imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LC75833E, 75833W, 75833JE

1/3 Duty General-Purpose LCD Display Drivers

An ON Semiconductor Company

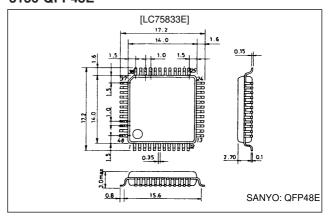
Overview

The LC75833E, LC75833W, and LC75833JE are 1/3-duty general-purpose LCD display drivers that can be used for frequency display in electronic tuners under the control of a microcontroller. The LC75833E and LC75833W can drive an LCD with up to 105 segments directly, the LC75833JE can drive an LCD with up to 93 segments directly. The LC75833E and LC75833W and LC75833JE can also control up to 8 general-purpose output ports. Since the LC75833E, LC75833W, and LC75833JE use separate power supply systems for the LCD drive block and the logic block, the LCD driver block power-supply voltage can be set to any voltage in the range 2.7 to 6.0 volts, regardless of the logic block power-supply voltage.

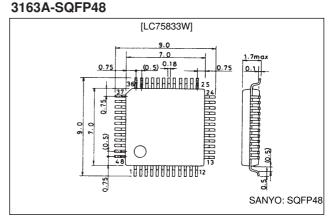
Features

• Supports both 1/3 duty 1/2 bias and 1/3 duty 1/3 bias LCD drive under serial data control.

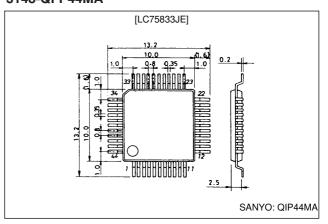
LC75833E, LC75833W: up to 105 segments LC75833JE: up to 93 segments (without the S12, S23, S24, S35 segment output pins from the LC75833E, LC75833W)


- Serial data input supports CCB format communication with the system controller.
- Serial data control of the power-saving mode based backup function and all the segments forced off function
- Serial data control of switching between the segment output port and the general-purpose output port functions
- High generality, since display data is displayed directly without decoder intervention.
- Independent V_{LCD} for the LCD driver block (V_{LCD} can be set to any voltage in the range 2.7 to 6.0 volts, regardless of the logic block power-supply voltage.)
- The $\overline{\text{INH}}$ pin can force the display to the off state.
- RC oscillator circuit

```
• CCB is a trademark of SANYO ELECTRIC CO., LTD.
```


• CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

Package Dimensions


unit: mm **3156-QFP48E**

unit: mm

unit: mm 3148-QFP44MA

SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network

Specifications Absolute Maximum Ratings at Ta = 25°C, V_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Movimum oundly voltage	V _{DD} max	V _{DD}	-0.3 to +7.0	V
Maximum supply voltage	V _{LCD} max	V _{LCD}	-0.3 to +7.0	V
	V _{IN} 1	CE, CL, DI, INH	-0.3 to +7.0	V
Input voltage	V _{IN} 2	OSC	-0.3 to V _{DD} + 0.3	V
	V _{IN} 3	V _{LCD} 1, V _{LCD} 2	-0.3 to V _{LCD} + 0.3	V
Output veltage	V _{OUT} 1	OSC	-0.3 to V _{DD} + 0.3	V
Output voltage	V _{OUT} 2	S1 to S35, COM1 to COM3, P1 to P8	-0.3 to V _{LCD} + 0.3	V
	I _{OUT} 1	S1 to S35	300	μA
Output current	I _{OUT} 2	COM1 to COM3	3	mA
	I _{OUT} 3	P1 to P8	5	mA
Allowable power dissipation	Pd max	Ta = 85°C	150	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Note: The LC75833JE does not have the S12, S23, S24, S35 output pins.

Allowable Operating Ranges at Ta = –40 to +85°C, V_{SS} = 0 V

				Ratings		
Parameter	Symbol	Conditions	min	typ	max	Unit
Supply valtage	V _{DD}	V _{DD}	2.7		6.0	V
Supply voltage	V _{LCD}	V _{LCD}	2.7		6.0	V
Input voltage	V _{LCD} 1	V _{LCD} 1		2/3 V _{LCD}	V _{LCD}	V
input voltage	V _{LCD} 2	V _{LCD} 2		1/3 V _{LCD}	V _{LCD}	V
Input high-level voltage	V _{IH}	CE, CL, DI, INH	0.8 V _{DD}		6.0	V
Input low-level voltage	V _{IL}	CE, CL, DI, INH	0		0.2 V _{DD}	V
Recommended external resistance	R _{OSC}	OSC		39		kΩ
Recommended external capacitance	C _{OSC}	OSC		1000		pF
Guaranteed oscillation range	fosc	OSC	19	38	76	kHz
Data setup time	t _{ds}	CL, DI: Figure 2	160			ns
Data hold time	t _{dh}	CL, DI: Figure 2	160			ns
CE wait time	t _{cp}	CE, CL: Figure 2	160			ns
CE setup time	t _{cs}	CE, CL: Figure 2	160			ns
CE hold time	t _{ch}	CE, CL: Figure 2	160			ns
High-level clock pulse width	t _{øH}	CL: Figure 2	160			ns
Low-level clock pulse width	t _{øL}	CL: Figure 2	160			ns
Rise time	tr	CE, CL, DI: Figure 2		160		ns
Fall time	t _f	CE, CL, DI: Figure 2		160		ns
INH switching time	t _c	INH, CE: Figure 3	10			μs

Electrical Characteristics for the Allowable Operating Ranges

5				Ratings		
Parameter	Symbol	Conditions	min	typ	max	Unit
Hysteresis width	V _H	CE, CL, DI, INH		0.1 V _{DD}		V
Input high level current	IIH	CE, CL, DI, $\overline{\text{INH}}$; V _I = 6.0 V			5.0	μA
Input low level current	Ι _{IL}	CE, CL, DI, $\overline{\text{INH}}$; V _I = 0 V	-5.0			μA
	V _{OH} 1	S1 to S35; I _O = -20 μA	V _{LCD} - 0.9			V
Output high-level voltage	V _{OH} 2	COM1 to COM3; $I_O = -100 \mu A$	V _{LCD} - 0.9			V
	V _{OH} 3	P1 to P8; I _O = -1 mA	V _{LCD} - 0.9			V
	V _{OL} 1	S1 to S35; I _O = 20 μA			0.9	V
Output low-level voltage	V _{OL} 2	COM1 to COM3; $I_0 = 100 \mu A$			0.9	V
	V _{OL} 3	P1 to P8; I _O = 1 mA			0.9	V
	V _{MID} 1	COM1 to COM3; 1/2 bias, $I_O = \pm 100 \ \mu A$	1/2 V _{LCD} - 0.9		1/2 V _{LCD} + 0.9	V
	V _{MID} 2	S1 to S35; 1/3 bias, I _O = ±20 μA	2/3 V _{LCD} – 0.9		2/3 V _{LCD} + 0.9	V
Output middle-level voltage*1	V _{MID} 3	S1 to S35; 1/3 bias, I _O = ±20 μA	1/3 V _{LCD} – 0.9		1/3 V _{LCD} + 0.9	V
	V _{MID} 4	COM1 to COM3; 1/3 bias, $I_O=\pm 100~\mu A$	2/3 V _{LCD} – 0.9		2/3 V _{LCD} + 0.9	V
	V _{MID} 5	COM1 to COM3; 1/3 bias, $I_O=\pm 100~\mu A$	1/3 V _{LCD} – 0.9		1/3 V _{LCD} + 0.9	V
Oscillator frequency	fosc	OSC; $R_{OSC} = 39 \text{ k}\Omega \text{ C}_{OSC} = 1000 \text{ pF}$	30.4	38	45.6	kHz
	I _{DD} 1	V _{DD} ; power saving mode			5	μA
	I _{DD} 2	V_{DD} ; V_{DD} = 6.0 V, output open, fosc = 38 k Hz		250	500	μA
	I _{LCD} 1	V _{LCD} ; power saving mode			5	μA
Current drain	I _{LCD} 2	V_{LCD} ; V_{LCD} = 6.0 V, output open 1/2 bias, fosc = 38 k Hz		100	200	μA
	I _{LCD} 3	V_{LCD} ; V_{LCD} = 6.0 V, output open 1/3 bias, fosc = 38 k Hz		60	120	μA

Note: *1 Excluding the bias voltage generation divider resistors built in the VLCD1 and VLCD2. (See Figure 1.)

The LC75833JE does not have the S12, S23, S24, S35 output pins.

LC75833E, 75833W, 75833JE

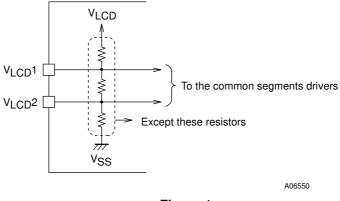
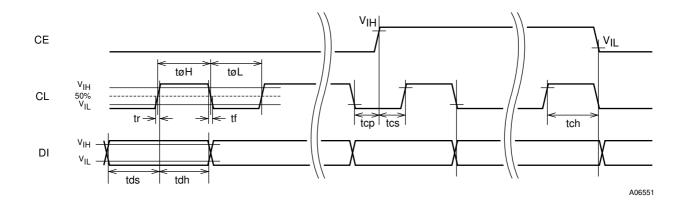



Figure 1

1. When CL is stopped at the low level

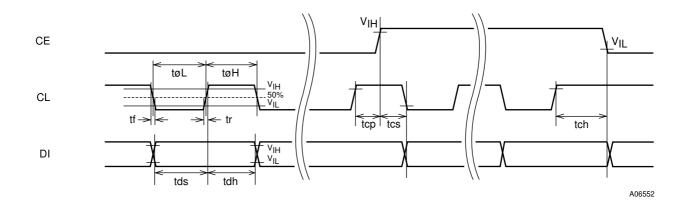
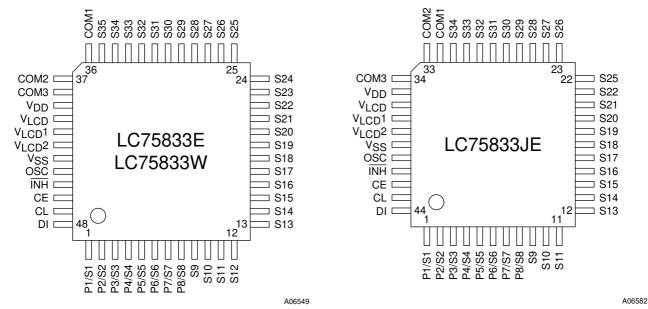
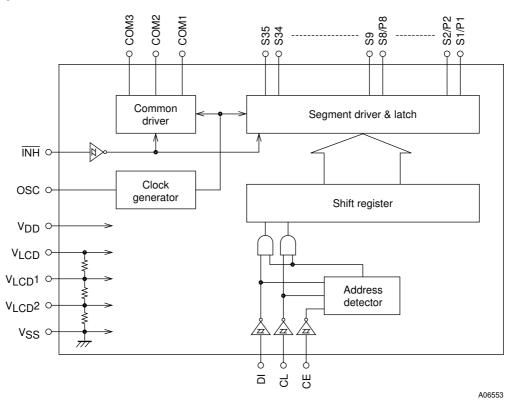




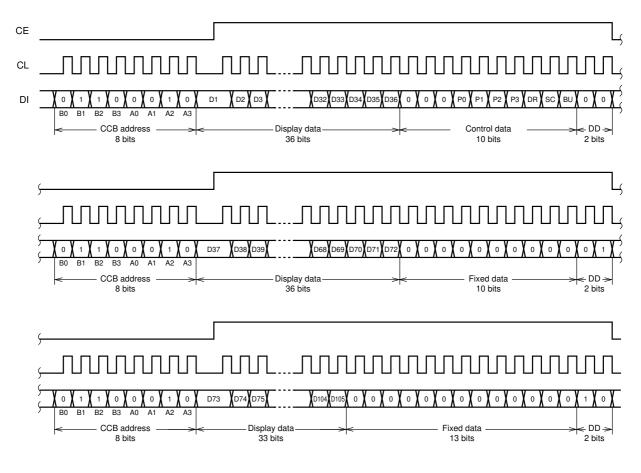
Figure 2

Pin Assignments

Block Diagram

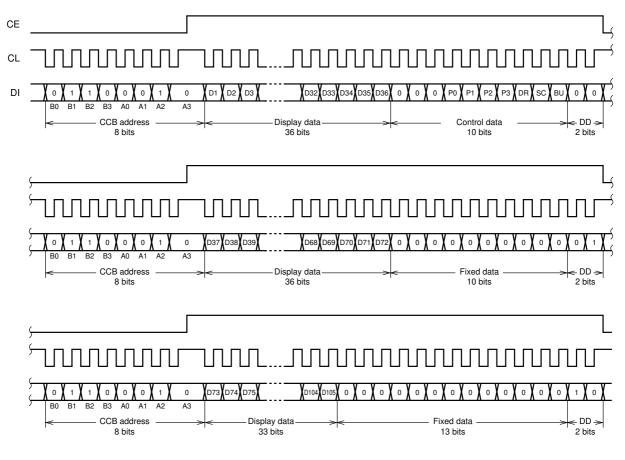
Note: The LC75833JE does not have the S12, S23, S24, S35 output pins.

LC75833E, 75833W, 75833JE


Pin Functions

	Pin	No.					Handling
Pin	LC75833E, 75833W	LC75833JE	Fu	inctions	Active	I/O	when unused
S1/P1 to S8/P8 S9 to S35	1 to 8 9 to 35	1 to 8 9 to 31		lisplay data transferred by serial data be used as general-purpose output ports	_	0	Open
COM1 COM2 COM3	36 37 38	32 33 34	Common driver outputs. The frame frequency f _O is given by:	f _O = (f _{OSC} /384) Hz.	_	0	Open
OSC	44	40	Oscillator connection An oscillator circuit is formed by cont to this pin.	necting an external resistor and capacitor	_	I/O	V _{DD}
CE CL DI	46 47 48	42 43 44	Serial data transfer inputs. These pins are connected to the control microprocessor.	CE: Chip enable CL: Synchronization clock DI: Transfer data	H	I	GND
ĪNĦ	45	41	Display off control input ●INH = low (V _{SS}): Off S1/P1 to S8/P8 = (These pins are f	forcibly set to the segment output port d at the V _{SS} level.) (V_{SS}) , = Low (V _{SS})	L	I	GND
V _{LCD} 1	41	37	Used to apply the LCD drive 2/3-bias connected to V _{LCD} 2 when 1/2-bias	s voltage externally. This pin must be drive is used.	_	I	Open
V _{LCD} 2	42	38	Used to apply the LCD drive 1/3-bias connected to V _{LCD} 1 when 1/2-bias	s voltage externally. This pin must be drive is used.	_	Ι	Open
V _{DD}	39	35	Logic block power supply. Provide a	voltage in the range 2.7 to 6.0 V.	—	_	_
V _{LCD}	40	36	LCD driver block power supply. Prov	ride a voltage in the range 2.7 to 6.0 V.	—	_	_
V _{SS}	43	39	Ground pin. Connect to ground.		_	_	—

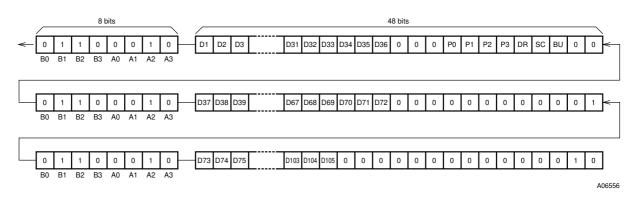
Note: The LC75833JE does not have the S12, S23, S24, S35 output pins.


Serial Data Transfer Format

1. When CL is stopped at the low level

Note: DD ... Direction data

2. When CL is stopped at the high level


Note: DD ... Direction data

- CCB address......46H
- D1 to D105......Display data (At the LC75833JE, the display data D34 to D36, D67 to D72, D103 to D105 must be set to 0.
- P0 to P3Segment output port/general-purpose output port switching control data
- DR1/2-bias drive or 1/3-bias drive switching control data
- SC.....Segments on/off control data
- BU.....Normal mode/power-saving mode control data

Serial Data Transfer Examples

• At the LC75833E and LC75833W when 73 or more segments are used, at the LC75833JE when 64 or more segments are used.


144 bits of serial data must be sent.

Note: At the LC75833JE, the display data D34 to D36, D67 to D72, D103 to D105 must be set to 0.

• At the LC75833E and LC75833W when used with less than 73 segments, at the LC75833JE when used with less than 64 segments.

Transfer either 48 bits or 96 bits of serial data depending on the number of segments used. However, the serial data shown in the figure below (the display data D1 to D36 and the control data) must be sent.

Note: At the LC75833JE, the display data D34 to D36 must be set to 0.

Control Data Functions

 P0 to P3: Segment output port/general-purpose output port switching control data. These control data bits switch the S1/P1 to S8/P8 output pins between their segment output port and general-purpose output port functions.

	Contro	ol data			Output pin states						
P0	P1	P2	P3	S1/P1	S2/P2	S3/P3	S4/P4	S5/P5	S6/P6	S7/P7	S8/P8
0	0	0	0	S1	S2	S3	S4	S5	S6	S7	S8
0	0	0	1	P1	S2	S3	S4	S5	S6	S7	S8
0	0	1	0	P1	P2	S3	S4	S5	S6	S7	S8
0	0	1	1	P1	P2	P3	S4	S5	S6	S7	S8
0	1	0	0	P1	P2	P3	P4	S5	S6	S7	S8
0	1	0	1	P1	P2	P3	P4	P5	S6	S7	S8
0	1	1	0	P1	P2	P3	P4	P5	P6	S7	S8
0	1	1	1	P1	P2	P3	P4	P5	P6	P7	S8
1	0	0	0	P1	P2	P3	P4	P5	P6	P7	P8

Note: Sn (n = 1 to 8): Segment output ports

Pn (n = 1 to 8): General-purpose output ports

Also note that when the general-purpose output port function is selected, the output pins and the display data will have the correspondences listed in the tables below.

Output pin	Corresponding display data
S1/P1	D1
S2/P2	D4
S3/P3	D7
S4/P4	D10

Output pin	Corresponding display data
S5/P5	D13
S6/P6	D16
S7/P7	D19
S8/P8	D22

For example, if the output pin S4/P4 has the general-purpose output port function selected, it will output a high level (V_{LCD}) when the display data D10 is 1, and will output a low level (V_{SS}) when D10 is 0.

2. DR: 1/2-bias drive or 1/3-bias drive switching control data This control data bit selects either 1/2-bias drive or 1/3-bias drive.

DR	Drive type
0	1/3-bias drive
1	1/2-bias drive

3. SC: Segments on/off control data

This control data bit controls the on/off state of the segments.

SC	Display state
0	On
1	Off

However, note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins.

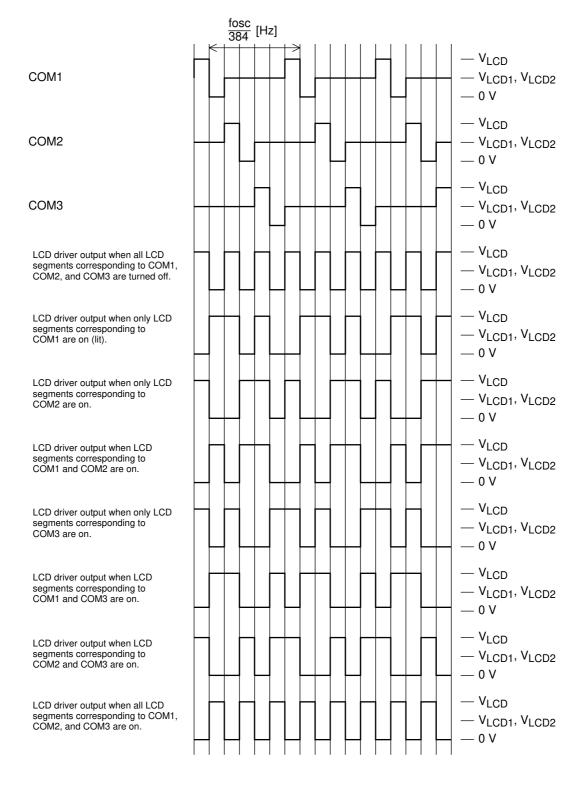
4. BU: Normal mode/power-saving mode control data

This control data bit selects either normal mode or power-saving mode.

BU	Mode
0	Normal mode
1	Power saving mode (The OSC pin oscillator is stopped, and the common and segment output pins go to the VSS level. However, the S1/P1 to S8/P8 output pins that are set to be general-purpose output ports by the control data P0 to P3 can be used as general-purpose output ports.)

Segment output pin	COM1	COM2	COM3
S1/P1	D1	D2	D3
S2/P2	D4	D5	D6
S3/P3	D7	D8	D9
S4/P4	D10	D11	D12
S5/P5	D13	D14	D15
S6/P6	D16	D17	D18
S7/P7	D19	D20	D21
S8/P8	D22	D23	D24
S9	D25	D26	D27
S10	D28	D29	D30
S11	D31	D32	D33
S12	D34	D35	D36
S13	D37	D38	D39
S14	D40	D41	D42
S15	D43	D44	D45
S16	D46	D47	D48
S17	D49	D50	D51
S18	D52	D53	D54

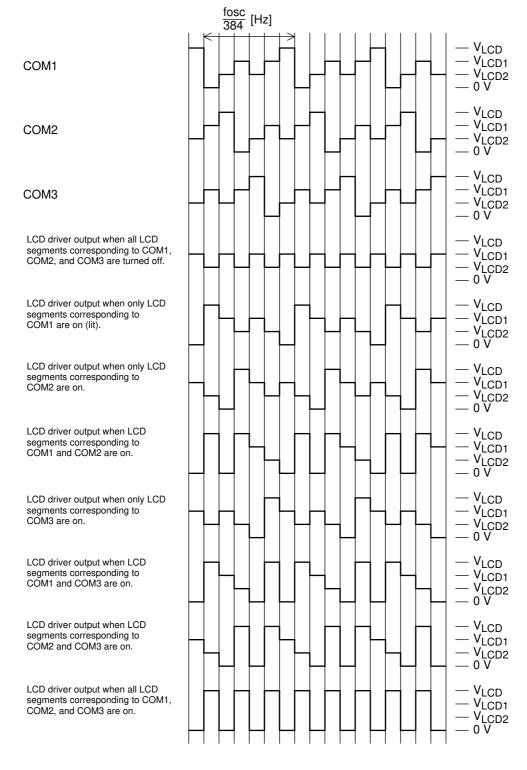
Segment output pin	COM1	COM2	COM3
S19	D55	D56	D57
S20	D58	D59	D60
S21	D61	D62	D63
S22	D64	D65	D66
S23	D67	D68	D69
S24	D70	D71	D72
S25	D73	D74	D75
S26	D76	D77	D78
S27	D79	D80	D81
S28	D82	D83	D84
S29	D85	D86	D87
S30	D88	D89	D90
S31	D91	D92	D93
S32	D94	D95	D96
S33	D97	D98	D99
S34	D100	D101	D102
S35	D103	D104	D105


Display Data to Segment Output Pin Correspondence

Note: This applies to the case where the S1/P1 to S8/P8 output pins are set to be segment output ports. The LC75833JE do not have the S12, S23, S24, S35 output pins.

For example, the table below lists the segment output states for the S11 output pin.

Display data			Commont output pin (C11) state
D31	D32	D33	Segment output pin (S11) state
0	0	0	The LCD segments corresponding to COM1 to COM3 are off.
0	0	1	The LCD segments corresponding to COM3 is on.
0	1	0	The LCD segments corresponding to COM2 is on.
0	1	1	The LCD segments corresponding to COM2 and COM3 are on.
1	0	0	The LCD segments corresponding to COM1 is on.
1	0	1	The LCD segments corresponding to COM1 and COM3 are on.
1	1	0	The LCD segments corresponding to COM1 and COM2 are on.
1	1	1	The LCD segments corresponding to COM1 to COM3 are on.


1/3-Duty 1/2-Bias Drive Technique

A06558

1/3-Duty 1/2-Bias Waveforms

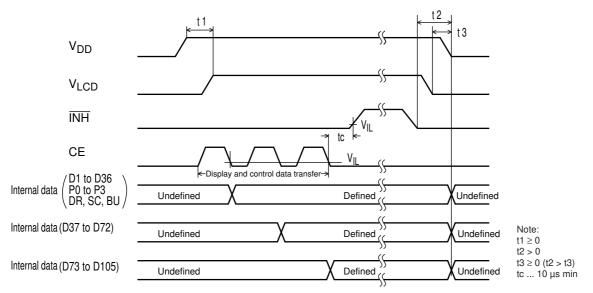
1/3-Duty 1/3-Bias Technique

A06559

1/3-Duty 1/3-Bias Waveforms

The INH pin and Display Control

Since the LSI internal data (the display data and the control data) is undefined when power is first applied, applications should set the $\overline{\rm INH}$ pin low at the same time as power is applied to turn off the display (LC75833E, LC75833W: This sets the S1/P1 to S8/P8, S9 to S35, and COM1 to COM3 to the V_{SS} level. LC75833JE: This sets the S1/P1 to S8/P8, S9 to S11, S13 to S22, S25 to S34, and COM1 to COM3 to the V_{SS} level.) and during this period send serial data from the controller. The controller should then set the $\overline{\rm INH}$ pin high after the data transfer has completed. This procedure prevents meaningless displays at power on. (See Figure 3.)


Notes on the Power On/Off Sequences

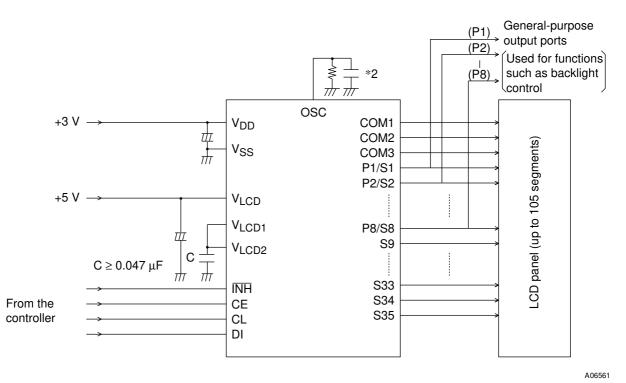
Applications should observe the following sequence when turning the LC75833E, LC75833W, and LC75833JE power on and off.

• At power on: Logic block power supply (V_{DD}) on \rightarrow LCD driver block power supply (V_{LCD}) on

• At power off: LCD driver block power supply (V_{LCD}) off \rightarrow Logic block power supply (V_{DD}) off

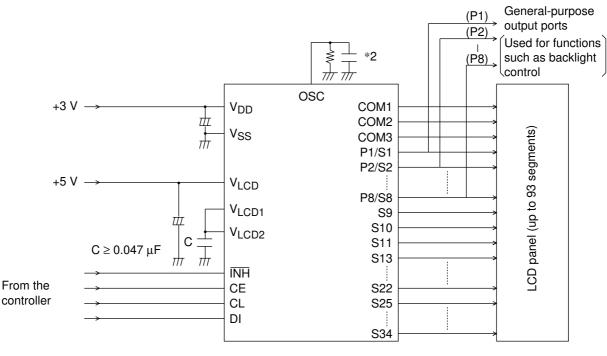
However, if the logic and LCD driver block use a shared power supply, then the power supplies can be turned on and off at the same time.

Note: At the LC75833JE, the display data D34 to D36, D67 to D72, D103 to D105 must be set to 0.


Figure 3

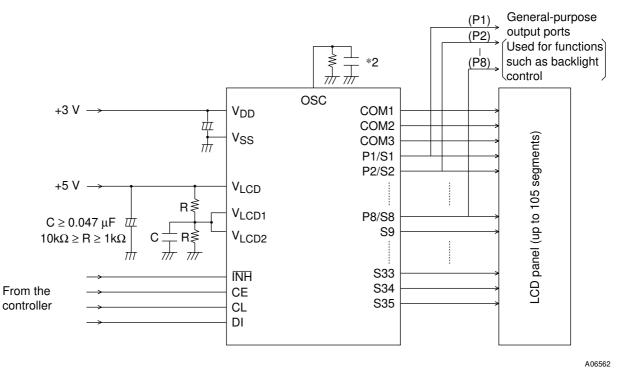
A06560

Notes on Controller Transfer of Display Data

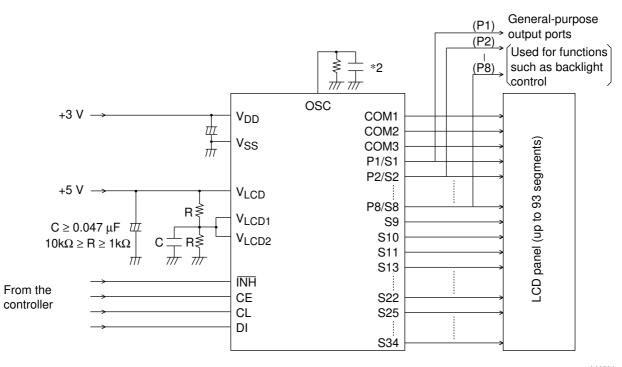

Since the LC75833E, LC75833W, and LC75833JE accept display data divided into three separate transfer operations, we recommend that applications transfer all of the display data within a period of less than 30 ms to prevent observable degradation of display quality.

- 1/2 Bias (for use with normal size panels) LC75833E, LC75833W

Note: *2 When a capacitor except the recommended external capacitance (COSC = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.


• LC75833JE

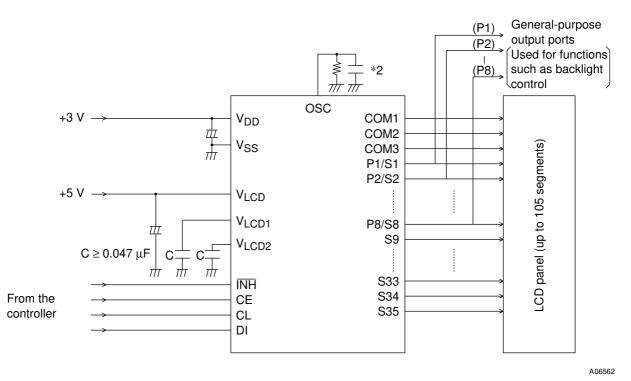
Note: *2 When a capacitor except the recommended external capacitance (COSC = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.


1/2 Bias (for use with large panels)

• LC75833E, LC75833W

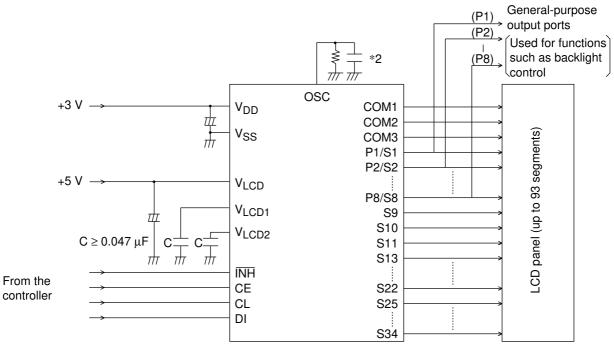
Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.

• LC75833JE



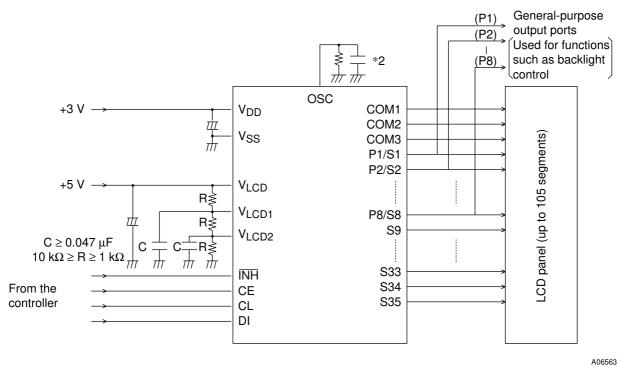
A06584

Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.

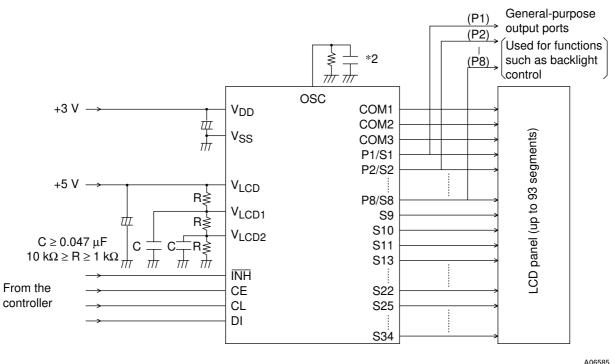

1/3 Bias (for use with normal size panels)

• LC75833E, LC75833W

Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.


• LC75833JE

Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.


1/3 Bias (for use with large panels)

• LC75833E, LC75833W

Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.

• LC75833JE

Note: *2 When a capacitor except the recommended external capacitance (C_{OSC} = 1000 pF) is connected the OSC pin, we recommend that applications connect the OSC pin with a capacitor in the range 220 to 2200pF.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - In Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March 1998. Specifications and information herein are subject to change without notice.