s} \times\left(\frac{\mathrm{n}}{8}-1\right)$
$(\mathrm{n}=8 \mathrm{~m}+16, \mathrm{~m}$ is an integer between 2 and 13 that is the number of characters written as DCRAM data.)
For example

$$
\left\{\begin{array}{l}
\text { When } \mathrm{n}=32 \text { bits }(\mathrm{m}=2): \mathrm{ti}=40.5 \mu \mathrm{~s}\left(\text { fosc }=300 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}\right) \\
\text { When } \mathrm{n}=80 \text { bits }(\mathrm{m}=8): \mathrm{ti}=121.5 \mu \mathrm{~s}\left(\mathrm{fosc}=300 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}\right) \\
\text { When } \mathrm{n}=120 \text { bits }(\mathrm{m}=13): \mathrm{ti}=189.0 \mu \mathrm{~s}(\mathrm{fosc}=300 \mathrm{kHz}, \mathrm{fCK}=300 \mathrm{kHz})
\end{array}\right.
$$

Note that the instruction execution time of $27 \mu \mathrm{~s}$ and ti values in $\mu \mathrm{s}$ apply when fosc $=300 \mathrm{kHz}$ and $\mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}$, and that these execution times will differ when the CR oscillator frequency fosc and external clock frequency f_{CK} differ.

Data format at (1) (24 bits)

Code																							
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	DA0	DA1	DA2	DA3	DA4	DA5	X	X	0	0	X	X	0	1	0	1

X: don't care

Data format at (2) (24 bits)

Code																							
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	DAO	DA1	DA2	DA3	DA4	DA5	X	X	1	0	X	X	0	1	0	1

X: don't care

Data format at (3) (8 bits)

Code								
D112	D113	D114	D115	D116	D117	D118	D119	
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	

Data format at (4) (16 bits)

Code															
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	0	0	X	X	0	1	0	1

Data format at (5) (n bit)

Code																	
Dz	Dz+1	Dz+2	Dz+3	Dz+4	Dz+5	Dz+6	Dz+7		-•••••••••••••••••••••••	D88	D89	D90	D91	D92	D93	D94	D95
ACO_{1}	$\mathrm{AC1}_{1}$	$\mathrm{AC2}_{1}$	$\mathrm{AC3}_{1}$	AC4 ${ }_{1}$	AC5 ${ }_{1}$	AC61	$A C 71$		-••••••••••••••••••••••••	$\mathrm{ACO}_{\mathrm{m}-1}$	$\mathrm{AC1} 1_{\mathrm{m}-1}$	$\mathrm{AC} 2 \mathrm{~m}-1$	$\mathrm{AC3}_{\mathrm{m}-1}$	$\mathrm{AC4}_{\mathrm{m}-1}$	$\mathrm{AC5}_{\mathrm{m}-1}$	$\mathrm{AC6}_{\mathrm{m}-1}$	$A C 7{ }_{\text {m-1 }}$

Code																							
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
$\mathrm{ACO}_{\mathrm{m}}$	$\mathrm{AC1}_{\mathrm{m}}$	$\mathrm{AC2} 2_{\text {m }}$	$\mathrm{AC3}_{\mathrm{m}}$	AC4m	AC5 m	AC6m	$\mathrm{AC7}_{\mathrm{m}}$	DA0 ${ }_{1}$	DA1 ${ }_{1}$	DA2 ${ }_{1}$	DA3 ${ }_{1}$	DA4 ${ }_{1}$	DA5 ${ }_{1}$	X	X	0	1	X	X	0	1	0	1

X: don't care

Here, $\mathrm{n}=8 \mathrm{~m}+16, \mathrm{z}=104-8 \mathrm{~m}$ (m is an integer between 2 and 13 that is the number of characters written as DCRAM data.)

Correspondence between the DCRAM address and the DCRAM data

DCRAM address	DCRAM data
DAO_{1} to $\mathrm{DA} 5_{1}$	$\mathrm{AC} 0_{1}$ to $\mathrm{AC} 7_{1}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+1$	ACO_{2} to $\mathrm{AC} 7_{2}$
$\left(\mathrm{DAO} 0_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+2$	ACO_{3} to $\mathrm{AC} 7_{3}$
\vdots	\vdots
$\left(\mathrm{DAO} 0_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+(\mathrm{m}-3)$	$\mathrm{AC0} 0_{\mathrm{m}-2}$ to $\mathrm{AC} 7_{\mathrm{m}-2}$
$\left(\mathrm{DAO} 0_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+(\mathrm{m}-2)$	$\mathrm{AC} 0_{\mathrm{m}-1}$ to $\mathrm{AC} 7_{\mathrm{m}-1}$
$\left(\mathrm{DAO} 0_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+(\mathrm{m}-1)$	$\mathrm{AC} 0_{\mathrm{m}}$ to $\mathrm{AC} 7_{\mathrm{m}}$

Example 1: When $\mathrm{n}=32$ bits ($\mathrm{m}=2: 2$ characters DCRAM data write operation)

Code															
D88	D89	D90	D91	D92	D93	D94	D95	D96	D97	D98	D99	D100	D101	D102	D103
ACO_{1}	$\mathrm{AC1}_{1}$	$\mathrm{AC2}_{1}$	$\mathrm{AC3}_{1}$	AC4 ${ }_{1}$	AC5 ${ }_{1}$	AC6 ${ }_{1}$	$A C 71$	ACO_{2}	$\mathrm{AC1}_{2}$	$\mathrm{AC2}_{2}$	$\mathrm{AC3}_{2}$	$\mathrm{AC4}_{2}$	$\mathrm{AC5}_{2}$	AC6 2	$\mathrm{AC7}_{2}$

Code															
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
DA0 ${ }_{1}$	DA1 ${ }_{1}$	DA2 ${ }_{1}$	DA3 ${ }_{1}$	DA4 ${ }_{1}$	DA5 ${ }_{1}$	X	X	0	1	X	X	0	1	0	1

Correspondence between the DCRAM address and the DCRAM data

DCRAM address	DCRAM data
DAO_{1} to $\mathrm{DA5}$	1
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA5}_{1}\right)+1$	ACO_{1} to $\mathrm{AC7}{ }_{1}$
	ACO_{2} to $\mathrm{AC7}$

Example 2: When $\mathrm{n}=80$ bits ($\mathrm{m}=8: 8$ characters DCRAM data write operation)

Code															
D40	D41	D42	D43	D44	D45	D46	D47	D48	D49	D50	D51	D52	D53	D54	D55
ACO_{1}	$\mathrm{AC1}_{1}$	$\mathrm{AC2}_{1}$	$\mathrm{AC3}_{1}$	AC4 ${ }_{1}$	AC5 ${ }_{1}$	AC61	AC7 ${ }_{1}$	ACO_{2}	$\mathrm{AC1}_{2}$	$\mathrm{AC2}_{2}$	$\mathrm{AC3}_{2}$	$\mathrm{AC4}_{2}$	$\mathrm{AC5}_{2}$	$\mathrm{AC6}_{2}$	$\mathrm{AC7}_{2}$

Code															
D56	D57	D58	D59	D60	D61	D62	D63	D64	D65	D66	D67	D68	D69	D70	D71
ACO_{3}	$\mathrm{AC1}_{3}$	$\mathrm{AC2}_{3}$	$\mathrm{AC3}_{3}$	$\mathrm{AC4}_{3}$	$\mathrm{AC5}_{3}$	$\mathrm{AC6}_{3}$	$\mathrm{AC7}_{3}$	ACO_{4}	$\mathrm{AC1}_{4}$	$\mathrm{AC2}_{4}$	$\mathrm{AC3}_{4}$	$\mathrm{AC4}_{4}$	$\mathrm{AC5}_{4}$	$\mathrm{AC6}_{4}$	$\mathrm{AC7}_{4}$

Code															
D72	D73	D74	D75	D76	D77	D78	D79	D80	D81	D82	D83	D84	D85	D86	D87
ACO_{5}	$\mathrm{AC1}_{5}$	$\mathrm{AC2}_{5}$	$\mathrm{AC3}_{5}$	$\mathrm{AC4}_{5}$	$\mathrm{AC5}_{5}$	$\mathrm{AC6}_{5}$	$\mathrm{AC7}_{5}$	ACO_{6}	$\mathrm{AC1}_{6}$	AC2 ${ }_{6}$	$\mathrm{AC3}_{6}$	AC4 ${ }_{6}$	AC5 ${ }_{6}$	AC6 6	$\mathrm{AC7}_{6}$

Code															
D88	D89	D90	D91	D92	D93	D94	D95	D96	D97	D98	D99	D100	D101	D102	D103
ACO_{7}	$\mathrm{AC1}_{7}$	$\mathrm{AC2}_{7}$	$\mathrm{AC3}_{7}$	$\mathrm{AC4}_{7}$	$\mathrm{AC5}_{7}$	$\mathrm{AC6}_{7}$	$\mathrm{AC7}_{7}$	ACO_{8}	$\mathrm{AC1}_{8}$	$\mathrm{AC2}_{8}$	$\mathrm{AC3}_{8}$	$\mathrm{AC4}_{8}$	$\mathrm{AC5}_{8}$	$\mathrm{AC6}_{8}$	$\mathrm{AC7}_{8}$

Correspondence between the DCRAM address and the DCRAM data

DCRAM address	DCRAM data
DAO_{1} to $\mathrm{DA} 5_{1}$	ACO_{1} to $\mathrm{AC} 7_{1}$
$\left(\mathrm{DAO} 0_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+1$	ACO_{2} to $\mathrm{AC} 7_{2}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+2$	ACO_{3} to $\mathrm{AC7}$
3	

LC75812PT

Example 3: When $\mathrm{n}=120$ bits ($\mathrm{m}=13: 13$ characters DCRAM data write operation)

Code															
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
ACO_{1}	$\mathrm{AC1}_{1}$	$\mathrm{AC2}_{1}$	$\mathrm{AC3}_{1}$	AC4 ${ }_{1}$	AC5 ${ }_{1}$	AC61	$\mathrm{AC7}_{1}$	ACO_{2}	$\mathrm{AC1}_{2}$	$\mathrm{AC2}_{2}$	$\mathrm{AC3}_{2}$	$\mathrm{AC4}_{2}$	$\mathrm{AC5}_{2}$	$\mathrm{AC6}_{2}$	$\mathrm{AC7}_{2}$

Code															
D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
ACO_{3}	$\mathrm{AC1}_{3}$	$\mathrm{AC2}_{3}$	$\mathrm{AC3}_{3}$	$\mathrm{AC4}_{3}$	$\mathrm{AC5}_{3}$	$\mathrm{AC6}_{3}$	$\mathrm{AC7}_{3}$	ACO_{4}	$\mathrm{AC1}_{4}$	$\mathrm{AC2}_{4}$	$\mathrm{AC3}_{4}$	$\mathrm{AC4}_{4}$	$\mathrm{AC5}_{4}$	$\mathrm{AC6}_{4}$	$\mathrm{AC7}_{4}$

Code															
D32	D33	D34	D35	D36	D37	D38	D39	D40	D41	D42	D43	D44	D45	D46	D47
ACO_{5}	$\mathrm{AC1}_{5}$	$\mathrm{AC2}_{5}$	$\mathrm{AC3}_{5}$	$\mathrm{AC4}_{5}$	$\mathrm{AC5}_{5}$	$\mathrm{AC6}_{5}$	$\mathrm{AC7}_{5}$	ACO_{6}	$\mathrm{AC1}_{6}$	$\mathrm{AC2}_{6}$	$\mathrm{AC3}_{6}$	$\mathrm{AC4}_{6}$	$\mathrm{AC5}_{6}$	$\mathrm{AC6}_{6}$	$\mathrm{AC7}_{6}$

Code															
D48	D49	D50	D51	D52	D53	D54	D55	D56	D57	D58	D59	D60	D61	D62	D63
ACO_{7}	$\mathrm{AC1}_{7}$	$\mathrm{AC2}_{7}$	$\mathrm{AC3}_{7}$	$\mathrm{AC4}_{7}$	$\mathrm{AC5}_{7}$	$\mathrm{AC6}_{7}$	$\mathrm{AC7}_{7}$	ACO_{8}	$\mathrm{AC1}_{8}$	$\mathrm{AC2}_{8}$	$\mathrm{AC3}_{8}$	$\mathrm{AC4}_{8}$	$\mathrm{AC5}_{8}$	AC68	$\mathrm{AC7}_{8}$

Code															
D64	D65	D66	D67	D68	D69	D70	D71	D72	D73	D74	D75	D76	D77	D78	D79
ACO_{9}	$\mathrm{AC1}_{9}$	$\mathrm{AC2}_{9}$	$\mathrm{AC3}_{9}$	$\mathrm{AC4}_{9}$	$\mathrm{AC5}_{9}$	AC69	$\mathrm{AC7}_{9}$	ACO_{10}	$\mathrm{AC1}_{10}$	$\mathrm{AC2}_{10}$	$\mathrm{AC3}_{10}$	AC4 ${ }_{10}$	AC5 ${ }_{10}$	$\mathrm{AC6}_{10}$	$\mathrm{AC7}_{10}$

Code															
D80	D81	D82	D83	D84	D85	D86	D87	D88	D89	D90	D91	D92	D93	D94	D95
ACO_{11}	$\mathrm{AC1}_{11}$	$\mathrm{AC2}_{11}$	$\mathrm{AC3}_{11}$	AC4 ${ }_{11}$	AC5 ${ }_{11}$	$\mathrm{AC6}_{11}$	$\mathrm{AC7}_{11}$	ACO_{12}	$\mathrm{AC1}_{12}$	$\mathrm{AC2}_{12}$	$\mathrm{AC3}_{12}$	$\mathrm{AC4}_{12}$	AC5 ${ }_{12}$	$\mathrm{AC6}_{12}$	$\mathrm{AC7}_{12}$

Code															
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111
ACO_{13}	$\mathrm{AC1}_{13}$	$\mathrm{AC2}_{13}$	$\mathrm{AC3}_{13}$	$\mathrm{AC4}_{13}$	AC5 ${ }_{13}$	$\mathrm{AC6}_{13}$	$\mathrm{AC7}_{13}$	DA0 ${ }_{1}$	DA1 ${ }_{1}$	DA2 ${ }_{1}$	DA3 ${ }_{1}$	DA4 1	DA5 ${ }_{1}$	X	X

Code							
D112	D113	D114	D115	D116	D117	D118	D119
0	1	x	\times	0	1	0	1
X: don't care							

Correspondence between the DCRAM address and the DCRAM data

DCRAM address	DCRAM data
DAO_{1} to DA5 ${ }_{1}$	ACO_{1} to $\mathrm{AC7}{ }_{1}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA5}_{1}\right)+1$	ACO_{2} to $\mathrm{AC7}_{2}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+2$	ACO_{3} to $\mathrm{AC7}_{3}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+3$	ACO_{4} to $\mathrm{AC7}_{4}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA5} 5_{1}\right)+4$	ACO_{5} to $\mathrm{AC7}_{5}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA} 5_{1}\right)+5$	ACO_{6} to $\mathrm{AC7}_{6}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA5} 5_{1}\right)+6$	ACO_{7} to $\mathrm{AC7}_{7}$

DCRAM address	DCRAM data
$\left(\mathrm{DAO}_{1}\right.$ to DA5 $\left.{ }_{1}\right)+7$	ACO_{8} to $\mathrm{AC7}_{8}$
$\left(\mathrm{DAO}_{1}\right.$ to DA5 $\left.{ }_{1}\right)+8$	ACO_{9} to $\mathrm{AC7}_{9}$
$\left(\mathrm{DAO}_{1}\right.$ to DA5 $\left.{ }_{1}\right)+9$	ACO_{10} to $\mathrm{AC7}{ }_{10}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA5}_{1}\right)+10$	ACO_{11} to $\mathrm{AC7}{ }_{11}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA5}_{1}\right)+11$	ACO_{12} to $\mathrm{AC} 7_{12}$
$\left(\mathrm{DAO}_{1}\right.$ to $\left.\mathrm{DA5}_{1}\right)+12$	ACO_{13} to $\mathrm{AC7}_{13}$

LC75812PT

- ADRAM data write...$<$ Specifies the ADRAM address and stores data at that address>
(Write data to ADRAM)

Code																							
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	X	X	X	RA0	RA1	RA2	RA3	X	X	X	X	IM1	IM2	X	X	0	1	1	0

X : don't care

RA0 to RA3:ADRAM address

RA0	RA1	RA2	RA3
LSB		MSB	
\uparrow		\uparrow	
Least significant bit	Most significant bit		

AD1 to AD5: ADATA display data

In addition to the 5×7 or 5×8 dot matrix display data (MDATA), this IC supports direct display of the five accessory display segments provided in each digit as ADATA. This display function does not use CGROM or CGRAM. The figure below shows the correspondence between the data and the display. When $\mathrm{ADn}=1$ (where n is an integer between 1 and 5) the segment corresponding to that data will be turned on.

ADATA	Corresponding output pin
AD1	$\mathrm{S} 5 \mathrm{~m}+1$ (m is an integer between 0 and 12)
AD2	$\mathrm{S} 5 \mathrm{~m}+2$
AD3	$\mathrm{S} 5 \mathrm{~m}+3$
AD4	$\mathrm{S} 5 \mathrm{~m}+4$
AD5	$\mathrm{S} 5 \mathrm{~m}+5$

IM1, IM2: Sets the method of writing data to ADRAM

IM1	IM2	
0	0	ADRAM data write method
1	0	Nomal increment mode ADRAM data write (Increments the ADRAM address by +1 each time data is written to ADRAM.)
0	1	Super increment mode ADRAM data write (Writes 2 to 13 digits of ADRAM data in single operation.)

LC75812PT

Notes: *17.

- ADRAM data write method when $\mathrm{IM} 1=0, \mathrm{IM} 2=0$

- ADRAM data write method when $\mathrm{IM} 1=1, \mathrm{IM} 2=0$
(Instructions other than the "ADRAM data write" instruction cannot be executed.)

- ADRAM data write method when $\mathrm{IM} 1=0, \mathrm{IM} 2=1$
CE
$\mathrm{ti}=13.5 \mu \mathrm{~s} \times\left(\frac{\mathrm{n}}{8}-1\right)$
$(\mathrm{n}=8 \mathrm{~m}+16, \mathrm{~m}$ is an integer between 2 and 13 that is the number of characters written as ADRAM data.)
For example
$\left\{\begin{array}{l}\text { When } \mathrm{n}=32 \text { bits }(\mathrm{m}=2): \mathrm{ti}=40.5 \mu \mathrm{~s}\left(\mathrm{fosc}=300 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}\right) \\ \text { When } \mathrm{n}=80 \text { bits }(\mathrm{m}=8): \mathrm{ti}=121.5 \mu \mathrm{~s}\left(\mathrm{fosc}=300 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}\right) \\ \text { When } \mathrm{n}=120 \text { bits }(\mathrm{m}=13): \mathrm{ti}=189.0 \mu \mathrm{~s}\left(\mathrm{fosc}=300 \mathrm{kHz}, \mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}\right)\end{array}\right.$
Note that the instruction execution time of $27 \mu \mathrm{~s}$ and ti values in $\mu \mathrm{s}$ apply when fosc $=300 \mathrm{kHz}$ and $\mathrm{f}_{\mathrm{CK}}=300 \mathrm{kHz}$, and that these execution times will differ when the CR oscillator frequency fosc and external clock frequency f_{CK} differ.

Data format at (6) (24 bits)

Code																							
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	X	X	X	RA0	RA1	RA2	RA3	X	X	X	X	0	0	X	X	0	1	1	0

X : don't care

Data format at (7) (24 bits)

Code																							
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	X	X	X	RAO	RA1	RA2	RA3	X	X	X	X	1	0	X	X	0	1	1	0

X: don't care

Data format at (8) (8 bits)

Code							
D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	X	X	X

Data format at (9) (16 bits)

Code															
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1	AD2	AD3	AD4	AD5	X	X	X	0	0	X	X	0	1	1	0

Data format at (10) (n bit)

Code										
Dz Dz+1 Dz+2 Dz+3 Dz+4	Dz+5 Dz+6 Dz+7	-••••••••••••••••••••••	D88	D89	D90	D91	D92	D93	D94	D95
$\mathrm{AD1}_{1} \mathrm{AD2}_{1} \mathrm{AD} 3_{1} \mathrm{AD} 4_{1} \mathrm{AD5} 1_{1}$	X X X	-•••••••••••••••••••••	AD1 ${ }_{\mathrm{m}-1}$	AD2 $2_{\text {m-1 }}$	$A D 3_{m-1}$	AD4 ${ }_{m-1}$	AD5 $5_{\text {m-1 }}$	X	X	X

Code																							
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
AD1 ${ }_{\text {m }}$	AD2 ${ }_{\text {m }}$	AD3 ${ }_{\text {m }}$	AD4m	AD5 ${ }_{\text {m }}$	X	X	X	RAO ${ }_{1}$	RA1 ${ }_{1}$	RA2 ${ }_{1}$	RA3 ${ }_{1}$	X	X	X	X	0	1	X	X	0	1	1	0

> X: don't care

Here, $n=8 m+16, \mathrm{z}=104-8 \mathrm{~m}$
(m is an integer between 2 and 13 that is the number of characters written as ADRAM data.)
Correspondence between the ADRAM address and theADRAM data

ADRAM address	ADRAM data
RAO_{1} to RA3 ${ }_{1}$	AD1 ${ }_{1}$ to $\mathrm{AD} 5_{1}$
$\left(\mathrm{RAO}_{1}\right.$ to $\left.\mathrm{RA} 3_{1}\right)+1$	$\mathrm{AD1}_{2}$ to $\mathrm{AD5}_{2}$
$\left(\mathrm{RAO}_{1}\right.$ to $\left.\mathrm{RA} 3_{1}\right)+2$	$\mathrm{AD1}_{3}$ to $\mathrm{AD5}_{3}$
\vdots	\vdots
$\left(\mathrm{RAO}_{1}\right.$ to $\left.\mathrm{RA}_{1}\right)+(\mathrm{m}-3)$	AD1 ${ }_{\text {m-2 }}$ to $A D 55_{\text {m-2 }}$
$\left(\mathrm{RAO}_{1}\right.$ to $\left.R A 3_{1}\right)+(\mathrm{m}-2)$	AD1 ${ }_{\mathrm{m}-1}$ to $\mathrm{AD5} 5_{\mathrm{m}-1}$
$\left(\mathrm{RAO} 1_{1}\right.$ to $\left.\mathrm{RA} 3_{1}\right)+(\mathrm{m}-1)$	AD1 ${ }_{\mathrm{m}}$ to $\mathrm{AD} 5_{\mathrm{m}}$

Example 1: When $\mathrm{n}=32$ bits ($\mathrm{m}=2: 2$ characters ADRAM data write operation)

Code															
D88	D89	D90	D91	D92	D93	D94	D95	D96	D97	D98	D99	D100	D101	D102	D103
AD1 ${ }_{1}$	AD2 ${ }_{1}$	AD3 ${ }_{1}$	AD4 ${ }_{1}$	AD51	X	X	X	AD1 ${ }_{2}$	AD2 2	$\mathrm{AD3}_{3}$	AD4 4	$\mathrm{AD5}_{5}$	X	X	X

Correspondence between the ADRAM address and the ADRAM data

ADRAM address	ADRAM data
RAO_{1} to RA_{1}	$\mathrm{AD1} 1_{1}$ to $\mathrm{AD5}_{1}$
$\left(\mathrm{RAO}_{1}\right.$ to $\left.\mathrm{RA}_{1}\right)+1$	$\mathrm{AD1}_{2}$ to $\mathrm{AD5}_{2}$

Example 2: When $\mathrm{n}=80$ bits ($\mathrm{m}=8: 8$ characters ADRAM data write operation)

Code															
D40	D41	D42	D43	D44	D45	D46	D47	D48	D49	D50	D51	D52	D53	D54	D55
AD1 ${ }_{1}$	AD2 ${ }_{1}$	AD31	AD4 ${ }_{1}$	AD5 ${ }_{1}$	X	X	X	AD1 ${ }_{2}$	$\mathrm{AD2}_{2}$	$\mathrm{AD3}_{2}$	AD4 2	$\mathrm{AD5}_{2}$	X	X	X

Code															
D56	D57	D58	D59	D60	D61	D62	D63	D64	D65	D66	D67	D68	D69	D70	D71
AD1 ${ }_{3}$	AD2 ${ }_{3}$	$\mathrm{AD3}_{3}$	$\mathrm{AD4}_{3}$	$\mathrm{AD5}_{3}$	X	X	X	AD14	$\mathrm{AD2}_{4}$	$\mathrm{AD3}_{4}$	AD4 ${ }_{4}$	$\mathrm{AD5}_{4}$	X	X	X

Code															
D72	D73	D74	D75	D76	D77	D78	D79	D80	D81	D82	D83	D84	D85	D86	D87
AD15	AD2 ${ }_{5}$	AD3 ${ }_{5}$	AD4 ${ }_{5}$	AD5 5	X	X	X	AD16	AD2 ${ }_{6}$	AD36	AD4 ${ }_{6}$	AD5 ${ }_{6}$	X	X	X

Code															
D88	D89	D90	D91	D92	D93	D94	D95	D96	D97	D98	D99	D100	D101	D102	D103
AD1 ${ }_{7}$	AD2 ${ }_{7}$	$\mathrm{AD3}_{7}$	AD4 ${ }_{7}$	$\mathrm{AD5}_{7}$	X	X	X	AD18	AD2 8	$\mathrm{AD3}_{8}$	AD48	AD5 8	X	X	X

Code															
D104	D105	D106	D107	D108	D109	D110	D111	D112	D113	D114	D115	D116	D117	D118	D119
RAO ${ }_{1}$	RA11	RA2 ${ }_{1}$	RA3 ${ }_{1}$	X	X	X	X	0	1	X	X	0	1	1	0

Correspondence between the ADRAM address and the ADRAM data

ADRAM address	ADRAM data
$R A 0_{1}$ to $R A 3_{1}$	AD1 1_{1} to $A D 5_{1}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+1$	$A D 1_{2}$ to $A D 5_{2}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+2$	$A D 1_{3}$ to $A D 5_{3}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+3$	$A D 1_{4}$ to $A D 5_{4}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+4$	$A D 1_{5}$ to $A D 5_{5}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+5$	$A D 1_{6}$ to $A D 5_{6}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+6$	$A D 1_{7}$ to $A D 5_{7}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+7$	$A D 1_{8}$ to $A D 5_{8}$

Example 3: When $\mathrm{n}=120$ bits ($\mathrm{m}=13: 13$ characters ADRAM data write operation)

Code															
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
AD1 ${ }_{1}$	AD2 ${ }_{1}$	AD31	AD4 ${ }_{1}$	AD5 ${ }_{1}$	X	X	X	AD1 ${ }_{2}$	AD2 2	$\mathrm{AD3}_{2}$	AD4 ${ }_{2}$	AD5 2	X	X	X

Code															
D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
$\mathrm{AD1}_{3}$	AD2 ${ }_{3}$	$\mathrm{AD3}_{3}$	$\mathrm{AD4}_{3}$	$\mathrm{AD5}_{3}$	X	X	X	AD14	AD2 ${ }_{4}$	$\mathrm{AD3}_{4}$	$\mathrm{AD4}_{4}$	$\mathrm{AD5}_{4}$	X	X	X

Code															
D32	D33	D34	D35	D36	D37	D38	D39	D40	D41	D42	D43	D44	D45	D46	D47
AD15	$\mathrm{AD}_{2} 5$	$\mathrm{AD3}_{5}$	$\mathrm{AD4}_{5}$	AD5 5	X	X	X	AD1 ${ }_{6}$	AD2 ${ }_{6}$	$\mathrm{AD3}_{6}$	AD4 6	AD56	X	X	X

Code															
D48	D49	D50	D51	D52	D53	D54	D55	D56	D57	D58	D59	D60	D61	D62	D63
$\mathrm{AD1}_{7}$	$\mathrm{AD} 2{ }_{7}$	AD_{7}	AD_{4}	$\mathrm{AD5}_{7}$	X	X	X	AD1 8	AD2 ${ }_{8}$	AD3 ${ }_{8}$	AD4 ${ }_{8}$	AD58	X	X	X

Code															
D64	D65	D66	D67	D68	D69	D70	D71	D72	D73	D74	D75	D76	D77	D78	D79
AD1 ${ }_{9}$	AD29	AD_{3}	AD49	AD59	X	X	X	AD1 10	AD2 10	$A D 3_{10}$	AD4 1_{10}	AD5 ${ }_{10}$	X	X	X

Code															
D80	D81	D82	D83	D84	D85	D86	D87	D88	D89	D90	D91	D92	D93	D94	D95
AD1 11	AD2 11	AD3 11	AD4 11	AD5 ${ }_{11}$	X	X	X	AD1 ${ }_{12}$	AD2 ${ }_{12}$	AD3 ${ }_{12}$	AD4 ${ }_{12}$	AD5 ${ }_{12}$	X	X	X

Code															
D96	D97	D98	D99	D100	D101	D102	D103	D104	D105	D106	D107	D108	D109	D110	D111
AD1 ${ }_{13}$	AD2 13	AD3 ${ }_{13}$	AD4 1_{3}	AD5 ${ }_{13}$	X	X	X	RA0 1	RA1 ${ }_{1}$	RA2 ${ }_{1}$	RA3 ${ }_{1}$	X	X	X	X

Code							
D112	D113	D114	D115	D116	D117	D118	D119
0	1	x	\times	0	1	1	0
X: don't care							

Correspondence between the ADRAM address and the ADRAM data

ADRAM address	ADRAM data
RAO_{1} to $R A 3_{1}$	AD1 1_{1} to $A D 5_{1}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+1$	AD1 ${ }_{2}$ to $A D 5_{2}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+2$	AD1 $_{3}$ to $A D 5_{3}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+3$	$A D 1_{4}$ to $A D 5_{4}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+4$	$A D 1_{5}$ to $A D 5_{5}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+5$	$A D 1_{6}$ to $A D 5_{6}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+6$	$A D 1_{7}$ to $A D 5_{7}$

ADRAM address	ADRAM data
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+7$	$A D 1_{8}$ to $A D 5_{8}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+8$	$A D 1_{9}$ to $A D 5_{9}$
$\left(R A 0_{1}\right.$ to $\left.R A 5_{1}\right)+9$	$A D 1_{10}$ to $A D 5_{10}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+10$	$A D 1_{11}$ to $A D 5_{11}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+11$	$A D 1_{12}$ to $A D 5_{12}$
$\left(R A 0_{1}\right.$ to $\left.R A 3_{1}\right)+12$	$A D 1_{13}$ to $A D 5_{13}$

[^0]: Note: *4. 5×7 dots $\cdots \cdots \cdots \cdot 13$ th digit display 5×7 dots 5×8 dots $\cdots \cdots \cdots 13$ th digit display 4×8 dots

