

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CMOSIC 50K-byte FROM and 1536-byte RAM integrated 8-bit 1-chip Microcontroller

http://onsemi.com

Overview

The LC87F2W48A is an 8-bit microcomputer that, centered around a CPU running at a minimum bus cycle time of 83.3ns, integrates on a single chip a number of hardware features such as 50K-byte flash ROM (On-boardprogrammable), 1536-byte RAM, an On-chip-debugger, sophisticated 16-bit timers/counters (may be divided into 8bit timers), a 16-bit timer/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), four 8-bit timers with a prescaler, a base timer serving as a time-of-day clock, a high-speed clock counter, a synchronous SIO interface, an asynchronous/synchronous SIO interface, a UART interface (full duplex), two 12-bit PWM channels, a 14-channel AD converter with 12-/8-bit resolution selector, a system clock frequency divider, an infrared remote controller receiver circuit, and a 24-source 10-vector interrupt feature.

Features

- ■Flash ROM
 - Capable of on-board-programming with wide range, 2.7 to 5.5V, of voltage source.
 - Block-erasable in 128 byte units
 - Writable in 2-byte units
 - 51200×8 bits

■RAM

- 1536×9 bits
- ■Minimum Bus Cycle
 - 83.3ns (12MHz) V_{DD}=2.7V to 5.5V

Note: The bus cycle time here refers to the ROM read speed.

^{*} This product is licensed from Silicon Storage Technology, Inc. (USA).

- ■Minimum instruction cycle time
 - 250ns (12MHz) V_{DD}=2.7 to 5.5V

■Ports

• Normal withstand voltage I/O ports

Ports I/O direction can be designated in 1-bit units

• Dedicated oscillator ports/input ports

• Reset pin

• On-chip Debugger pin

• Power pins

38 (P0n, P1n, P2n, P31 to P36, P70 to P73,

PWM0, PWM1, XT2, CF2)

2 (XT1, CF1)

1 (RES)

1 (OWP0)

6 (VSS1 to 3, VDD1 to 3)

■Timers

• Timer 0: 16 bit timer / counter with capture register

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs)

+ 8-bit timer/counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM.)

- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Base Timer
 - (1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - (2) Interrupts are programmable in 5 different time schemes

■High-speed Clock Counter

- 1) Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
- 2) Can generate output real-time.

■Serial Interface

- SIO 0: 8-bit synchronous serial interface
 - (1) LSB first/MSB first mode selectable
 - (2) Built-in 8-bit baudrate generator (maximum transfer clock cycle=4/3 tCYC)
 - (3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1-bit units, suspension and resumption of data transmission possible in 1-byte units)
- SIO 1: 8-bit asynchronous / synchronous serial interface

Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)

Mode 1: Asynchronous serial I/O (half-duplex, 8-data bits, 1-stop bit, 8 to 2048 tCYC baudrates)

Mode 2: Bus mode 1 (start bit, 8-data bits, 2 to 512 tCYC transfer clocks)

Mode 3: Bus mode 2 (start detect, 8-data bits, stop detect)

■UART

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator
- \blacksquare AD Converter: 12 bits/8 bits \times 14 channels
 - 12 bits/8 bits AD converter resolution selectable
- ■PWM: Multifrequency 12-bit PWM × 2 channels
- Infrared Remote Controller Receiver Circuit
 - 1) Noise rejection function (noise filter time constant: Approx. 120µs when the 32.768kHz crystal oscillator is selected as the reference clock source)
 - 2) Supports data encording systems such as PPM (Pulse Position Modulation) and Manchester encording
 - 3) X'tal HOLD mode release function

■Clock Output Function

- Can generate clock outputs with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock selected as the system clock.
- Can generate the source clock for the subclock.

■Watchdog Timer

- External RC watchdog timer
- Interrupt and reset signals selectable

■Interrupts

- 24 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4/REMOREC2
4	0001BH	H or L	INT3/INT5/BT0/BT1
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1 receive
8	0003BH	H or L	SIO1/UART transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/T4/T5/PWM0,1

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- IFLG (List of interrupt source flag function)
 - (1) Shows a list of interrupt source flags that caused a branching to a particular vector address (shown in the table above.)
- ■Subroutine Stack Levels: 768 levels (the stack is allocated in RAM.)

■ High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
(5 tCYC execution time)
(12 tCYC execution time)
(8 tCYC execution time)
(12 tCYC execution time)

■Oscillation Circuits

• Internal oscillation circuits

1) Low-speed RC oscillation circuit: For system clock (100kHz)
2) Medium-speed RC oscillation circuit: For system clock (1MHz)

- 3) Frequency variable RC oscillation circuit: For system clock (6 to 10MHz)
 - (1) Adjustable in $\pm 0.5\%$ (typ) step from a selected center frequency.
 - (2) Measures oscillation clock using a input signal from XT1 as a reference.
- External oscillation circuits

1) Low speed crystal oscillation circuit: For low-speed system clock, with internal Rf

2) Hi-speed CF oscillation circuit: For system clock, with internal Rf (1) Both the CF and crystal oscillator circuits stop operation on a system reset.

■System Clock Divider function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, and 76.8μs (at a main clock rate of 10MHz).

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer
 - (3) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4, or INT5
 - * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except base timer and infrared remote controller receiver circuit.
 - 1) The CF and RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are six ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4, or INT5
 - * INT0 and INT1 X'tal HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0
 - (5) Having an interrupt source established in the base timer circuit
 - (6) Having an interrupt source established in the infrared remote controller receiver circuit

■Onchip Debugger

• Supports software debugging with the IC mounted on the target board.

■Data Security Function (Flash versions only)

• Protects the program data stored in flash memory from unauthorized read or copy.

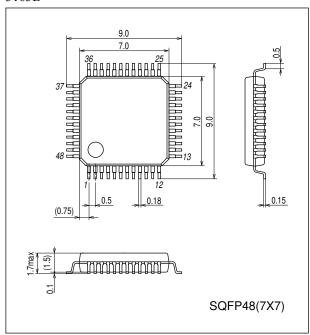
Note: This data security function does not necessarily provide absolute data security.

■Package Form

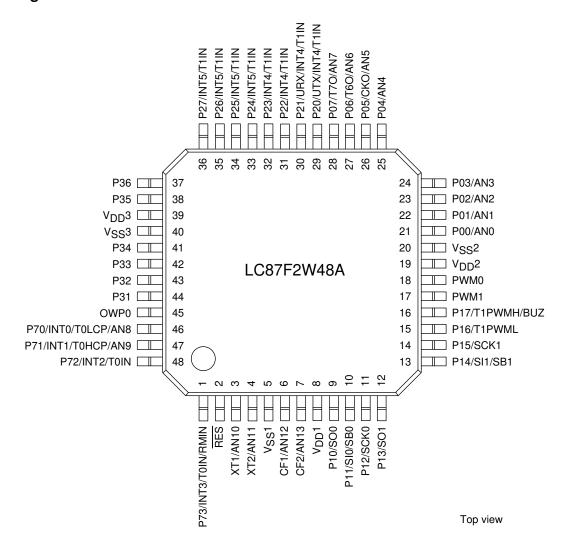
• SQFP48 (7×7) (Lead-/Halogen-free type)

■Development Tools

• On-chip-debugger: TCB87-TypeC (1 wire version) + LC87F2W48A


■Flash ROM Programming Boards

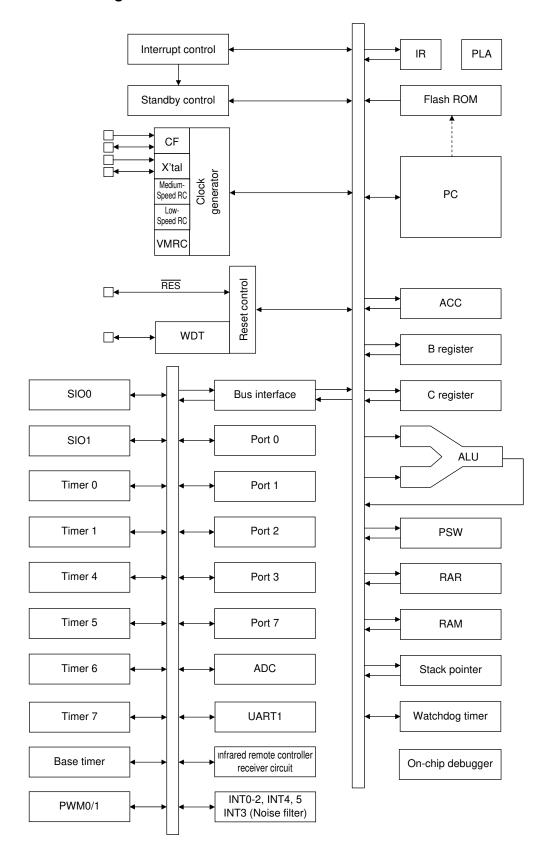
Package	Programming boards
SQFP48 (7×7)	W87F55256SQ


Package Dimensions

unit: mm (typ)

3163B

Pin Assignment


SQIP48 (7×7) "Lead-/Halogen-free type"

SQFP	NAME
1	P73/INT3/T0IN/RMIN
2	RES
3	XT1/AN10
4	XT2/AN11
5	V _{SS} 1
6	CF1/AN12
7	CF2/AN13
8	V _{DD} 1
9	P10/S00
10	P11/SI0/SB0
11	P12/SCK0
12	P13/SO1
13	P14/SI1/SB1
14	P15/SCK1
15	P16/T1PWML
16	P17/T1PWMH/BUZ

SQFP	NAME
17	PWM1
18	PWM0
19	V _{DD} 2
20	V _{SS} 2
21	P00/AN0
22	P01/AN1
23	P02/AN2
24	P03/AN3
25	P04/AN4
26	P05/CKO/AN5
27	P06/T6O/AN6
28	P07/T7O/AN7
29	P20/UTX/INT4/T1IN
30	P21/URX/INT4/T1IN
31	P22/INT4/T1IN
32	P23/INT4/T1IN

SQFP	NAME
33	P24/INT5/T1IN
34	P25/INT5/T1IN
35	P26/INT5/T1IN
36	P27/INT5/T1IN
37	P36
38	P35
39	V _{DD} 3
40	V _{SS} 3
41	P34
42	P33
43	P32
44	P31
45	OWP0
46	P70/INT0/T0LCP/AN8
47	P71/INT1/T0HCP/AN9
48	P72/INT2/T0IN

System Block Diagram

Pin Description

Pin Name	I/O				Description			Option
$V_{\mbox{SS}}$ 1 to $V_{\mbox{SS}}$ 3	-	- power supp	ower supply pins					No
V _{DD} 1 to V _{DD} 3	-	+ power sup	ply pin					No
Port 0	I/O	• 8-bit I/O po	rt					Yes
P00 to P07		• I/O specifia	ıble in 1-bit unit	s				
		• Pull-up res	istors can be tu	rned on and off i	n 1-bit units.			
		HOLD rese	et input					
		Port 0 inter	rupt input					
		Pin function	ns					
		P05: Syste	m clock output					
		P06: Timer	6 toggle outpu	t				
		P07: Timer	7 toggle outpu	t				
		P00(AN0)	to P07(AN7): A	D converter inpu	t			
Port 1	I/O	• 8-bit I/O po	8-bit I/O port					
P10 to P17			ıble in 1-bit unit					
				rned on and off i	n 1-bit units.			
		Pin function						
P10: SIO0 data output								
			data input/bus	I/O				
		P12: SIO0						
			data output	1/0				
			data input/bus	1/0				
		P15: SIO1	clock I/O 1PWML outpu					
			•	ıt/beeper output				
Port 2	I/O	• 8-bit I/O po	•	ibbeeper output				Yes
	- "	•	ານ ເble in 1-bit unit	·s				163
P20 to P27		· ·		rned on and off i	n 1-bit units			
		Pin function						
		P20: UAR1	-					
		P21: UAR1	receive					
		P20 to P23	: INT4 input/H0	OLD reset input/t	mer 1 event input	timer 0L capture	input/	
			timer 0H cap	ture input				
		P24 to P27	: INT5 input/H0	OLD reset input/t	mer 1 event input	timer 0L capture	input/	
			timer 0H cap	ture input				
		• Interrupt ad	knowledge typ	е				
			Rising	Falling	Rising &	H level	L level	
			nisiriy	railing	Falling	n ievei	Lievei	
		INT4	enable	enable	enable	disable	disable	
		INT5	enable	enable	enable	disable	disable	
Port 3	I/O	• 6-bit I/O po	rt					Yes
P31 to P36	7	• I/O specifia	ıble in 1-bit unit	s				
		• Pull-up res	istors can be tu	rned on and off i	n 1-bit units.			

Continued on next page.

Continued from preceding page.

Pin Name	I/O		Description					
Port 7	I/O	• 4-bit I/O po	rt					No
P70 to P73		 I/O specifia 	ble in 1-bit unit	S				
		 Pull-up resi 	stors can be tu	rned on and off i	n 1-bit units.			
		Pin function	ns					
		P70: INT0 i	nput/HOLD res	et input/timer 0L	capture input/wat	chdog timer outpu	it	
			•	et input/timer 0H				
			•	•	event input/timer 0			
					vent input/timer 01	H capture input/		
				oller receiver inp	out			
		, , , , ,	` '	converter input				
		Interrupt act	knowledge type	9				,
			Rising	Falling	Rising & Falling	H level	L level	
		INT0	enable	enable	disable	enable	enable	
		INT1	enable	enable	disable	enable	enable	
		INT2	enable	enable	enable	disable	disable	
		INT3	enable	enable	enable	disable	disable]
PWM0	I/O	• PWM0 outp	•					No
51444	1/0	· ·	rpose I/O availa	able				
PWM1	I/O	• PWM1 outp	•	. 1. 1.				No
RES	1/0		rpose I/O availa					N.
	I/O		et Input/internal					No
XT1	Input		crystal oscillato	or input pin				No
		• Shared pins						
			rpose input por					
XT2	I/O		er input port: Al crystal oscillato					No
X12	1/0		•	or output piri				INO
			Shared pins General-purpose I/O port					
			er input port: Al	N11				
CF1	Input		sonator input p					No
. .		Shared pins						
			rpose input por	t				
			er input port: Al					
CF2	I/O		sonator output					No
		Shared pins	-	-				
			rpose I/O port					
			er input port: Al	N13				
OWP0	I/O	On-chip Deb	ugger pin					No

On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 On-chip Debugger Installation Manual"

Recommended Unused Pin Connections

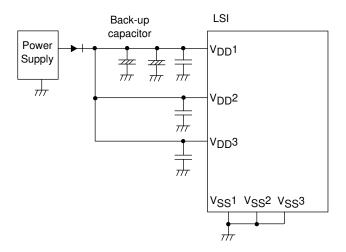
D. (No.)	Recommended Unused Pin Connections					
Port Name	Board	Software				
P00 to P07	Open	Output low				
P10 to P17	Open	Output low				
P20 to P27	Open	Output low				
P31 to P36	Open	Output low				
P70 to P73	Open	Output low				
PWM0, PWM1	Open	Output low				
XT1	Pulled low with a 100kΩ resistor or less	General-purpose input port				
XT2	Open	Output low				
CF1	Pulled low with a 100kΩ resistor or less	General-purpose input port				
CF2	Open	Output low				

Port Output Types

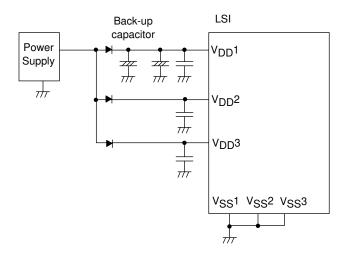
The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
D00 1 D07	4.1.9	1	CMOS	Programmable (Note 1)
P00 to P07	1 bit	2	Nch-open drain	Programmable (Note 1)
D101- D17	4.1.9	1	CMOS	Programmable
P10 to P17	1 bit	2	Nch-open drain	Programmable
D00 1 D07	4.1.9	1	CMOS	Programmable
P20 to P27	1 bit	2	Nch-open drain	Programmable (Note 1) Programmable (Note 1) Programmable Programmable
D04 + D00	4.15	1	CMOS	Programmable
P31 to P36	1 bit	2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
PWM0, PWM1	-	No	CMOS	No
XT1	-	No	Input for 32.768kHz crystal oscillator (Input only)	No
XT2	-	No	Output for 32.768kHz crystal oscillator (Nch-open drain when in general-purpose output mode)	No
CF1	-	No	Input for ceramic resonator oscillator (Input only)	No
CF2	-	No	Output for ceramic resonator oscillator (Nch-open drain when in general-purpose output mode)	No


Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low- and high-impedance pull-up connection is exercised in 1-bit units.

User Option Table


Option name	Option to be Applied on	Flash-ROM Version	Option Selected in Units of	Option selection
Port output type	P00 to P07	0	4 1-2	CMOS
		0	1 bit	Nch-open drain
	P10 to P17		419	CMOS
		0	1 bit	Nch-open drain
	P20 to P27		4.15	CMOS
		0	1 bit	Nch-open drain
	P31 to P36		419	CMOS
		0	1 bit	Nch-open drain
Program start				00000h
address	-	0	-	0FE00h

Note: To reduce V_{DD}1 signal noise and to increase the duration of the backup battery supply, V_{SS}1, V_{SS}2, and V_{SS}3 should connect to each other and they should also be grounded.

Example 1: During backup in hold mode, port output 'H' level is supplied from the back-up capacitor.

Example 2: During backup in hold mode, output is not held high and its value in unsettled.

Absolute Maximum Ratings at Ta=25°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

				7 55 55	DD		Spec	cification	
	Parameter	Symbol	Pins	Conditions	V _{DD} [V]	min	typ	max	unit
Max	imum Supply voltage	V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3	V _{DD} 1=V _{DD} 2=V _{DD} 3		-0.3		+6.5	
Inp	ut voltage	VI	XT1, CF1, RES			-0.3		V _{DD} +0.3	
	ut/Output tage	V _{IO}	Ports 0, 1, 2, 3 Port 7 PWM0, PWM1 XT2, CF2			-0.3		V _{DD} +0.3	V
	Peak output current	IOPH(1)	Ports 0, 1, 2, 3	CMOS output selected Per 1 applicable pin		-10			
		IOPH(2)	PWM0, PWM1	Per 1 applicable pin		-20			
		IOPH(3)	P71 to P73	Per 1 applicable pin		-5			
_	Mean output current	IOMH(1)	Ports 0, 1, 2, 3	CMOS output select Per 1 applicable pin		-7.5			
rren	(Note 1-1)	IOMH(2)	PWM0, PWM1	Per 1 applicable pin		-15			
t cu		IOMH(3)	P71 to P73	Per 1 applicable pin		-3			
ndtr	Total output	∑IOAH(1)	P71 to P73	Total of all applicable pins		-10			
e o	current	∑IOAH(2)	Port 0	Total of all applicable pins		-25			
High level output current		∑IOAH(3)	Port 1 PWM0, PWM1	Total of all applicable pins		-25			
主		∑IOAH(4)	Ports 0, 1 PWM0, PWM1	Total of all applicable pins		-45			
		∑IOAH(5)	Port 2 P35, P36	Total of all applicable pins		-25			
		∑IOAH(6)	P31 to P34	Total of all applicable pins		-25			
		∑IOAH(7)	Ports 2, 3	Total of all applicable pins		-45			
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2, 3	Per 1 applicable pin				20	mA
		IOPL(2)	PWM0, PWM1 P00, P01	Per 1 applicable pin				30	,
		IOPL(2)	Port 7	Per 1 applicable pin				30	
		.0(0)	XT2, CF2	. or rappingasio piii				10	
+	Mean output current (Note 1-1)	IOML(1)	P02 to P07 Ports 1, 2, 3 PWM0, PWM1	Per 1 applicable pin				15	
ırre	(Note 1-1)	IOML(2)	P00, P01	Per 1 applicable pin				20	
output current		IOML(3)	Port 7 XT2, CF2	Per 1 applicable pin				7.5	
<u>o</u>	Total output current	∑IOAL(1)	Port 7 XT2, CF2	Total of all applicable pins				15	
Low lev		∑IOAL(2)	Port 0	Total of all applicable pins				45	
		∑IOAL(3)	Port 1 PWM0, PWM1	Total of all applicable pins				45	
		∑IOAL(4)	Ports 0, 1 PWM0, PWM1	Total of all applicable pins				80	
		∑IOAL(5)	Port 2 P35, P36	Total of all applicable pins				45	
		Σ IOAL(6)	P31 to P34	Total of all applicable pins	1			45	
		Σ IOAL(7)	Ports 2, 3	Total of all applicable pins	1			60	
Pov	wer dissipation	Pdmax(1)	SQFP48(7×7)	Ta=-40 to +85°C Package only				129	
		Pdmax(2)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				383	mW
	erating nperature range	Topr		Todiciano board (Note 1-2)		-40		85	
Sto	rage nperature range	Tstg				-55		125	°C

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6 tmm, glass epoxy) is used.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Conditions at Ta=-40 to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Davamatav	Cumbal	Din/Domestre	Conditions			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating supply voltage	V _{DD}	V _{DD} 1=V _{DD} 2=V _{DD} 3	0.245μs≤tCYC≤200μs		2.7		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1=V _{DD} 2=V _{DD} 3	RAM and register contents sustained in HOLD mode.		2.0		5.5	
High level input voltage	V _{IH} (1)	Ports 1, 2, 3 P71 to P73 P70 port input/ interrupt side PWM0, PWM1		2.7 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Port 0		2.7 to 5.5	0.3V _{DD} +0.7		v _{DD}	
	V _{IH} (3)	Port 70 watchdog timer side		2.7 to 5.5	0.9V _{DD}		V _{DD}	
	V _{IH} (4)	XT1, XT2, CF1, CF2 RES		2.7 to 5.5	0.75V _{DD}		V _{DD}	V
Low level input voltage	V _{IL} (1)	Ports 1, 2, 3 P71 to P73		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
	V _{IL} (2)	P70 port input/ interrupt side PWM0, PWM1		2.7 to 4.0	V _{SS}		0.2V _{DD}	
		Port 0		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				2.7 to 4.0	V_{SS}		0.2V _{DD}	
	V _{IL} (3)	Port 70 watchdog timer side		2.7 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (4)	XT1, XT2, CF1, CF2 RES		2.7 to 5.5	V _{SS}		0.25V _{DD}	
Instruction cycle time	tCYC (Note 2-1)			2.7 to 5.5	0.245		200	μs
External system clock frequency	FEXCF	CF1	CF2 pin open System clock frequency division ratio=1/1 External system clock duty=50±5%	2.7 to 5.5	0.1		12	
			CF2 pin open System clock frequency division ratio=1/2 External system clock duty=50±5%	3.0 to 5.5	0.2		24.4	
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation See Fig. 1.	2.7 to 5.5		12]
range (Note 2-2)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation See Fig. 1.	2.7 to 5.5		10		MHz
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation. CF oscillation normal amplifier size selected. (CFLAMP=0) See Fig. 1.	2.7 to 5.5		4		
			4MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.	2.7 to 5.5		4		

Note 2-1: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-2: See Tables 1 and 2 for the oscillation constants.

Continued on next page.

Continued from preceding page.

Damanatan	Ol	Dia/Damada	O and distance			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Oscillation frequency range	FmVMRC		Frequency variable RC oscillation. (VM3FRQ1/0=0/1) (Note 2-3)	2.7 to 5.5		8.0		MHz
(Note 2-2)	FmRC		Internal Medium-speed RC oscillation	2.7 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal Low-speed RC oscillation	2.7 to 5.5	50	100	200	
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 3.	2.7 to 5.5		32.768		kHz
Frequency variable RC oscillation usable range	OpVMRC		Frequency variable RC oscillation. (VM3FRQ1/0=0/1)	2.7 to 5.5	6	8	10	MHz
Frequency variable RC	VmADJ(1)		Each step of V3RCHBn	2.7 to 5.5	3.6	7.0	11	
oscillation	VmADJ(2)		Each step of V3FCHBn	2.7 to 5.5	0.7	1.5	2.3	%
adjustment range	VmADJ(3)		Each step of V3DCHn	2.7 to 5.5	0.2	0.5	1.1	

Note 2-2: See Tables 1 and 2 for the oscillation constants.

Note 2-3: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the multifrequency RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

Electrical Characteristics at Ta=-40 to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Davisantav	Oh. al	Dia/Damada	O a maliki a ma			Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	2.7 to 5.5			1	
	I _{IH} (2)	XT1, XT2, CF2	Input port selected V _{IN} =V _{DD}	2.7 to 5.5			1	
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.7 to 5.5			15	
Low level input current	I _{IL} (1)	Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.7 to 5.5	-1			μА
	I _{IL} (2)	XT1, XT2, CF2	Input port selected VIN=VSS	2.7 to 5.5	-1			
	I _{IL} (3)	CF1	V _{IN} =V _{SS}	2.7 to 5.5	-15			
High level output voltage	V _{OH} (1)	Ports 0, 1, 2, 3 P71 to P73	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
	V _{OH} (2)		I _{OH} =-0.35mA	2.7 to 5.5	V _{DD} -0.4			
	V _{OH} (3)	PWM0, PWM1 P05(System clock	I _{OH} =-6mA	4.5 to 5.5	V _{DD} -1			
	V _{OH} (4)	output function used)	I _{OH} =-1.4mA	2.7 to 5.5	V _{DD} -0.4			V
Low level	V _{OL} (1)	Ports 0, 1, 2, 3	I _{OL} =10mA	4.5 to 5.5			1.5	
output voltage	V _{OL} (2)	PWM0, PWM1	I _{OL} =1.4mA	2.7 to 5.5			0.4	
	V _{OL} (3)	P00, P01	I _{OL} =25mA	4.5 to 5.5			1.5	
	V _{OL} (4)		I _{OL} =4mA	2.7 to 5.5			0.4	
	V _{OL} (5)	Port 7, XT2, CF2	I _{OL} =1.4mA	2.7 to 5.5			0.4	
Pull-up	Rpu(1)	Ports 0, 1, 2, 3	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
resistance	Rpu(2)	Port 7	When Port 0 selected low-impedance pull-up.	2.7 to 5.5	18	50	230	l.O
	Rpu(3)	Port 0	V _{OH} =0.9V _{DD} When Port 0 selected high-impedance pull-up.	2.7 to 5.5	100	210	400	kΩ
Hysteresis voltage	VHYS	Ports 1, 2, 3, 7 RES, XT2		2.7 to 5.5		0.1V _{DD}		٧
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS, f=1MHz, Ta=25°C	2.7 to 5.5		10		рF

Serial I/O Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

		Daramatar	Cumbal	Pin/Remarks	Conditions			Speci	fication	
	-	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 6.		2			
	×	Low level pulse width	tSCKL(1)				1			
	Input clock	High level pulse width	tSCKH(1)			2.7 to 5.5	1			+0)(0
clock	ul		tSCKHA(1)		Continuous data transmission/ reception mode See Fig. 6. (Note 4-1-2)		4			tCYC
Serial clock		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected See Fig. 6		4/3			
	ock	Low level pulse width	tSCKL(2)					1/2		tSCK
	Output clock	High level pulse width	tSCKH(2)			2.7 to 5.5		1/2		ISCK
	Ō		tSCKHA(2)		Continuous data transmission/ reception mode CMOS output selected. See Fig. 6.		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	tCYC
Serial input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of SIOCLK.		0.05			
Serial	Da	ta hold time	thDI(1)		See Fig. 6.	2.7 to 5.5	0.05			
	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-3)				(1/3)tCYC +0.08	μs
Serial output	Inpu		tdD0(2)		Synchronous 8-bit mode (Note 4-1-3)	2.7 to 5.5			1tCYC +0.08	
Serial	Output clock		tdD0(3)		(Note 4-1-3)	2.7 10 5.5			(1/3)tCYC +0.08	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: When using the serial clock input in the continuous data transmission/reception mode, make sure, at the beginning of continuous data transmission/reception, that the interval from the time SI0RUN is set while the serial clock is high till the first falling edge of the serial clock is longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

			O. was board	Pin/Remarks	Conditions			Specif	ication	
	ŀ	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(3)	SCK1(P15)	See Fig. 6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.7 to 5.5	1			tCYC
Serial clock	dul	High level pulse width	tSCKH(3)				1			ICYC
erial	~	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected		2			
S	out clock	Low level pulse width	tSCKL(4)		See Fig. 6.	2.7 to 5.5		1/2		10014
	Output	High level pulse width	tSCKH(4)					1/2		tSCK
put	Da	ita setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of		0.05			
Serial input	Da	ta hold time	thDI(2)		SIOCLK. See Fig. 6.	2.7 to 5.5	0.05			
Serial output	Ou	itput delay time	tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.	2.7 to 5.5			(1/3)tCYC +0.08	μѕ

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

D	0	D' (D	0 - 177			Spec	ification	
Parameter	Symbol	Pin/Remarks	Conditions	VDD[V]	min	typ	max	unit
High/low level	tPIH(1)	INT0(P70),	Interrupt source flag can be set.					
pulse width	tPIL(1)	INT1(P71),	Event inputs for timer 0 or 1 are					
		INT2(P72),	enabled.	2.7 to 5.5	1			
		INT4(P20 to P23),						
_		INT5(P24 to P27)						
	tPIH(2)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(2)	noise filter time	Event inputs for timer 0 are enabled.	2.7 to 5.5	2			+0\/0
		constant is 1/1						tCYC
	tPIH(3)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(3)	noise filter time	Event inputs for timer 0 are enabled.	2.7 to 5.5	64			
		constant is 1/32						
	tPIH(4)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(4)	noise filter time	Event inputs for timer 0 are enabled.	2.7 to 5.5	256			
		constant is 1/128						
7	tPIH(5)	RMIN(P73)	Recognized by the infrared remote	27+0 5 5	4			RMCK
	tPIL(5)		controller receiver circuit as a signal.	2.7 to 5.5	4			(Note 5-1)
	tPIL(6)	RES	Resetting is enabled.	2.7 to 5.5	200			μs

Note 5-1: Represents the period of the reference clock (1 to 128 tCYC or the source frequency of the subclock) for the infrared remote controller receiver circuit.

AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

<12bits AD Converter Mode at Ta = -40 to +85°C>

	0 1	Div/Days day	0 - 1111			Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		2.7 to 5.5		12		bit
Absolute	ET	AN7(P07),	(Note 6-1)	3.0 to 5.5			±16	1.00
accuracy		AN8(P70),	(Note 6-1)	2.7 to 3.6			±20	LSB
Conversion	TCAD	AN9(P71), AN10(XT1),	See Conversion time calculation	4.5 to 5.5	32		115	
time	timo `	AN11(XT2),	formulas. (Note 6-2)	3.0 to 5.5	64		115	μs
		AN12(CF1), AN13(CF2)	See Conversion time calculation formulas. (Note 6-2)	2.7 to 3.6	410		425	μο
Analog input voltage range	VAIN			2.7 to 5.5	V _{SS}		V_{DD}	V
Analog port	IAINH(1)	analog channel	VAIN=V _{DD}	2.7 to 5.5			1	
input current	IAINL(1)	except AN12	VAIN=V _{SS}	2.7 to 5.5	-1			
	IAINH(2)	AN12	VAIN=V _{DD}	2.7 to 5.5			15	μΑ
	IAINL(2)		VAIN=V _{SS}	2.7 to 5.5	-15			

<8bits AD Converter Mode at Ta = -40 to +85°C>

D	0	Di (Dama)	O constitue of			Specif	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		2.7 to 5.5		8		bit
Absolute accuracy	ET	AN7(P07), AN8(P70),	(Note 6-1)	2.7 to 5.5			±1.5	LSB
Conversion	TCAD	AN9(P71),	See Conversion time calculation	4.5 to 5.5	20		70	
time		AN10(XT1), AN11(XT2),	formulas. (Note 6-2)	3.0 to 5.5	40		70	μs
	AN12(CF	AN12(CF1), AN13(CF2)	See Conversion time calculation formulas. (Note 6-2)	2.7 to 3.6	250		265	μο
Analog input voltage range	VAIN	71110(012)		2.7 to 5.5	V _{SS}		V _{DD}	٧
Analog port	IAINH(1)	analog channel	VAIN=V _{DD}	2.7 to 5.5			1	
input current	IAINL(1)	except AN12	VAIN=V _{SS}	2.7 to 5.5	-1			
	IAINH(2)	AN12	VAIN=V _{DD}	2.7 to 5.5			15	μΑ
	IAINL(2)		VAIN=V _{SS}	2.7 to 5.5	-15			

Conversion time calculation formulas:

12bits AD Converter Mode: TCAD(Conversion time)= ((52/(AD division ratio))+2)×(1/3)×tCYC 8bits AD Converter Mode: TCAD(Conversion time)=((32/(AD division ratio))+2)×(1/3)×tCYC

< Recommended Operating Conditions>

External	Operating supply	System division ratio	Cycle time	AD division	AD conversio	n time (TCAD)
oscillation (FmCF)	voltage range (V _{DD})	(SYSDIV)	(tCYC)	ratio (ADDIV)	12bit AD	8bit AD
OE 10MH-	4.5V to 5.5V	1/1	250ns	1/8	34.8μs	21.5μs
CF-12MHz	3.0V to 5.5V	1/1	250ns	1/16	69.5μs	42.8µs
CF-10MHz	4.5V to 5.5V	1/1	300ns	1/8	41.8μs	25.8μs
GF-10IVIH2	3.0V to 5.5V	1/1	300ns	1/16	83.4µs	51.4μs
OF AMILE	3.0V to 5.5V	1/1	750ns	1/8	104.5μs	64.5µs
CF-4MHz	2.7V to 3.6V	1/1	750ns	1/32	416.5μs	256.5µs

Note 6-1: The quantization error $(\pm 1/2LSB)$ must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

$\textbf{Consumption Current Characteristics} \ \, at \ \, Ta = -40^{\circ}C \ \, to \ \, +85^{\circ}C, \ \, V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pin/	Conditions			Specific	ation	1
i didiliotoi	- Cynnoon	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	2.7 to 5.5		4.5	9.5	
(Note 7-1)			Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		2.7	6.5	
	IDDOP(2)		CF1=24MHz external clock FsX'tal=32.768kHz crystal oscillation mode System clock set to CF1 side	3.0 to 5.5		5	10.5	
			Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio	3.0 to 3.6		3	7.2	
	IDDOP(3)		FmCF=10MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 10MHz side Internal Low speed and Medium speed RC	2.7 to 5.5		4	8.2	
			oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		2.4	5.8	
	IDDOP(4)		FmCF=4MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 4MHz side	2.7 to 5.5		2	4.3	
			Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		1.3	3	mA
	IDDOP(5)		CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode	2.7 to 5.5		0.8	2.1	
			System clock set to 4MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio	2.7 to 3.6		0.5	1.2	
	IDDOP(6)		External FmCF oscillation stopped. FsX'tal=32.768kHz Crystal oscillation mode System clock set to internal Medium speed RC	2.7 to 5.5		0.5	1.8	
			oscillation. Internal Low speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.7 to 3.6		0.3	0.95	
	IDDOP(7)		External FmCF oscillation stopped. FsX'tal=32.768kHz crystal oscillation mode System clock set to 8MHz with Frequency	2.7 to 5.5		3.5	6.8	
			variable RC oscillation Internal Low speed and Medium speed RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		2.3	5.2	
	IDDOP(8)		External FsX'tal and FmCF oscillation stopped. System clock set to internal Low speed RC oscillation.	2.7 to 5.5		58	200	
			Internal Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio current do not include current that flows.	2.7 to 3.6	_	37	135	μΑ

Note 7-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pin/	Conditions			Specific	ation	
	-	Remarks		V _{DD} [V]	min	typ	max	unit
Normal mode consumption current (Note 7-1)	IDDOP(9)	$V_{DD}1$ $= V_{DD}2$ $= V_{DD}3$	External FmCF oscillation stopped. FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal Low speed and Medium speed RC	2.7 to 5.5		38	130	μА
(oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	2.7 to 3.6		12	65	μ
HALT mode consumption current (Note 7-1)	IDDHALT(1)	$V_{DD}1$ $= V_{DD}2$ $= V_{DD}3$	HALT mode • FmCF=12MHz ceramic oscillation mode • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 12MHz side	2.7 to 5.5		2	3.1	
(Note 7 T)			Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		0.9	1.7	
	IDDHALT(2)		HALT mode • CF1=24MHz external clock • FsX'tal=32.768kHz crystal oscillation mode • System clock set to CF1 side	3.0 to 5.5		2.2	3.5	
			Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio	3.0 to 3.6		1	2	
	IDDHALT(3)		HALT mode • FmCF=10MHz ceramic oscillation mode • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 10MHz side	2.7 to 5.5		1.8	2.8	
			Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		0.8	1.5	
	IDDHALT(4)		HALT mode • FmCF=4MHz ceramic oscillation mode • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 4MHz side	2.7 to 5.5		1	1.6	mA
			Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		0.4	0.8	
	IDDHALT(5)		HALT mode • CF oscillation low amplifier size selected. (CFLAMP=1) • FmCF=4MHz ceramic oscillation mode • FsX'tal=32.768kHz crystal oscillation mode	2.7 to 5.5		0.5	1	
			System clock set to 4MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio	2.7 to 3.6		0.2	0.5	
	IDDHALT(6)		HALT mode • External FmCF oscillation stopped. • FsX'tal=32.768kHz crystal oscillation mode • System clock set to internal Medium speed RC	2.7 to 5.5		0.35	0.8	
			oscillation Internal Low speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.7 to 3.6		0.15	0.4	

Note 7-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Continued on next page.

Continued from preceding page

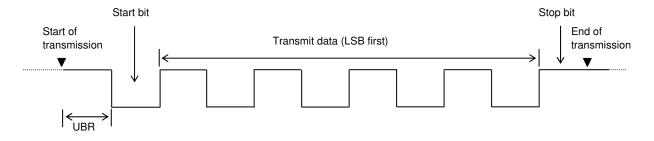
Parameter	Symbol	Pin/	Conditions			Specific	ation	
Farameter	Symbol	remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
HALT mode consumption current (Note 7-1)	IDDHALT(7)	$V_{DD}1$ = $V_{DD}2$ = $V_{DD}3$	HALT mode External FmCF oscillation stopped. FsX'tal=32.768kHz crystal oscillation mode System clock set to 8MHz with Frequency	2.7 to 5.5		1.5	2.4	
(Note 7-1)			variable RC oscillation Internal Low speed and Medium speed RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		1	1.6	mA
	IDDHALT(8)		HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal Low speed RC oscillation.	2.7 to 5.5		18	74	
			Internal Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		9	40	
	IDDHALT(9)		HALT mode • External FmCF oscillation stopped. • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 32.768 kHz side	2.7 to 5.5		27	95	μА
			Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio	2.7 to 3.6		5.5	42	
HOLD mode consumption	IDDHOLD(1)	V _{DD} 1 = V _{DD} 2	+OLD mode - CF1=V _{DD} or open	2.7 to 5.5		0.04	20	
current (Note 7-1)		= V _{DD} 3	(External clock mode)	2.7 to 3.6		0.03	10	
Timer HOLD mode	IDDHOLD(2)		Timer HOLD mode • CF1=VDD or open (External clock mode)	2.7 to 5.5		25	88	μА
consumption current (Note 7-1)			FsX'tal=32.768kHz crystal oscillation mode	2.7 to 3.6		4.5	38	

Note 7-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

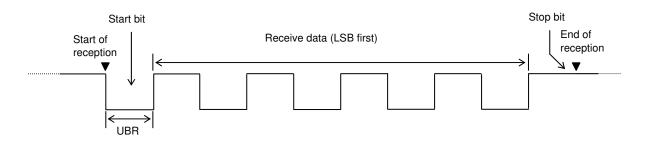
F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Davasatas	O. week ed	Dia/Damanta	Conditions		Specification				
Parameter	Symbol	Pin/Remarks		V _{DD} [V]	min	typ	max	unit	
Onboard programming current	IDDFW	$V_{DD}1$ $= V_{DD}2$ $= V_{DD}3$	Only current of the Flash block.	2.7 to 5.5		5	10	mA	
Programming	tFW(1)		Erasing time	0.74- 5.5		20	30	ms	
time	tFW(2)		Programming time	2.7 to 5.5		40	60	μs	

UART (Full Duplex) Operating Conditions at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0$ V


Ī	Parameter	Symbol	Pin/Remarks	Conditions		Specification			
					V _{DD} [V]	min	typ	max	unit
	Transfer rate	UBR	UTX(P20), URX(P21)		2.7 to 5.5	16/3		8192/3	tCYC

Data length: 7, 8, and 9 bits (LSB first)


Stop bits: 1 bit (2-bit in continuous data transmission)

Parity bits: None

Example of Continuous 8-bit Data Transmission Mode Processing (first transmit data=55H)

Example of Continuous 8-bit Data Reception Mode Processing (first receive data=55H)

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

• CF oscillation normal amplifier size selected (CFLAMP=0)

Nominal	Vendor	Oscillator Name		Circuit (Constant		Operating Voltage Range [V]	Oscillation Stabilization Time (Symbol: tmsCF)		Remarks
Frequency Name	Name		C1 [pF]	C2 [pF]	Rf1 [Ω]	Rd1 [Ω]		typ [ms]	max [ms]	
12MHz		CSTCE12M0G52-R0	(10)	(10)	Open	680	2.7 to 5.5	0.03		
400411-		CSTCE10M0G52-R0	(10)	(10)	Open	680	2.7 to 5.5	0.03		
10MHz		CSTLS10M0G53-B0	(15)	(15)	Open	680	2.7 to 5.5	0.03		
8MHz		CSTCE8M00G52-R0	(10)	(10)	Open	1.0k	2.7 to 5.5	0.03		
OIVITZ	MURATA	CSTLS8M00G53-B0	(15)	(15)	Open	1.0k	2.7 to 5.5	0.03		Internal C1,C2
CMU-		CSTCR6M00G53-R0	(15)	(15)	Open	1.5k	2.7 to 5.5	0.05		01,02
6MHz		CSTLS6M00G53-B0	(15)	(15)	Open	1.5k	2.7 to 5.5	0.03		
4MHz		CSTCR4M00G53-R0	(15)	(15)	Open	1.5k	2.7 to 5.5	0.05		
4IVITZ		CSTLS4M00G53-B0	(15)	(15)	Open	1.5k	2.7 to 5.5	0.03		

• CF oscillation low amplifier size selected (CFLAMP=1)

Nominal	Vendor Name	Oscillator Name	Circuit Constant				Operating Voltage Range	Oscillation Stabilization Time (Symbol: tmsCF)		Remarks
Frequency			C1 [pF]	C2 [pF]	Rf1	Rd1	[V]	typ	max	
			[br]	[bL]	[Ω]	[Ω]		[ms]	[ms]	
4MHz	MUDATA	CSTCR4M00G53-R0	(15)	(15)	Open	1.0k	2.7 to 5.5	0.07		Internal
4MHZ	MURATA	MURATA CSTLS4M00G53-B0	(15)	(15)	Open	1.0k	2.7 to 5.5	0.05		C1,C2

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after an instruction for starting the main clock oscillation circuit or the time interval that is required for the oscillation to get stabilized (when oscillation is enabled before HOLD or X'tal HOLD mode is entered) after that mode is released (see Figure 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

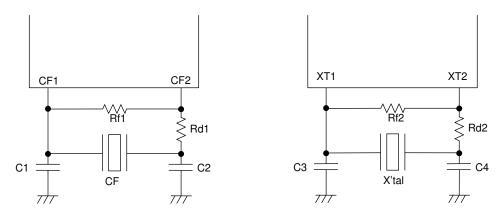
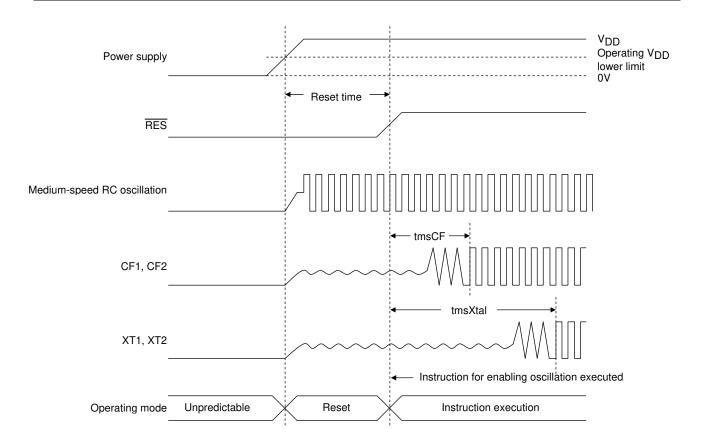
Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

Nominal	Vendor Name	Oscillator Name		Circuit (Constant		Operating Voltage Range [V]	Oscillation Stabilization Time (Symbol: tmsXtal)		Remarks
Frequency			C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]		typ [s]	max [s]	
32.768kHz	EPSON TOYOCOM	MC-306	18	18	Open	560k	2.7 to.5.5	1.5	3.0	Applicable CL value= 12.5pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit or the time interval that is required for the oscillation to get stabilized (when oscillation is enabled before HOLD mode is entered) after that mode is released (see Figure 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

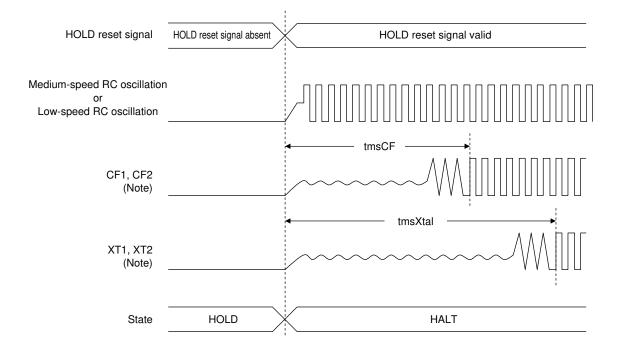
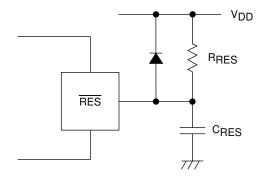

Figure 1 CF Oscillator Circuit Figure 2 XT Oscillator Circuit

Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilizing Time

HOLD Release Signal and Oscillation Stabilization Time (Note: When oscillation is enabled before HOLD mode is entered.)

Figure 4 Oscillation Stabilization Times

Note:

Determine the value of C_{RES} and R_{RES} so that the reset signal is present for a period of 200µs after the supply voltage goes beyond the lower limit of the IC's operating voltage.

Figure 5 Reset Circuit

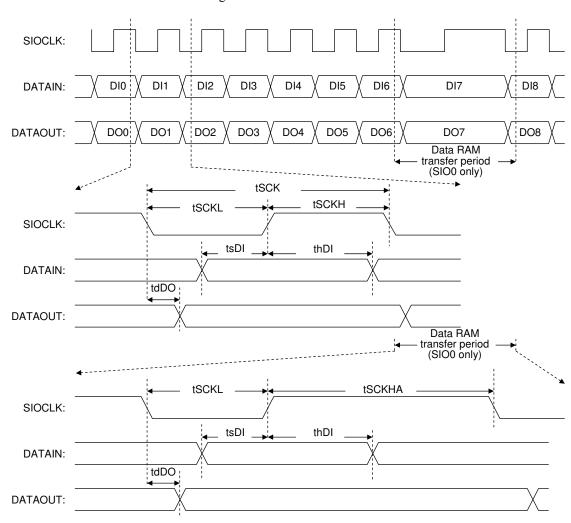


Figure 6 Serial Input/Output Wave Forms

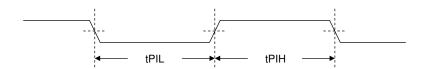


Figure 7 Pulse Input Timing Signal Waveform