

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

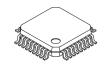
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

8-bit Microcontroller with 8K-byte Flash ROM and 256-byte RAM



ON Semiconductor®

www.onsemi.com

Overview

The LC87FBH08A is an 8-bit microcontroller that, centered around a CPU running at a minimum bus cycle time of 83.3ns, integrates on a single chip a number of hardware features such as 8K-byte flash ROM (On-board-programmable), 256-byte RAM, an On-chip-debugger (flash versions only), sophisticated 16-bit timers/counters (may be divided into 8-bit timers), a 16-bit timer/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), two 8-bit timers with a prescaler, a base timer serving as a time-of-day clock, a high-speed clock counter, a synchronous SIO interface, an asynchronous/synchronous SIO interface, a UART interface (full duplex), two 12-bit PWM channels, a 12-bit/8-bit 11-channel AD converter, a high-speed clock counter, a system clock frequency divider, an internal high-accuracy oscillator, a reference voltage generator circuit, an internal reset and a 20-source 10-vector interrupt feature.

LQFP36 7x7 / QFP36

VQLP32 4x4 [Build to order]

Features

- ■Flash ROM
 - 8192 × 8 bits
 - Capable of On-board programming with wide range (2.2 to 5.5V) of voltage source.
 - Block-erasable in 128 byte units
 - Writable in 2-byte units

■RAM

- 256×9 bits
- ■Minimum Bus Cycle
 - 83.3ns (12MHz at V_{DD}=2.7V to 5.5V, Ta=-40°C to +85°C)
 - 100ns (10MHz at V_{DD}=2.2V to 5.5V, Ta=-40°C to +85°C)
 - 250ns (4MHz at V_{DD}=1.8V to 5.5V, Ta=-40°C to +85°C) Note: The bus cycle time here refers to the ROM read speed.

* This product is licensed from Silicon Storage Technology, Inc. (USA).

ORDERING INFORMATION

See detailed ordering and shipping information on page 32 of this data sheet.

- ■Minimum Instruction Cycle Time
 - 250ns (12MHz at VDD=2.7V to 5.5V, Ta=-40°C to +85°C)
 - 300ns (10MHz at V_{DD}=2.2V to 5.5V, Ta=-40°C to +85°C)
 - 750ns (4MHz at V_{DD} =1.8V to 5.5V, Ta=-40°C to +85°C)

■Ports

• Normal withstand voltage I/O ports

Ports I/O direction can be designated in 1-bit units Ports I/O direction can be designated in 4-bit units

• Dedicated oscillator ports/input ports

• Reset pin

• Power pins

17 (P1n, P20, P21, P30, P31, P70 to P73 CF2/XT2)

8 (P0n) 1 (CF1/XT1)

 $1(\overline{RES})$

3 (VSS1, VSS2, VDD1)

■Timers

• Timer 0: 16-bit timer/counter with a capture register.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/

counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM)

- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts are programmable in 5 different time schemes

■High-speed Clock Counter

- Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
- Can generate output real time.

■SIO

- SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle =4/3 tCYC)
 - 3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1 bit units, suspension and resumption of data transmission possible in 1 byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

■UART1

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2-bit in continuous data transmission)
- Built-in baudrate generator

- ■AD converter: 12 bits/8 bits × 11 channels
 - Successive approximation
 - 12 bits/8 bits AD converter resolution selectable
 - Port input: 10 channels, Reference voltage input: 1 channel
- ■PWM: Multifrequency 12-bit PWM × 2 channels
- ■Reference voltage generator circuit (VREF17)
 - Capable of monitoring the power supply voltage by AD conversion of frequency variable RC oscillator circuit's reference voltage.
- ■Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)
 - Noise rejection function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)

■Clock Output Function

- Capable generating clock outputs with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 of the source clock selected as the system clock.
- Capable of generating the source clock for the subclock.

■Watchdog Timer

- Capable of generating an internal reset on an overflow of a timer running on the low-speed RC oscillator clock or subclock.
- Operating mode at standby is selectable from 3 modes (continue counting/stop operation/stop counting with a count value held).

■Interrupts

- 20 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/INT5/base timer
5	00023H	H or L	тон
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/UART1 receive
8	0003BH	H or L	SIO1/UART1 transmit
9	00043H	H or L	ADC/T6/T7/ PWM4, PWM5
10	0004BH	H or L	Port 0

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- ■Subroutine Stack Levels: 128levels (The stack is allocated in RAM.)
- ■High-speed Multiplication/Division Instructions
 - 16 bits × 8 bits
 24 bits × 16 bits
 16 bits ÷ 8 bits
 24 bits ÷ 16 bits
 16 bits ÷ 16 bits
 17 tCYC execution time
 18 tCYC execution time
 19 tCYC execution time
 10 tCYC execution time
 10 tCYC execution time
 11 tCYC execution time
 12 tCYC execution time
 13 tCYC execution time
 14 tCYC execution time
 15 tCYC execution time
 16 tCYC execution time
 17 tCYC execution time
 18 tCYC execution time
 19 tCYC execution time
 10 tCYC execution time

■Oscillation Circuits

• Internal oscillation circuits

Low-speed RC oscillation circuit (SRC): For system clock / For Watchdog timer (100kHz)

Medium-speed RC oscillation circuit (RC): For system clock (1MHz)

Frequency variable RC oscillation circuit (MRC): For system clock (8MHz ± 1.5%, Ta=-10°C to +85°C)

• External oscillation circuits

Hi-speed CF oscillation circuit (CF): For system clock, with internal Rf

Low speed crystal oscillation circuit (X'tal): For low-speed system clock / For Watchdog timer, with internal Rf

- 1) The CF and crystal oscillation circuits share the same pins. The active circuit is selected under program control.
- 2) Both the CF and crystal oscillator circuits stop operation on a system reset. After reset is released, oscillation is stopped so start the oscillation operation by program.

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, and 76.8μs (at a main clock rate of 10MHz).

■Internal Reset Function

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 8 levels (1.67V, 1.97V, 2.07V, 2.37V, 2.57V, 2.87V, 3.86V, and 4.35V) through option configuration.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use or disuse of the LVD function and the low voltage threshold level (7 levels: 1.91V, 2.01V, 2.31V, 2.51V, 2.81V, 3.79V, 4.28V) can be selected by optional configuration.

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
- 1) Oscillation is not halted automatically.
- 2) There are four ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by low-voltage detection
 - (3) System resetting by watchdog timer
 - (4) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, low-/medium-/ Frequency variable RC, and crystal oscillators automatically stop operation.

Note: The oscillation of the low-speed RC oscillator is also controlled directly by the watchdog timer and its standby-mode-time oscillation is also controlled.

- 2) There are five ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by low-voltage detection
 - (3) System resetting by watchdog timer
 - (4) Having an interrupt source established at either INT0, INT1, INT2, INT4, INT5
 - * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (5) Having an interrupt source established at port 0.

Continued on next page.

Continued from preceding page.

- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The CF, low-/medium-/ Frequency variable RC oscillators automatically stop operation.

Note: The oscillation of the low-speed RC oscillator is also controlled directly by the watchdog timer and its standby-mode-time oscillation is also controlled.

- 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
- 3) There are six ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer or low-voltage detection.
 - (3) System resetting by watchdog timer or low-voltage detection.
 - (4) Having an interrupt source established at either INT0, INT1, INT2, INT4, INT5
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (5) Having an interrupt source established at port 0.
 - (6) Having an interrupt source established in the base timer circuit.

Note: Available only when X'tal oscillation is selected.

■Onchip Debugger (flash versions only)

- Supports software debugging with the microcontroller mounted on the target board.
- Software break setting
- Stepwise execution of instructions
- Real time RAM data monitoring function

All the RAM data map contents can be monitored and rewritten on the screen when the program is running. (Part of the SFR data cannot be rewritten.)

• Two channels of on-chip debugger pins are available to be compatible with small pin count devices. DBGP0 (P0), DBGP1 (P1)

■Data Security Function (flash versions only)

• Protects the program data stored in flash memory from unauthorized read or copy.

Note: This data security function does not necessarily provide absolute data security.

■Package Form

- QFP36(7mm×7mm) : Pb-Free and Halogen Free type
- VQLP32(4mm×4mm): Pb-Free and Halogen Free type (Build-to-order)

■Development Tools

- On-chip-debugger: (1) TCB87 TypeB + LC87FBH08A
 - (2) TCB87 TypeC (3 wire version) + LC87FBH08A

■Flash ROM Programming Boards

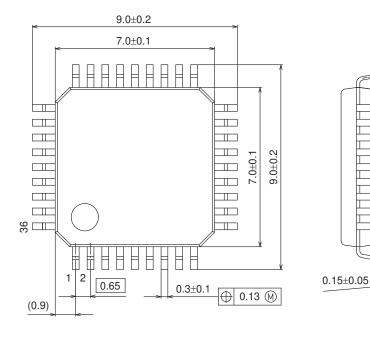
Package	Programming boards		
QFP36 (7mm×7mm)	W87F24Q		
VQLP32 (4mm×4mm)	(build-to-order)		

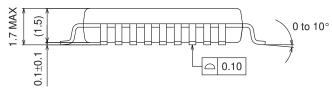
■Flash ROM Programmer

Maker		Model	Supported version	Device
	Single Programmer	AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)	Rev 03.28 or later	87F008SU
Flash Support Group, Inc. (FSG)	Gang	AF9723/AF9723B(Main body) (Including Ando Electric Co., Ltd. models)	-	-
	Programmer	AF9833(Unit) (Including Ando Electric Co., Ltd. models)	-	-
Flash Support Group, Inc. (FSG) + ON Semiconductor (Note 1)	In-circuit Programmer	AF9101/AF9103(Main body) (FSG models) SIB87(Inter Face Driver) (ON Semiconductor model)	(Note 2)	-
ON Semiconductor	Single/Gang Programmer In-circuit/Gang Programmer	SKK / SKK Type B / SKK Type C (SanyoFWS) SKK-DBG Type B / SKK-DBG Type C (SanyoFWS)	Application Version 1.07 or later Chip Data Version 2.38 or later	LC87FBH08

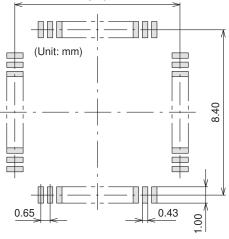
For information about AF-Series:

Flash Support Group, Inc. TEL: +81-53-459-1050 E-mail: sales@j-fsg.co.jp

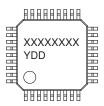

Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from our company (SIB87) together can give a PC-less, standalone on-board-programming capabilities.

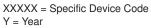

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or our company for the information.

Package Dimensions

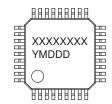

unit: mm

LQFP36 7x7 / QFP36 CASE 561AV ISSUE A





SOLDERING FOOTPRINT* 8.40



GENERIC MARKING DIAGRAM*

DD = Additional Traceability Data

 0.5 ± 0.2

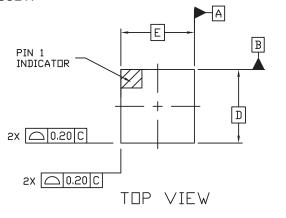
XXXXX = Specific Device Code Y = Year

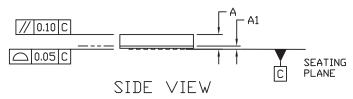
M = Month

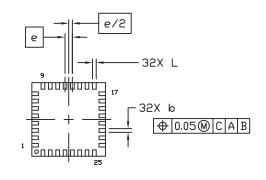
DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present.

NOTE: The measurements are not to guarantee but for reference only.

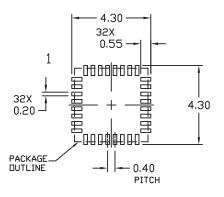

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


Package Dimensions


unit: mm
[Build to order]

VQLP32 4x4 CASE 602AE

CASE 602A ISSUE A



BOTTOM VIEW

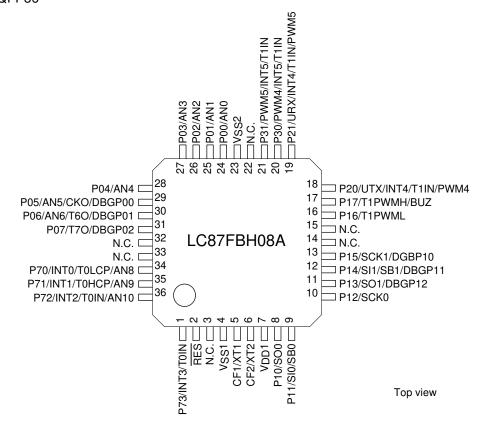
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS

	MILLIMETERS		
DIM	MIN.	MAX.	
Α		0.85	
A1		0.05	
b	0.15	0.25	
D	4.00	BSC	
Е	4.00 BSC		
е	0.40 BSC		
L	0.30	0.40	

RECOMMENDED
MOUNTING FOOTPRINT

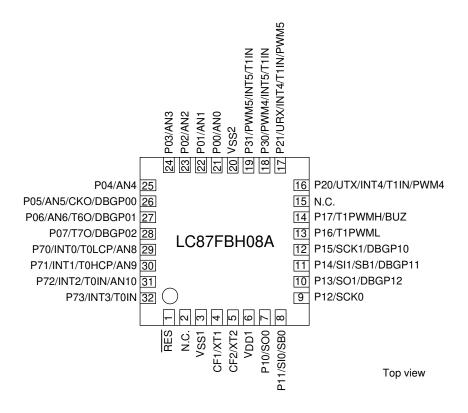
GENERIC MARKING DIAGRAM*


XXXXX = Specific Device Code Y = Year M = Month DDD = Additional Traceability Data

XXXXX = Specific Device Code Y = Year DD = Additional Traceability Data *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

Pin Assignment

LQFP36 7x7 / QFP36

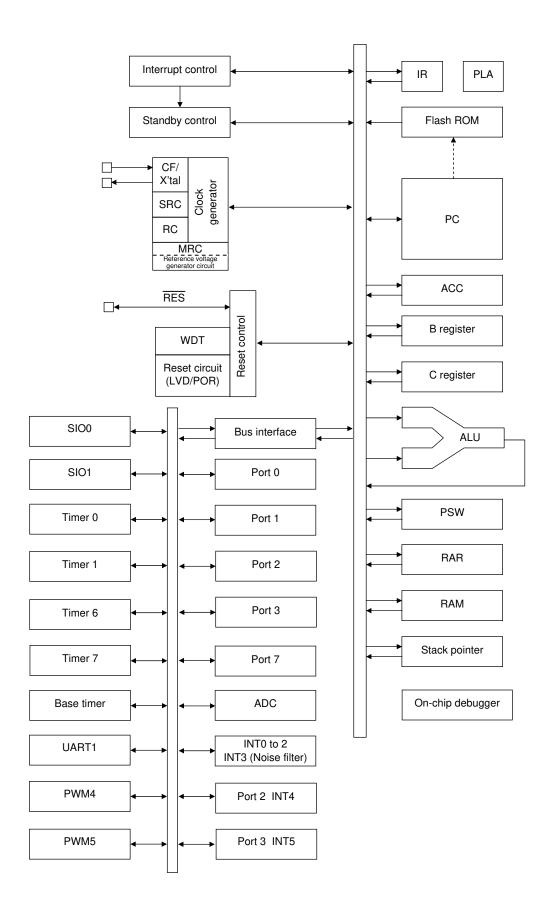

QFP36	NAME		
1	P73/INT3/T0IN		
2	RES		
3	N.C.		
4	V _{SS} 1		
5	CF1/XT1		
6	CF2/XT2		
7	V _{DD} 1		
8	P10/SO0		
9	P11/SI0/SB0		
10	P12/SCK0		
11	P13/SO1/DBGP12		
12	P14/SI1/SB1/DBGP11		
13	P15/SCK1/DBGP10		
14	N.C.		
15	N.C.		
16	P16/T1PWML		
17	P17/T1PWMH/BUZ		
18	P20/UTX/INT4/T1IN/PWM4		

QFP36	NAME		
19	P21/URX/INT4/T1IN/PWM5		
20	P30/PWM4/INT5/T1IN		
21	P31/PWM5/INT5/T1IN		
22	N.C.		
23	V _{SS} 2		
24	P00/AN0		
25	P01/AN1		
26	P02/AN2		
27	P03/AN3		
28	P04/AN4		
29	P05/AN5/CKO/DBGP00		
30	P06/AN6/T6O/DBGP01		
31	P07/T7O/DBGP02		
32	N.C.		
33	N.C.		
34	P70/INT0/T0LCP/AN8		
35	P71/INT1/T0HCP/AN9		
36	P72/INT2/T0IN/AN10		

Note: N.C. pins must be held open (disconnected).

Pin Assignment

VQLP32 4x4 [Buitd to order]



VQLP32	NAME		
1	RES		
2	N.C.		
3	V _{SS} 1		
4	CF1/XT1		
5	CF2/XT2		
6	V _{DD} 1		
7	P10/SO0		
8	P11/SI0/SB0		
9	P12/SCK0		
10	P13/SO1/DBGP12		
11	P14/SI1/SB1/DBGP11		
12	P15/SCK1/DBGP10		
13	P16/T1PWML		
14	P17/T1PWMH/BUZ		
15	N.C.		
16	P20/UTX/INT4/T1IN/PWM4		

VQLP32	NAME			
17	P21/URX/INT4/T1IN/PWM5			
18	P30/PWM4/INT5/T1IN			
19	P31/PWM5/INT5/T1IN			
20	V _{SS} 2			
21	P00/AN0			
22	P01/AN1			
23	P02/AN2			
24	P03/AN3			
25	P04/AN4			
26	P05/AN5/CKO/DBGP00			
27	P06/AN6/T6O/DBGP01			
28	P07/T7O/DBGP02			
29	P70/INT0/T0LCP/AN8			
30	P71/INT1/T0HCP/AN9			
31	P72/INT2/T0IN/AN10			
32 P73/INT3/T0IN				

Note: N.C. pins must be held open (disconnected).

System Block Diagram

Pin Function Chart

Option				
No				
No				
-				
Yes				
.,				
Yes				
Yes				
1				
]				
]				
Yes				
<u>,</u>				
Pin functions P30: PWM4 output P31: PWM5 output P30 to P31: INT5 input/HOLD reset input / timer 1 event input / timer 0L capture input / timer 0H capture input Interrupt acknowledge types Rising Falling Rising & H level L level Falling INT5 enable enable enable disable disable Figure 1 event input / timer 0L capture				

Continued on next page.

Continued from preceding page.

Pin Name	I/O	Description						Option	
Port 7	I/O	4-bit I/O port							
P70 to P73	1	• I/O specifiable in 1 bit units							
		Pull-up resistors can be turned on and off in 1 bit units.							
		Pin functions							
		P70: INT0 inp	ut / HOLD reset	input / timer 0L o	capture input				
		P71: INT1 inp	ut / HOLD reset	input / timer 0H	capture input				
		P72: INT2 inp	ut / HOLD reset	input / timer 0 ev	vent input / timer	0L capture inpu	ut		
		P73: INT3 inp	ut (with noise filt	er) / timer 0 ever	nt input / timer 0	H capture input			
		P70(AN8) to F	P70(AN8) to P72(AN10): AD converter input						No
		Interrupt acknowledge types							
			Rising	Falling	Rising & Falling	H level	L level		
		INT0	enable	enable	disable	enable	enable		
		INT1	enable	enable	disable	enable	enable		
		INT2	enable	enable	enable	disable	disable		
		INT3	enable	enable	enable	disable	disable		
RES	I/O	External reset in	put / internal res	et output					No
CF1/XT1	I	Ceramic reson	ator or 32.768kH	Iz crystal oscilla	tor input pin				
		Pin function		-					No
		General-purpo	se input port						
CF2/XT2	I/O	Ceramic reson	ator or 32.768kH	Hz crystal oscilla	tor output pin				
		Pin function							No
		General-purpo	se I/O port						

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P21	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P30 to P31	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
CF2/XT2	-	No	Ceramic resonator/32.768kHz crystal resonator output Nch-open drain (N-channel open drain when set to general-purpose output port)	No

Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

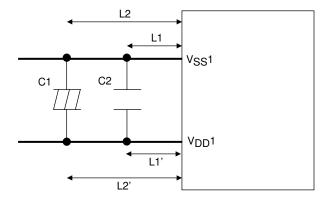
User Option Table

Option Name	Option to be Applied on	Mask version *1	Flash-ROM Version	Option Selected in Units of	Option Selection
Port output type	P00 to P07	0	0	1 bit	CMOS
					Nch-open drain
	P10 to P17	0	0	1 bit	CMOS
					Nch-open drain
	P20 to P21	0	0	1 bit	CMOS
					Nch-open drain
	P30 to P31	0	0	1 bit	CMOS
					Nch-open drain
Program start	-	×	0	-	00000h
address		*2			01E00h
Low-voltage	Detect function	0	0	-	Enable:Use
detection reset					Disable:Not Used
function	Detect level	0	0	-	7-level
Power-on reset function	Power-On reset level	0	0	-	8-level

^{*1:} Mask option selection - No change possible after mask is completed.

Recommended Unused Pin Connections

D. (No.)	Recommended Unused	Pin Connections
Port Name	Board	Software
P00 to P07	Open	Output low
P10 to P17	Open	Output low
P20 to P21	Open	Output low
P30 to P31	Open	Output low
P70 to P73	Open	Output low
CF1/XT1	Pulled low with a $100k\Omega$ resistor or less	General-purpose input port
CF2/XT2	Pulled low with a $100k\Omega$ resistor or less	General-purpose input port


On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 on-chip debugger installation manual".

Power Pin Treatment Recommendations (Vpp1, Vss1)

Connect bypass capacitors that meet the following conditions between the V_{DD}1 and V_{SS}1 pins:

- Connect among the V_{DD}1 and V_{SS}1 pins and bypass capacitors C1 and C2 with the shortest possible heavy lead wires, making sure that the impedances between the both pins and the bypass capacitors are as possible (L1=L1', L2=L2').
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel. The capacitance of C2 should approximately 0.1μF.

Note: Be sure to electrically short-circuit between the VSS1 and VSS2 pins.

^{*2:} Program start address of the mask version is 00000h.

Absolute Maximum Ratings at Ta = 25°C, $V_{SS}1 = V_{SS}2 = 0V$

	Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
	Farameter	Symbol	Fill/heillaiks	Conditions	V _{DD} [V]	min	typ	max	unit
	aximum supply Itage	V _{DD} max	V _{DD} 1			-0.3			
Inp	out voltage	VI	CF1			-0.3		V _{DD} +0.3	V
	out/output Itage	V _{IO}	Ports 0, 1, 2, 3, Port 7, CF2, RES			-0.3		V _{DD} +0.3	
int	Peak output current	IOPH(1)	Ports 0, 1, 2, 3	CMOS output select Per 1 applicable pin		-10			
urre		IOPH(2)	P71 to P73	Per 1 applicable pin		-5			
High level output current	Mean output current	IOMH(1)	Ports 0, 1, 2, 3	CMOS output select Per 1 applicable pin		-7.5			
evel	(Note 1-1)	IOMH(2)	P71 to P73	Per 1 applicable pin		-3			
High le	Total output current	ΣIOAH(1)	Ports 0, 1, 2, 3, P71 to P73	Total of all applicable pins		-25			
	Peak output current Mean output current	IOPL(1)	P02 to P07, Ports 1, 2, 3	Per 1 applicable pin				20	mA
Ħ		IOPL(2)	P00, P01	Per 1 applicable pin				30	
urrer		IOPL(3)	Port 7, CF2	Per 1 applicable pin				10	
Low level output current		IOML(1)	P02 to P07 Ports 1, 2, 3	Per 1 applicable pin				15	
vel	(Note 1-1)	IOML(2)	P00, P01	Per 1 applicable pin				20	
w e		IOML(3)	Port 7, CF2	Per 1 applicable pin				7.5	
7	Total output current	ΣIOAL(1)	Ports 0, 1, Ports 2, 3, CF2	Total of all applicable pins				70	
		ΣIOAL(2)	Port 7	Total of all applicable pins				15	
	wer sipation	Pd max(1)	QFP36(7×7)	Ta=-40 to +85°C Package only				120	
		Pd max(2)		Ta=-40 to +85°C Package with thermal resistance board (Note 1-2)				275	mW
	perating ambient mperature	Topr				-40		+85	
Sto	orage ambient mperature	Tstg				-55		+125	°C

Note 1-1: The mean output current is a mean value measured over 100ms.

Note 1-2: SEMI standards thermal resistance board (size: 76.1×114.3×1.6tmm, glass epoxy) is used.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Allowable Operating Conditions at Ta = -40° C to $+85^{\circ}$ C, $V_{SS}1 = V_{SS}2 = 0V$

Davisaria	Commele el	Dia/Damanda	O a madiki a ma			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1	$0.245 \mu s \leq tCYC \leq 200 \mu s$		2.7		5.5	
supply voltage	V _{DD} (2)		$0.294 \mu s \le tCYC \le 200 \mu s$		2.2		5.5	
(Note 2-1)	V _{DD} (3)		0.735μs ≤ tCYC ≤ 200μs		1.8		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1	RAM and register contents sustained in HOLD mode.		1.6			
High level	V _{IH} (1)	Ports 1, 2, 3, 7		1.8 to 5.5	0.3V _{DD} +0.7		V_{DD}	
input voltage	V _{IH} (2)	Ports 0		1.8 to 5.5	0.3V _{DD} +0.7		V_{DD}	V
	V _{IH} (3)	CF1, CF2, RES		1.8 to 5.5	0.75V _{DD}		V_{DD}	
Low level	V _{IL} (1)	Ports 1, 2, 3, 7		4.0 to 5.5	V_{SS}		0.1V _{DD} +0.4	
input voltage				1.8 to 4.0	V_{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0		4.0 to 5.5	V_{SS}		0.15V _{DD} +0.4	
				1.8 to 4.0	V_{SS}		0.2V _{DD}	
	V _{IL} (3)	CF1, CF2, RES		1.8 to 5.5	V_{SS}		0.25V _{DD}	
High level	I _{OH} (1)	Ports 0, 1, 2,	Per 1 applicable pin	4.5 to 5.5	-1.0			
output current	I _{OH} (2)	P71 to P73		2.7 to 4.5	-0.35			
	I _{OH} (3)			1.8 to 2.7	-0.15			
	I _{OH} (4)	Ports 3, P05 (System clock	Per 1 applicable pin	4.5 to 5.5	-6.0			
	I _{OH} (5)	output function		2.7 to 4.5	-1.4			
	I _{OH} (6)	used)		1.8 to 2.7	-0.8			
	Σl _{OH} (1)	Ports 0, 1, 2, 3, 7	Total of all applicable pins	4.5 to 5.5	-25			
	ΣI _{OH} (2)			2.7 to 4.5	-11.2			
	ΣI _{OH} (3)			1.8 to 2.7	-5.4			
Low level	I _{OL} (1)	Ports 0, 1, 2, 3	Per 1 applicable pin	4.5 to 5.5			10	
output current	I _{OL} (2)			2.7 to 4.5			1.4	mA
	I _{OL} (3)			1.8 to 2.7			0.8	
	I _{OL} (4)	Port 7, CF2	Per 1 applicable pin	2.7 to 5.5			1.4	
	I _{OL} (5)			1.8 to 2.7			0.8	
	I _{OL} (6)	P00, P01	Per 1 applicable pin	4.5 to 5.5			25	
	I _{OL} (7)			2.7 to 4.5			4	
	I _{OL} (8)			1.8 to 2.7			2	
	$\Sigma I_{OL}(1)$	Ports 0, 1, 2, 3,	Total of all applicable pins	4.5 to 5.5			70	
	$\Sigma I_{OL}(2)$	CF2		2.7 to 4.5			34.6	
	$\Sigma I_{OL}(3)$			1.8 to 2.7			19.2	
	$\Sigma I_{OL}(4)$	Ports 7	Total of all applicable pins	2.7 to 5.5			5.6	
	$\Sigma I_{OL}(5)$	1	1 p p	1.8 to 2.7			3.2	†
Instruction	tCYC			2.7 to 5.5	0.245		200	
cycle time				2.2 to 5.5	0.294		200	μS
(Note 2-2)				1.8 to 5.5	0.735		200	
External system slock	FEXCF	CF1	CF2 pin open System slock frequency division	2.7 to 5.5	0.1		12	
system clock frequency			System clock frequency division ratio=1/1	1.8 to 5.5	0.1		4	-
			External system clock duty=50±5%	10 0.0	0.1			MHz
			CF2 pin open System clock frequency division	3.0 to 5.5	0.2		24.4	-
			ratio=1/2 • External system clock duty=50±5%	2.0 to 5.5	0.2		8	

Note 2-1: V_{DD} must be held greater than or equal to 2.2V in the flash ROM onboard programming mode.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Continued on next page.

Continued from preceding page.

Danamatan	Ol	Pin/Remarks	Conditions			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation. See Fig. 1.	2.7 to 5.5		12		
range (Note 2-3)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation. See Fig. 1.	2.2 to 5.5		10		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation. CF oscillation normal amplifier size selected. (CFLAMP=0) See Fig. 1.	1.8 to 5.5		4		
			4MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.	2.2 to 5.5		4		MHz
	FmMRC(1)		Frequency variable RC oscillation. (Note 2-4)	1.8 to 5.5	7.84	8.0	8.16	
	FmMRC(2)		Frequency variable RC oscillation. • Ta=-10 to +85°C (Note 2-4)	1.8 to 5.5	7.88	8.0	8.12	
	FmRC		Internal medium-speed RC oscillation	1.8 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal low-speed RC oscillation	1.8 to 5.5	50	100	200	
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 1.	1.8 to 5.5		32.768		kHz
Oscillation stabilization time	abilization oscillation state is switched from		1.8 to 5.5			100	μ\$	

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Note 2-4: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the frequency variable RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specifica	ıtion		
raiametei	Symbol	Fill/Hemarks	Conditions	V _{DD} [V]	min	typ	max	unit	
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3, Ports 7, RES	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	1.8 to 5.5			1		
	I _{IH} (2)	CF1, CF2	Input port selected VIN=VDD	1.8 to 5.5			1		
	IIH(3)	CF1	Reset state V _{IN} =V _{DD}	1.8 to 5.5			15	μА	
Low level input current	I _{IL} (1)	Ports 0, 1, 2, 3, Ports 7, RES	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	1.8 to 5.5	-1				
	I _{IL} (2)	CF1, CF2	Input port selected VIN=VSS	1.8 to 5.5	-1				
High level output	V _{OH} (1)	Ports 0, 1, 2	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1				
voltage	V _{OH} (2)	P71 to P73	I _{OH} =-0.35mA	2.7 to 5.5	V _{DD} -0.4				
	V _{OH} (3)		I _{OH} =-0.15mA	1.8 to 5.5	V _{DD} -0.4				
	V _{OH} (4)	Ports 3	I _{OH} =-6mA	4.5 to 5.5	V _{DD} -1				
	V _{OH} (5)	P05 (System clock output	I _{OH} =-1.4mA	2.7 to 5.5	V _{DD} -0.4				
	V _{OH} (6)	function used)	I _{OH} =-0.8mA	1.8 to 5.5	V _{DD} -0.4				
Low level output	V _{OL} (1)	Ports 0, 1, 2, 3	I _{OL} =10mA	4.5 to 5.5			1.5	V	
voltage	V _{OL} (2)		I _{OL} =1.4mA	2.7 to 5.5			0.4	•	
	V _{OL} (3)		I _{OL} =0.8mA	1.8 to 5.5			0.4		
	V _{OL} (4)	Port 7, CF2	I _{OL} =1.4mA	2.7 to 5.5			0.4		
	V _{OL} (5)		I _{OL} =0.8mA	1.8 to 5.5			0.4		
	V _{OL} (6)	P00, P01	I _{OL} =25mA	4.5 to 5.5			1.5		
	V _{OL} (7)		I _{OL} =4mA	2.7 to 5.5			0.4		
	V _{OL} (8)		I _{OL} =2mA	1.8 to 5.5			0.4		
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3,	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80		
	Rpu(2)	Ports 7	When Port 0 selected low-impedance pull-up.	1.8 to 4.5	18	50	230		
	Rpu(3)	Port 0	V _{OH} =0.9V _{DD} When Port 0 selected high-impedance pull-up.	1.8 to 5.5	100	200	400	kΩ	
Hysteresis voltage	VHYS(1)	Ports 1, 2, 3,	g passage ap	2.7 to 5.5		0.1V _{DD}			
	VHYS(2)	Ports 7, RES		1.8 to 2.7		0.07V _{DD}		V	
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	1.8 to 5.5		10		pF	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

SIO0 Serial I/O Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0$ V (Note 4-1-1)

		Parameter	Symbol	Pin/	Conditions			Spec	fication	
	r	rarameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	• See Fig. 5.		2			
	ν.	Low level pulse width	tSCKL(1)				1			
	Input clock	High level pulse width	tSCKH(1)			1.8 to 5.5	1			tCYC
al clock	Serial clock		tSCKHA(1)		Continuous data transmission/reception mode See Fig. 5. (Note 4-1-2)		4			1010
Seria		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected		4/3			
	Lt clock	Low level pulse width	tSCKL(2)		• See Fig. 5.	1/2			tSCK	
		High level pulse width	tSCKH(2)			1.8 to 5.5		1/2		
			pulse width tSCKHA(2)			 Continuous data transmission/reception mode CMOS output selected See Fig. 5. 		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC
input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of		0.05			
Serial input	Da	ta hold time	thDI(1)		SIOCLK. • See Fig. 5.	1.8 to 5.5	0.05			
	t clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-3)				(1/3)tCYC +0.08	
l output	Serial output Output clock Input clock		tdD0(2)		Synchronous 8-bit mode (Note 4-1-3)	1.8 to 5.5			1tCYC +0.08	μS
Seria			tdD0(3)		(Note 4-1-3)				(1/3)tCYC +0.08	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SI0RUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

SIO1 Serial I/O Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0$ V (Note 4-2-1)

		2	0	Pin/	O a sa diki a sa a			Speci	fication	
	,	Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(3)	SCK1(P15)	• See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(3)			1.8 to 5.5	1			10)(0
clock	pulse width	0	tSCKH(3)				1			tCYC
erial		tSCK(4)	SCK1(P15)	CMOS output selected		2				
S	응 Low level		tSCKL(4)		• See Fig. 5.	1.8 to 5.5	1/2			tSCK
	Output	High level pulse width	tSCKH(4)					1/2		ISCK
Serial input	Da	ta setup time	tsDI(2)	SI1(P14), SB1(P14)	Must be specified with respect to rising edge of	104-55	(1/3)tCYC +0.01			
Serial	Da	ta hold time	thDI(2)		SIOCLK. • See Fig. 5.	1.8 to 5.5	0.01			
Serial output	Ou	tput delay time	tdD0(4)	SO1(P13), SB1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5. 	1.8 to 5.5			(1/2)tCYC +0.05	μS

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -40° C to $+85^{\circ}$ C, $V_{SS}1 = V_{SS}2 = 0$ V

Davasastas	Completed	Dia/Damarda	O - m dision -			Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P71), INT2(P72), INT4(P20 to P21) INT5(P30 to P31) INT5(P30 to P31) • Interrupt source flag can be set. • Event inputs for timer 0 or 1 are enabled.		1.8 to 5.5	1			
	tPIH(2) tPIL(2)	INT3(P73) when noise filter time constant is 1/1	Interrupt source flag can be set. Event inputs for timer 0 are enabled.	1.8 to 5.5	2			tCYC
	tPIH(3) tPIL(3)	INT3(P73) when noise filter time constant is 1/32	Interrupt source flag can be set. Event inputs for timer 0 are nabled.	1.8 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is 1/128	Interrupt source flag can be set. Event inputs for timer 0 are enabled.	1.8 to 5.5	256			
	tPIL(5)	RES	Resetting is enabled.	1.8 to 5.5	200			μs

AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = 0V$

<12bits AD Converter Mode at $Ta = -40^{\circ}C$ to $+85^{\circ}C >$

Damaratan	Oh!	Dia/Damanda	O a maliki a ma			Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	ANIO(D00)			1.8 to 5.5		12		bit
Absolute	ET	AN6(P06),	(Note 6-1)	2.7 to 5.5			±16	
accuracy		AN8(P70) to		1.8 to 5.5			±20	LSB
Conversion time TCAD		AN10(P72)	See Conversion time calculation	2.7 to 5.5	32		115	
			formulas. (Note 6-2)	2.2 to 5.5	134		215	μS
				1.8 to 5.5	400		430	
Analog input voltage range	VAIN			1.8 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH		VAIN=V _{DD}	1.8 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	1.8 to 5.5	-1			μΑ

<8bits AD Converter Mode at Ta = -40° C to $+85^{\circ}$ C >

Danamatan	O: made at	Dia/Damada	O and distance		Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Resolution	N	AN0(P00) to		1.8 to 5.5		8		bit	
Absolute accuracy	ET	AN6(P06), AN8(P70) to	(Note 6-1)	1.8 to 5.5			±1.5	LSB	
Conversion time	onversion time TCAD AN10(P72)		See Conversion time calculation	2.7 to 5.5	20		90		
		formulas. (Note 6-2)	formulas. (Note 6-2)	2.2 to 5.5	80		135	μS	
				1.8 to 5.5	245		265		
Analog input voltage range	VAIN			1.8 to 5.5	V _{SS}		v _{DD}	V	
Analog port	IAINH		VAIN=V _{DD}	1.8 to 5.5			1		
	IAINL	1	VAIN=V _{SS}	1.8 to 5.5	-1			μΑ	

- Note 6-1: The quantization error ($\pm 1/2$ LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
- Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

Conversion time calculation formulas:

12bits AD Converter Mode: TCAD(Conversion time) = $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time) = $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio	AD conversion time (TCAD)		
(FmCF)	(V _{DD})	(SYSDIV)	(tCYC)	(ADDIV)	12bit AD	8bit AD	
CF-12MHz	2.7V to 5.5V	1/1	250ns	1/8	34.8µs	21.5µs	
05.04	2.7V to 5.5V	1/1	375ns	1/8	52.25μs	32.25µs	
CF-8MHz	2.2V to 5.5V	1/1	375ns	1/32	208.25µs	128.25µs	
CF-4MHz	2.7V to 5.5V	1/1	750ns	1/8	104.5μs	64.5µs	
	2.2V to 5.5V	1/1	750ns	1/16	208.5μs	128.5µs	
	1.8V to 5.5V	1/1	750ns	1/32	416.5μs	256.5μs	

Reference voltage (VREF17) Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

Dawanatan	O. make al	Pin/Remarks	0	_	Specification				
Parameter	Symbol	Fill/heillaiks	Conditions	V _{DD} [V]	min	typ	max	unit	
Output voltage	VOVREF			2.0 to 5.5	1.67	1.75	1.83	٧	
Reference voltage operation	IDDVREF			2.0 to 5.5		110		^	
current (Note 7-1)				2.0 10 5.5		110		μА	
Operation stabilization time	tVRW			2.0 to 5.5			100		
(Note 7-2)				2.0 (0 5.5			100	μS	

Note 7-1: IDDVREF denotes the currents that only flow to multivariable RC oscillator circuit's reference voltage circuit. Note 7-2: tVRW denotes the stabilization time from starting multivariable RC oscillator.

Power-on Reset (POR) Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

					Specification					
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit		
POR release	PORRL		Select from option.	1.67V	1.55	1.66	1.77			
voltage			(Note 8-1)	1.97V	1.85	1.96	2.07			
				2.07V	1.93	2.05	2.17			
				2.37V	2.23	2.35	2.47			
				2.57V	2.43	2.55	2.67	V		
				2.87V	2.71	2.85	2.99	V		
				3.86V	3.65	3.83	4.00			
				4.35V	4.12	4.32	4.50			
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 8-2)			0.7	0.95			
Power supply rise time	PORIS		Power supply rise time from 0V to 1.6V.				100	ms		

Note8-1: The POR release level can be selected out of 8 levels only when the LVD reset function is disabled.

Note8-2: POR is in an unknown state before transistors start operation.

Low Voltage Detection Reset (LVD) Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

						Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET		Select from option.	1.91V	1.81	1.91	2.01	
(Note 9-2)			(Note 9-1)	2.01V	1.90	2.00	2.10	
			(Note 9-3)	2.31V	2.20	2.30	2.40	
			• See Fig. 8.	2.51V	2.40	2.50	2.60	V
				2.81V	2.68	2.80	2.92	
				3.79V	3.62	3.78	3.94	
				4.28V	4.09	4.27	4.45	
LVD hysteresis width	LVHYS			1.91V		50		
				2.01V		50		
				2.31V		50		
				2.51V		50		mV
				2.81V		50		
				3.79V		50		
				4.28V		50		
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 9-4)			0.7	0.95	٧
Low voltage detection minimum width	TLVDW		• LVDET-0.5V • See Fig. 9.		0.2			ms
(Reply sensitivity)								

Note9-1: The LVD reset level can be selected out of 7 levels only when the LVD reset function is enabled.

Note9-2: LVD reset voltage specification values do not include hysteresis voltage.

Note9-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note9-4: LVD is in an unknown state before transistors start operation.

Consumption Current Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = 0V$

Davasatas	O. mada ad	Pin/	Conditions			Specif	ication	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current (Note 10-1) (Note 10-2)	IDDOP(1)	V _{DD} 1	FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal low speed and medium speed RC	2.7 to 5.5		5.1	9.3	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		3.1	5.6	
	IDDOP(2)		CF1=24MHz external clock System clock set to CF1 side Internal low speed and medium speed RC	3.0 to 5.5		5.2	10	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	3.0 to 3.6		3.3	6.2	
	IDDOP(3)		FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side Internal low speed and medium speed RC	2.2 to 5.5		4.4	8.4	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.2 to 3.6		2.8	5.5	
	IDDOP(4)		FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal low speed and medium speed RC	1.8 to 5.5		2.3	5.3	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	1.8 to 3.6		1.6	3.0	mA
	IDDOP(5)		CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side	2.2 to 5.5		0.97	2.4	
				 Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio 	2.2 to 3.6		0.55	1.2
	IDDOP(6)		FsX'tal=32.768kHz crystal oscillation mode Internal low speed RC oscillation stopped. System clock set to internal medium speed	1.8 to 5.5		0.44	1.5	
			RC oscillation. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	1.8 to 3.6		0.28	0.80	
	IDDOP(7)		FsX'tal=32.768kHz crystal oscillation mode Internal low speed and medium speed RC oscillation stopped.	1.8 to 5.5		3.4	5.5	
			System clock set to 8MHz with frequency variable RC oscillation 1/1 frequency division ratio	1.8 to 3.6		2.4	4.6	
	IDDOP(8)		External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation.	1.8 to 5.5		51	163	
			 Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	1.8 to 3.6		38	103	
	IDDOP(9)		External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation.	5.0		51	136	μΑ
			Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped.	3.3		38	99	
İ			1/1 frequency division ratio Ta=-10 to +50°C current do not include current that flow	2.5		36	94	

Note10-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note10-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pin/	Conditions		Specification				
	•	Remarks		V _{DD} [V]	min	typ	max	unit	
Normal mode consumption current (Note 10-1) (Note 10-2)	IDDOP(10)	V _{DD} 1	FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC	1.8 to 5.5		34	97		
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	1.8 to 3.6		14	44		
	IDDOP(11)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side	5.0		34	88	μΑ	
			Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped.	3.3		14	36		
			1/2 frequency division ratio Ta=-10 to +50°C	2.5		9.1	22		
HALT mode consumption current	IDDHALT(1)		HALT mode FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal low speed and medium speed RC	2.7 to 5.5		2.6	4.8		
Note 10-1) Note 10-2)			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		1.4	2.4		
	IDDHALT(2)		HALT mode CF1=24MHz external clock System clock set to CF1 side Internal low speed and medium speed RC	3.0 to 5.5		2.7	5.3		
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	3.0 to 3.6		1.6	2.9		
	IDDHALT(3)		HALT mode FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side	2.2 to 5.5		2.2	4.3		
				Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.2 to 3.6		1.2	2.2	
	IDDHALT(4)		HALT mode FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal low speed and medium speed RC	1.8 to 5.5		1.3	3.3	m <i>A</i>	
		oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	1.8 to 3.6		0.56	1.2			
	IDDHALT(5)		HALT mode CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side	2.2 to 5.5		0.74	1.8		
			Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio	2.2 to 3.6		0.34	0.68		
	IDDHALT(6)		HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low speed RC oscillation stopped. System clock set to internal medium speed	1.8 to 5.5		0.32	0.90		
			RC oscillation Frequency variable RC oscillation stopped. 1/2 frequency division ratio	1.8 to 3.6		0.21	0.44		

Note10-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note10-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Continued from preceding page.

Parameter		Pin/	Conditions			Specif	ication	
Parameter	Symbol	remarks	Conditions	V _{DD} [V]	min	typ	max	unit
HALT mode consumption current (Note 10-1)	IDDHALT(7)	DDHALT(7) V _{DD} 1	Internal low speed and medium speed RC oscillation stopped. System clock set to 8MHz with	1.8 to 5.5		1.3	2.3	mA
(Note 10-2)				1.8 to 3.6		0.91	1.5	
	IDDHALT(8)		HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	1.8 to 5.5		18	68	
			oscillation. Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio	1.8 to 3.6		11	35	
	IDDHALT(9)		HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	5.0		18	46	
			oscillation. Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped.	3.3		11	27	
			Trequency variable NC oscillation stopped. 1/1 frequency division ratio Ta=-10 to +50°C	2.5		7.4	19	
	IDDHALT(10)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped.	1.8 to 5.5		24	98	
				1.8 to 3.6		8.0	35	
				5.0		24	63	μΑ
				3.3		8.0	23	μΛ
			1/2 frequency division ratio Ta=-10 to +50°C	2.5		3.5	11	
HOLD mode	IDDHOLD(1)		HOLD mode	1.8 to 5.5		0.019	23	
consumption current	_		CF1=V _{DD} or open (External clock mode)	1.8 to 3.6		0.011	11	
(Note 10-1)	IDDHOLD(2)	HOLD(3)	HOLD mode • CF1=V _{DD} or open (External clock mode) • Ta=-10 to +50°C	5.0		0.019	1.2	
(Note 10-2)				3.3		0.011	0.59	
				2.5		0.010	0.30	
	IDDHOLD(3)		HOLD mode CF1=V _{DD} or open (External clock mode)	1.8 to 5.5		2.6	26	
			LVD option selected	1.8 to 3.6		2.0	13	
	IDDHOLD(4)		HOLD mode • CF1=V _{DD} or open (External clock mode) • Ta=-10 to +50°C	5.0		2.6	3.8	
				3.3		2.0	2.8	
			LVD option selected	2.5		1.7	2.5	
Timer HOLD	IDDHOLD(5)		Timer HOLD mode	1.8 to 5.5		22	84	
mode			FsX'tal=32.768kHz crystal oscillation mode	1.8 to 3.6	-	6.5	30	
consumption current	IDDHOLD(6)		Timer HOLD mode	5.0		22	53	
(Note 10-1)			FsX'tal=32.768kHz crystal oscillation mode Ta=-10 to +50°C	3.3		6.5	16	
(Note 10-2)				2.5		2.7	7.2	

Note10-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note10-2: The consumption current values do not include operational current of LVD function if not specified.