ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

sparkfun

TART SOMETHING

Page 1 of 33

TeensyView Hookup Guide

Introduction

The TeensyView is an SSD1306 128x32 OLED screen breakout that
matches the Teensy 3 form factor. It's great for displaying debug
information and visualizing data on a Teensy, and it is compatible with the
LC, 3.1, 3.2, 3.5, 3.6, Audio Board, Prop Shield, Prop Shield LC and XBee
Adapter.

This guide shows how to connect the TeensyView to various Teensy-
related products, then shows some examples with a library reference. The
SSD1306 driver is quite popular and has a lot of support behind it. The
TeensyView Arduino Library is like the Micro OLED Breakout's and the
MicroView’s libraries, so expect the same functions to work, just tuned for
the Teensy and conveniently packaged.

Required Materials
To get started, you'll need the following things:

* ATeensy LC/ 3.1 or higher
* A TeensyView
» A soldering iron and soldering tools
* A pair of scissors
* Your option of connecting headers
o Normal Female Headers
o Stackable headers, such as the Teensy Header Kit
o Break Away Headers — Straight
o Long Break Away Headers
* An add-on board such as the Audio Board or Prop Shield can be
handy to run the examples with

This guide uses a Teensy 3.2, Straight Break Away Headers and a Teensy
Header Kit.

Page 2 of 33

;

SparkFun TeensyView Teensy 3.2
@© LCD-14048 @ DEV-13736

Break Away Headers - Teensy Header Kit
Straight @© PRT-13925
@ PRT-00116

Suggested Reading

If you aren’t familiar with the following concepts, we recommend checking
out these tutorials before continuing.

How to Solder: Through- Installing an Arduino Library
Hole Soldering How do | install a custom Arduino
This tutorial covers everything you library? It's easy!

need to know about through-hole

soldering.

Installing Arduino IDE

A step-by-step guide to installing
and testing the Arduino software on
Windows, Mac, and Linux.

Hardware Overview and Assembly

The hardware comes as a headerless PCB with OLED soldered on. There
are jumpers on one side to configure how the OLED communicates with the
attached Teensy. You'll need to set the jumpers, solder the TeensyView to
the Teensy or to headers, then affix the OLED.

This section instructs the use of male headers on the TeensyView, with
stackable headers on the Teensy.

In addition to the kit (TeensyView and foam square), you’ll need a single
Straight Break Away Header and stackable Teensy Header Kit in order to
follow along with this guide.

Careful! The flex cable is fragile before the OLED is mounted. Avoid
unnecessary stress, and avoid letting the OLED flop around during
assembly.

1. The TeensyView has two available connections for the OLED
communication lines, to allow compatibility with various boards.
One side (factory configuration/'Standard’) is all connected by copper
jumpers, with the ‘Alternate’ side available to reconfigure the
connections.

Use this table to determine which pins to use for the TeensyView, or
leave them set by copper to the standard pins if no other resources

are in use.

Jumper Copper Audio Board Prop Shield
Jumpers compatible compatible
(Standard) (Alternate)

RST 15 2 15 (Std.)

D/IC 5 21 21 (Alt.)

cs 10 20 20 (Alt.)

SCLK 13 14 13 (Std.)

DATA 11 7 11 (Std.)

2. If necessary, carefully cut the copper jumper on the board and apply
solder to reroute the signal.

Page 3 of 33

Page 4 of 33

Cutting the copper traces: Make two cuts, one on each end of the
copper link, then remove the excess copper with a slight twist of the
knife. Solder connections are not shown here, but if you remove the
copper link you will need to apply a solder jump between two of the

pads of the jumper!

3. Separate two 14-pin lengths of straight male header and fit them into
the breadboard, then set the PCB onto them with the jumpers
facing up and the LCD facing down. The LCD will fold over and
cover the jumpers.

Notice that the OLED is soldered to the back side and folds around
the edge of the PCB, covering the selection jumpers. This is so the
Jjumpers can still be accessed if the TeensyView is more permanently
attached to a Teensy.

4. Next, solder the headers onto the TeensyView using a flux core
solder. The silkscreen rings denote pins that are electrically
connected to the TeensyView circuitry. You can choose to either
solder all pins, for better mechanical stability, or just the connected
pins, if you foresee removal of the pins in the future. This board is
assumed to be the top of a stack and may not need all of the
Teensy'’s signals passing through.

Afttaching the straight headers to the Teensy using a breadboard.

5. Now that the TeensyView has headers, it can be used to help keep
the Teensy Stackable Headers in place for assembly. Put the 6 long
and two 13 long headers onto the TeensyView, then place the
Teensy on and apply solder.

Using the TeensyView as a soldering jig

Page 5 of 33

Attaching the Teensy Header Kit

6. If you've decided to only solder the electrically connected pins, now’s
a good time to pull the spare pins. Hold the TeensyView firmly with
one hand and give a steady pull with pliers or wire strippers. To
double check, there should only be pins left in the holes with
silkscreen rings.

Pulling the pins

7. Apply the screen using the double-sided foam. It’s best to start with
little pieces until you're sure of the configuration you would like.
Visualize how the foam will be divided or draw on it with a pen. Then
use your scissors to cut off strips, and subdivide from there.

..--....,

A way to divide the square of foam tape

A couple small pieces go a long way to keep it in place, while a large
piece can keep it there on a more permanent basis. Reasons to
remove the screen may be to adjust left-right justification (to match a
chassis cutout, for example) or to change the configuration of the
pins. It can be tempting to just start with a large piece, but don’t! The
foam is extremely grippy once it's set.

A large piece can be used as a permanent solution.

Carefully set down the glass.

8. Oh no! You've put your screen down too early and need to adjust
something! Don’t worry, but don’t just pry up the glass either. Use
a thin, blunt tool to push the meat of the foam out from the side.

Breaking the foam structure without applying force to the OLED
glass.

9. Attach the TeensyView and USB cable, then run the examples. The
TeensyView has a few pins (labeled o, 13, 14, 3v and GND) to
help make sure it's oriented the right way.

Page 6 of 33

Here’s what the final stack should look like.

Software Installation

The Teensy line doesn’t rely on Arduino’s compiler and libraries. Instead,
the Teensyduino add-on supplies the resource.

To use the TeensyView, you'll need:

« A compatible Arduino IDE
» A version of Teensyduino to match your Arduino IDE
¢ The TeensyView Arduino Library

Note: See the Teensyduino download page for the latest information
on compatiblility between TeensyDuino and Arduino IDE versions, and
to download the add-on.

Getting the Arduino IDE and Teensyduino
Follow these steps to get what you need to compile for the Teensy.
1. Install a nonweb-based Arduino.
See PJRC Teensyduino page for Arduino compatibility information.

Download compatible Arduino software and install to a directory —
click on previous version of the current release for older releases.

Windows Tip: The “Windows Installer” installs to your program
directory and is fine for general use without version information.
It expects only one installation to be present. When uisng
Teensyduino with older versions of Teensy, use the “Windows
ZIP file for non admin” and install it to a directory with version
number in the name, and make an extra shortcut in your start
menu. This will allow you to choose the latest Arduino for
general use, or a particular installation for Teensy (or other
boards).

2. Install Teensyduino to your new Arduino installation

Get Teensyduino installer from PJRC Teensyduino page (same as
above). Run the installer. It will ask for:

o The newly installed Arduino folder

o Which libraries to include (all recommended)
Older versions of Teensyduino can be obtained by changing the
version number in the download link.

3. Test your installation by selecting your Teensy board from the
dropdown menu and then running the Blink example.

Getting the TeensyView Arduino Library

Page 7 of 33

To get the Arduino library, download from GitHub or use the Arduino Library
Manager.

Download the GitHub repository

Visit the GitHub repository to download the most recent version of the
library, or click the button below:

DOWNLOAD THE ARDUINO LIBRARY

Use the library manager or install in the Arduino IDE

For help installing the library, check out our Installing an Arduino Library
tutorial.

If you don’t end up using the manager, you'll need to move the
SparkFun_TeensyView_Arduino_Library folder into a libraries folder within
your Arduino sketchbook. You can remove “master” from the name if you
like.

TeensyView Library Reference

Operating the Library

With Teensyduino and the TeensyView library installed, there’s a few things
to do in order to start drawing on the screen.

¢ Include the TeensyView header file — #include <TeensyView.h>
« Create an object in the global space to use the TeensyView, and
pass the desired pin numbers to the constructor. —
TeensyView oled(PIN_RESET, PIN_DC, PIN_CS, PIN_SCK, PIN_MOSI);
* Run the begin() function

Now you're ready to start controlling the screen. To draw a frame,

« Erase all or part of the screen.
* Draw new objects
* Use .display() to send all data to the screen.

This example shows including the library, creating the object, then
repeatedly drawing a frame. The drawing commands are kept terse to
serve as a good modifiable template. This example is also available from
within the Arduino library.

Page 8 of 33

/***
KoK oK oK ok ok 3k ok ok ok ok ok ok ok ok kK

Template.ino

A useful starting place when adding a TeensyView to an exist
ing project.

Marshall Taylor @ SparkFun Electronics, March 15, 2017
https://github.com/sparkfun/SparkFun_TeensyView_Arduino_Libr
ary

This example sets up the TeensyView and draws a test frame r
epeatedly.

The objects in the frame were selected to give copy-paste ex
amples for various

common operations without a lot of chaff. See TeensyView.h
for specifics.

Compatible with:
Teensy LC
Teensy 3.1
Teensy 3.2
Teensy 3.5
Teensy 3.6

Development environment specifics:
Arduino IDE 1.6.12 w/ Teensyduino 1.31
Arduino IDE 1.8.1 w/ Teensyduino 1.35
TeensyView v1.0

This code is released under the [MIT License](http://opensou
rce.org/licenses/MIT).

Please review the LICENSE.md file included with this exampl
e. If you have any questions

or concerns with licensing, please contact techsupport@spark
fun.com.

Distributed as-is; no warranty is given.
sk 3k 3k 5k 5k 3K 3k % 3k 3k 5K 3K % 3 3k 5k 5K 3k 3k 3 ok 5K 3k 3k 3 3k 5K 5K 3k 3k 3k 3k 5k 5K 3k 3k 3 3k 5K 5k 3k 3k 3 ok 5k K 3k 3 5K 5k >k 3k 3 K ok ok Kk ok kK kK

****************/

#include <TeensyView.h> // Include the SFE_TeensyView library

II11TTT117007717117777777771111177
// TeensyView Object Declaration //
[1177717177111177711111711111171117
//Standard

#define PIN_RESET 15

#define PIN_DC 5

#define PIN_CS 10

#define PIN_SCK 13

#define PIN_MOSI 11

//Alternate (Audio)

//#define PIN_RESET 2
//#define PIN_DC 21
//#define PIN_CS 20
//#define PIN_SCK 14
//#define PIN_MOSI 7

TeensyView oled(PIN_RESET, PIN_DC, PIN_CS, PIN_SCK, PIN_MOSI);

void setup()
{

Page 9 of 33

oled.

oled.

oled.
en)

begin(); // Initialize the OLED
clear(ALL); // Clear the display's internal memory
display(); // Display what's in the buffer (splashscre

delay(1000); // Delay 1000 ms

oled.

clear(PAGE); // Clear the buffer.

void loop()

{
oled.

oled.
oled.
oled.
oled.
oled.

clear(PAGE); // Clear the page

rect(5, 5, 20, 20); // Draw a rectangle

rectFill(35, 16, 23, 11); // Draw a filled rectangle
circle(22, 20, 7); // Draw the circle:

pixel(40, 7, WHITE, NORM); // Draw a white pixel
pixel(48, 21, BLACK, NORM); // Draw a black pixel (on

the above rectange)

oled.
oled.
oled.
oled.
oled.
oled.

oled.

setFontType(1); // Set font to type 1

setCursor(73, 17); // move cursor

print("world!"); // Write a byte out as a character
setFontType(@); // Set font to type ©

setCursor(67, 12); // move cursor

print("Hello"); // Write a byte out as a character

display(); // Send the PAGE to the OLED memory

delay(200);

In the above example, the standard pins are used for factory hardware. The

“begin”

function clears the OLED to our logo, then displays the memory
contents.

TeensyView Class Reference

Below, you'll find a complete list of available TeensyView classes that can

be called

in your code.

Initialization

e void begin(void) — Initialize TeensyView Library.Setup 1/O pins

for

SPI port, then send initialization commands to the SSD1306

controller inside the OLED.

* void end (void) — Power off the OLED display. Reset display
control signals and prepare the SSD1306 controller for power off,
then power off the 3.3V regulator.

Display

Actions, Settings and Orientation

* void display(void) — Transfer display memory. Bulk move the
screen buffer to the SSD1306 controller's memory so that
images/graphics drawn on the screen buffer will be displayed on the
OLED.

void clear(* uint8_t mode) — Clear screen buffer or SSD1306’s

memory. To clear GDRAM inside the LCD controller, pass in the
variable mode = ALL and to clear screen page buffer pass in the
variable mode = PAGE.

Page 10 of 33

void clear(* uint8_t mode, * uint8_t c) — Clear or replace
screen buffer or SSD1306’s memory with a character. To clear
GDRAM inside the LCD controller, pass in the variable mode = ALL
with ¢ character and to clear screen page buffer, pass in the variable
mode = PAGE with ¢ character.

void invert(boolean inv) — Invert display. The WHITE color of the
display will turn to BLACK, and the BLACK will turn to WHITE.

void contrast(* uint8_t contrast) — Set OLED contrast value
from O to 255. Note: Contrast level is not very obvious.

void setCursor(* uint8_t x, * uint8_t y) — Set TeensyView's
cursor position to x,y.

void flipVertical(boolean flip) — Flip the graphics on the
OLED vertically.

void flipHorizontal(boolean flip) — Flip the graphics on the
OLED horizontally.

uint8_t getLCDWidth(void) — The width of the LCD return as byte.

uint8_t getLCDHeight(void) — The height of the LCD return as
byte.

Display Scrolling

Note: For scrolling features, refer to the OLED Memory Map section of
our MicroView hookup guide for explanation of the rows and columns.

void scrollRight(* uint8_t start, * uint8_t stop) — Right
scrolling. Set row start to row stop on the OLED to scroll right.

void scrolllLeft(* uint8_t start, * uint8_t stop) — Left
scrolling. Set row start to row stop on the OLED to scroll left.

void scrollVertRight(* uint8_t start, * uint8_t stop) — Right
vertical scrolling. Set column start to row stop on the OLED to scroll
right.

void scrollVertLeft(* uint8_t start, * uint8_t stop) — Left
vertical scrolling. Set column start to row stop on the OLED to scroll
left.

void scrollStop(void) — Stop the scrolling of graphics on the
OLED.

Font Functions

uint8_t getFontWidth(void) — Get font width. The current font’s
width return as byte.

uint8_t getFontHeight(void) — Get font height. The current font's
height return as byte.

uint8_t getTotalFonts(void) — Get total fonts. Return the total
number of fonts loaded into the TeensyView’s flash memory.

uint8_t getFontType(void) — Get font type. Return the font type
number of the current font.

uint8_t setFontType(* uint8_t type) — Set font type. Set the
current font type number (i.e., changing to different fonts based on
the type provided).

Page 11 of 33

Page 12 of 33

* uint8_t getFontStartChar(void) — Get font starting character.
Return the starting ASCII character of the current font; not all fonts
start with ASCII character 0. Custom fonts can start from any ASCII
character.

e uint8_t getFontTotalChar(void) — Get font total characters.
Return the total characters of the current font.

Drawing Pixels

* void pixel(* uint8_t x, * uint8_t y) — Draw pixel using the
current fore color and current draw mode in the screen buffer’s x,y
position.

¢ void pixel(* uint8_t x, * uint8_t y, * uint8_t color, * uint8_t mode)
— Draw color pixel in the screen buffer’s x,y position with NORM or
XOR draw mode.
Drawing Lines

¢ void line(* uint8_t x@, * uint8_t y@, * uint8_t x1, * uint8_t y1)
— Draw line using current fore color and current draw mode from
x0,y0 to x1,y1 of the screen buffer.

void line(* uint8_t x@, * uint8_t y@, * uint8_t x1, * uint8_t y1, * uint8_t color, * uint8_t mode)
— Draw line using color and mode from x0,y0 to x1,y1 of the screen
buffer.

void lineH(* uint8_t x, * uint8_t y, * uint8_t width) — Draw
horizontal line using current fore color and current draw mode from
X,y to x+width,y of the screen buffer.

void lineH(* uint8_t x, * uint8_t y, * uint8_t width, * uint8_t color, * uint8_t mode)
— Draw horizontal line using color and mode from x,y to x+width,y of
the screen buffer.

void lineV(* uint8_t x, * uint8_t y, * uint8_t height) —
Draw vertical line using current fore color and current draw mode
from x,y to x,y+height of the screen buffer.

void lineV(* uint8_t x, * uint8_t y, * uint8_t height, * uint8_t color, * uint8_t mode)
— Draw vertical line using color and mode from x,y to x,y+height of
the screen buffer.

Drawing Rectangles

e void rect(* uint8_t x, * uint8_t y, * uint8_t width, * uint8_ t height)
— Draw rectangle using current fore color and current draw mode
from x,y to x+width,y+height of the screen buffer.

¢ void rect(* uint8_t x, * uint8_t y, * uint8_t width, * uint8_t height, * uint8_t color, * uint8_t mode)
— Draw rectangle using color and mode from x,y to x+width,y+height
of the screen buffer.

¢ void rectFill(* uint8_t x, * uint8_t y, * uint8_t width, * uint8_t height)
— Draw filled rectangle using current fore color and current draw
mode from x,y to x+width,y+height of the screen buffer.

¢ void rectFill(* uint8_t x, * uint8_ t y, * uint8_t width, * uint8_t height, * uint8_t color, * uint8_t mode)
— Draw filled rectangle using color and mode from x,y to
x+width,y+height of the screen buffer.
Drawing Circles

e void circle(* uint8_t x, * uint8_t y, * uint8_t radius) —
Draw circle with radius using current fore color and current draw
mode at x,y of the screen buffer.

Page 13 of 33

e void circle(* uint8_t x, * uint8_t y, * uint8_t radius, * uint8_t color, * uint8_t mode)
— Draw circle with radius using color and mode at x,y of the screen
buffer.

¢ void circleFill(* uint8_t x@, * uint8_t y@, * uint8_t radius)
— Draw filled circle with radius using current fore color and current
draw mode at x,y of the screen buffer.

e void circleFill(* uint8_t x@, * uint8_t y@, * uint8_t radius, * uint8_t color, * uint8_t mode)
— Draw filled circle with radius using color and mode at x,y of the
screen buffer. Uses the Bresenham'’s circle algorithm with a few
modifications to paint the circle without overlapping draw operations.

Misc. Drawing

¢ void drawChar(* uint8_t x, * uint8_t y, * uint8_t c¢) — Draw
character ¢ using current color and current draw mode at x,y.

¢ void drawChar(* uint8_t x, * uint8 t y, * uint8_t c, * uint8_t color, * uint8_t mode)
— Draw character c using color and draw mode at x,y.

* void drawBitmap(void) — Draw bitmap image stored elsewhere in
the program to the OLED screen.

* void setColor(* uint8_t color) — Set the current draw’s color.
Only WHITE and BLACK available.

¢ void setDrawMode(* uint8_t mode) — Set current draw mode with
NORM or XOR.

Misc. Under-the-Hood Functions

* virtual size_t write(uint8_t) — Override Arduino’s Print so that
we can use uView.print().

void data(uint8_t c); — SPIl data. Send 1 data byte via SPI to
SSD1306 controller.

void setColumnAddress(uint8_t add) — Set SSD1306 column
address. Send column address command and address to the
SSD1306 OLED controller.

void setPageAddress(uint8_t add) — Set SSD1306 page address.
Send page address command and address to the SSD1306 OLED
controller.

* void command(uint8_t ¢) — Send 1 command byte.

* uint8_t * getScreenBuffer(void) — Get pointer to screen buffer.
Return a pointer to the start of the RAM screen buffer for direct
access.

System-Level Reference

¢ TeensyView(uint8_t rst, uint8_t dc, uint8_t cs, uint8_t sck, uint8_t mosi)
— Construct TeensyView object with the pins specified in the
arguments.

e static void begin() — SPI Initialization. Set up 1/O pins for SPI
port, then send initialization commands to the SSD1306 controller
inside the OLED. Pins to use have been specified in the constructor.

Example: ScreenDemo With Default
Configuration

This demo shows off the graphic and text commands that are within the
TeensyView library.

Hardware Requirements

* Teensy 3.1t0 3.6, or LC

» TeensyView set to default jumpers (factory)

Choose the example ScreenDemo from the menu, compile and run. You
should see all sorts of graphic demos go by on the screen. (Note: These
can progress at different speeds depending on which Teensy is used.)

Alternately, copy the code from here:

Page 14 of 33

/***

ok ok kKoK oK oK oK ok ok ok R R KK

TeensyView_Demo.ino

SFE_TeensyView Library Demo

Jim Lindblom @ SparkFun Electronics
Original Creation Date: October 27, 2014
Modified Febuary 2, 2017

This sketch uses the TeensyView library to draw a 3-D proje

cted

n

cube, and rotate it along all three axes.

Development environment specifics:
Arduino IDE 1.6.12 w/ Teensyduino 1.31
Arduino IDE 1.8.1 w/ Teensyduino 1.35
TeensyView v1.0

This code is beerware; if you see me (or any other SparkFu
employee) at the
local, and you've found our code helpful, please buy us a r

ound!

Distributed as-is; no warranty is given.

kKK oK oK oK oK ok o o K KKK oK oK oK oK ok o o o K KK oK oK oK oK ok o K KK oK oK oK oK oK ok oK o K KK KK KK oK R R R R KKK oK

KA A A K KA KKK]

#include <TeensyView.h> // Include the SFE_TeensyView library

II117177717117717111711177771111177
// TeensyView Object Declaration //
II1171771777177771111711177771111177
//Standard

#define PIN_RESET 15

#define PIN_DC 5

#define PIN_CS 10

#define PIN_SCK 13

#define PIN_MOSI 11

//Alternate (Audio)
//#define PIN_RESET 2
//#define PIN_DC 21
//#define PIN_CS 20
//#define PIN_SCK 14
//#define PIN_MOSI 7

TeensyView oled(PIN_RESET, PIN_DC, PIN_CS, PIN_SCK, PIN_MOSI);

void setup()

{

oled.begin(); // Initialize the OLED
oled.clear(ALL); // Clear the display's internal memory
oled.display(); // Display what's in the buffer (splashscre

en)

}

delay(1000); // Delay 1000 ms
oled.clear(PAGE); // Clear the buffer.

randomSeed(analogRead(A@) + analogRead(Al));

void pixelExample()

{

printTitle("Pixels", 1);

for (int i = 0; 1 < 1024; i++)

Page 15 of 33

{
oled.pixel(random(oled.getLCDWidth()), random(oled.getLCDH
eight()));
oled.display();
¥

void lineExample()

{
int middleX = oled.getLCDWidth() / 2;
int middleY = oled.getLCDHeight() / 2;
int xEnd, yEnd;
int lineWidth = min(middleX, middleY);

printTitle("Lines!", 1);

for (int i = 0; i < 3; i++)
{
for (int deg = @; deg < 360; deg += 15)
{
XEnd = lineWidth * cos(deg * PI / 180.0);
yEnd = lineWidth * sin(deg * PI / 180.0);

oled.line(middleX, middleY, middleX + xEnd, middleY + yE
nd);
oled.display();
delay(10);
}
for (int deg = @; deg < 360; deg += 15)
{
XEnd = lineWidth * cos(deg * PI / 180.0);
yEnd = lineWidth * sin(deg * PI / 180.0);

oled.line(middleX, middleY, middleX + xEnd, middleY + yE
nd, BLACK, NORM);
oled.display();
delay(10);
¥

void shapeExample()

{
printTitle("Shapes!", 0);

// Silly pong demo. It takes a lot of work to fake pong...

int paddleW = 3; // Paddle width

int paddleH = 15; // Paddle height

// Paddle @ (left) position coordinates

int paddle@_Y = (oled.getLCDHeight() / 2) - (paddleH / 2);

int paddleo_X = 2;

// Paddle 1 (right) position coordinates

int paddlel_Y = (oled.getLCDHeight() / 2) - (paddleH / 2);

int paddlel_X = oled.getLCDWidth() - 3 - paddleW;

int ball_rad = 2; // Ball radius

// Ball position coordinates

int ball_X = paddle@_X + paddleW + ball_rad;

int ball_Y = random(1 + ball_rad, oled.getLCDHeight() - ball
_rad);//paddle@_Y + ball_rad;

int ballVelocityX = 1; // Ball left/right velocity

int ballVelocityY = 1; // Ball up/down velocity

int paddleevVelocity = -1; // Paddle @ velocity

int paddlelVelocity = 1; // Paddle 1 velocity

//while(ball_X >= paddle® X + paddleW - 1)

Page 16 of 33

while ((ball_X - ball_rad > 1) &&
(ball_X + ball_rad < oled.getLCDWidth()
{
// Increment ball's position
ball_X += ballVelocityX;
ball_Y += ballVelocityY;

- 2))

// Check if the ball is colliding with the left paddle

if (ball_X - ball_rad < paddle@_X + paddleW)

{
// Check if ball is within paddle's height

if ((ball_Y > paddle@_Y) && (ball_Y < paddle@_Y + paddle

H))

ball_X++; // Move ball over one to the right
ballVelocityX = -ballVelocityX; // Change velocity

}

}
// Check if the ball hit the right paddle

if (ball_X + ball_rad > paddlel_X)
{

// Check if ball is within paddle's height

if ((ball_Y > paddlel_Y) && (ball_Y < paddlel_Y + paddle

H))

ball_X--; // Move ball over one to the left
ballvelocityX = -ballVelocityX; // change velocity

}

}
// Check if the ball hit the top or bottom

if ((ball_Y <= ball_rad) || (ball_Y >= (oled.getLCDHeight

() - ball_rad - 1)))
{
// Change up/down velocity direction
ballVelocityY = -ballVelocityY;
}
// Move the paddles up and down
paddle@_Y += paddle@Velocity;
paddlel_Y += paddlelVelocity;

// Change paddle ©'s direction if it hit top/bottom
if ((paddle@_Y <= 1) || (paddle@_Y > oled.getLCDHeight()

- 2 - paddleH))

{
paddle@Velocity = -paddle@Velocity;

}

// Change paddle 1's direction if it hit top/bottom
if ((paddlel_yY <= 1) || (paddlel_Y > oled.getLCDHeight()

- 2 - paddleH))

{
paddlelVelocity = -paddlelVelocity;

}

// Draw the Pong Field
oled.clear(PAGE); // Clear the page
// Draw an outline of the screen:

oled.rect(9, 0, oled.getLCDWidth() - 1, oled.getLCDHeight

0);
// Draw the center line
oled.rectFill(oled.getLCDWidth() / 2 - 1, o,
DHeight());
// Draw the Paddles:
oled.rectFill(paddle@_X, paddle@_Y, paddleW,
oled.rectFill(paddlel_X, paddlel_Y, paddleW,
// Draw the ball:
oled.circle(ball_X, ball_Y, ball_rad);
// Actually draw everything on the screen:

2, oled.getLC

paddleH);
paddleH);

Page 17 of 33

}

oled.display();

delay(25); // Delay for visibility
}
delay(1000);

void textExamples()

{

printTitle("Text!", 1);

// Demonstrate font @. 5x8 font
oled.clear(PAGE); // Clear the screen
oled.setFontType(@); // Set font to type ©
oled.setCursor(@, 0); // Set cursor to top-left
// There are 255 possible characters in the font @ type.
// Lets run through all of them and print them out!
for (int i = @; 1 <= 255; i++)
{
// You can write byte values and they'll be mapped to
// their ASCII equivalent character.
oled.write(i); // Write a byte out as a character
oled.display(); // Draw on the screen
delay(10); // Wait 1ems
// We can only display 60 font © characters at a time.
// Every 60 characters, pause for a moment. Then clear
// the page and start over.
if ((1 % 60 == 0) && (i != 9))
{
delay(500); // Delay 500 ms
oled.clear(PAGE); // Clear the page
oled.setCursor(@, 0); // Set cursor to top-left
¥

}
delay(500); // Wait 500ms before next example

// Demonstrate font 1. 8x16. Let's use the print function
// to display every character defined in this font.
oled.setFontType(1l); // Set font to type 1
oled.clear(PAGE); // Clear the page
oled.setCursor(@, @); // Set cursor to top-left

// Print can be used to print a string to the screen:
oled.print(" I\"#$%&" ()*+,-./01234");
oled.display(); // Refresh the display
delay(1000); // Delay a second and repeat
oled.clear(PAGE);

oled.setCursor(0, 0);
oled.print("56789:;<=>?@ABCDEFGHI");
oled.display();

delay(1000);

oled.clear(PAGE);

oled.setCursor(0, 0);
oled.print("IKLMNOPQRSTUVWXYZ[\\]*");
oled.display();

delay(1000);

oled.clear(PAGE);

oled.setCursor(0, 0);
oled.print("_"abcdefghijklmnopqrs");
oled.display();

delay(1000);

oled.clear(PAGE);

oled.setCursor(0, 0);

oled.print("tuvwxyz{|}~");

oled.display();

delay(1000);

Page 18 of 33

// Demonstrate font 2. 10x16. Only numbers and '.' are defin

ed.

// This font looks like 7-segment displays.

// Lets use this big-ish font to display readings from the
// analog pins.

for (int i = 0; 1 < 25; i++)

{

oled.
oled.

oled

eft

oled.
oled.
oled.
oled.
oled.
oled.
oled.
oled.
oled.
oled.

clear(PAGE);
setCursor(0, 0);

.setFontType(0);
oled.
oled.
oled.
oled.

print("A0: ");
setFontType(2);
print(analogRead(A®));
setCursor(0, 16);

setFontType(9);
print("Al1: ");
setFontType(2);
print(analogRead(Al));
setCursor(0, 32);
setFontType(0);
print("A2: ");
setFontType(2);
print(analogRead(A2));
display();

delay(100);

void loop()

{

pixelExample();
lineExample();

shapeExample();
textExamples();

// Center and print a small title

//
//
//
//
//
//
//

//

Clear the display

Set cursor to top-left
Smallest font

Print "A@"

7-segment font

Print a@ reading

Set cursor to top-middle-1

Repeat

// Run the pixel example function
// Then the line example function
// Then the shape example

// Finally the text example

// This function is quick and dirty. Only works for titles one
// line long.
void printTitle(String title, int font)

{

int middleX = oled.getLCDWidth() / 2;
int middleY = oled.getLCDHeight() / 2;

oled.clear(PAGE);
oled.setFontType(font);
// Try to set the cursor in the middle of the screen
oled.setCursor(middleX - (oled.getFontWidth() * (title.lengt
h() /7 2)),

middleY - (oled.getFontWidth() / 2));
// Print the title:
oled.print(title);
oled.display();
delay(1500);
oled.clear(PAGE);

The loop() can be seen near the end of the code. It runs each of the
drawing examples. If you're wondering how the code does a certain thing
on the screen, examine the routine (such as shapeExample(){}) and
consult the Library Reference.

Page 19 of 33

Example: Audio Board-Compatible
Connection

This example shows off using the TeensyView with the audio platform. It
takes incoming audio data on both line-in channels and displays a 40-bin
FFT for each, plus some CPU usage info.

—

The TeensyView atop a Teensy Audio stack

Hardware Requirements

» Teensy 3.1 to 3.6 (Note: CPU usage at 100% on the 3.1 with both
FFTs enabled)

» TeensyView set to alternate jumpers

 Audio board with a line-in connection added

» Optional: Headphones attached to headphone out port (passes
audio)

Choose the example TeensyViewAudio from the menu, compile and run.

You should see all sorts of graphic demos go by on the screen. (Note:
These can progress at different speeds depending on which Teensy is
used.)

Alternately, copy the code from here:

Page 20 of 33

/***

ok ok kKoK oK oK oK ok ok ok R R KK

TeensyViewAudio.ino

Example using the TeensyView with the Teensy Audio board

Marshall Taylor @ SparkFun Electronics, December 6, 2016
https://github.com/sparkfun/SparkFun_TeensyView_Arduino_Libr

ary

This is modified FFT example software. It passes L/R audio

channels to the

headphone output while displaying the FFTs as a bar graph o

n the OLED, with
CPU usage reports.

Compatible with:

Teensy 3.1 + Teensy Audio
Teensy 3.2 + Teensy Audio
Teensy 3.5 + Teensy Audio
Teensy 3.6 + Teensy Audio

Board (100% processor usage)
Board (100% processor usage)
Board
Board

Resources:
Requires the Teensy Audio library

Development environment specifics:
Arduino IDE 1.6.12 w/ Teensyduino 1.31
Arduino IDE 1.8.1 w/ Teensyduino 1.35
TeensyView v1.0

This code is released under the [MIT License](http://opensou
rce.org/licenses/MIT).

Please review the LICENSE.md file included with this exampl
e. If you have any questions

or concerns with licensing, please contact techsupport@spark
fun.com.

Distributed as-is; no warranty is given.
sk ok 3k sk ok ok ok ok oK oK oK 5K ok ok 3k 3k 3k 3k ok ok ok ok ok ok ok oK 5K ok ok ok 3k 3k ok ok ok ok ok oK oK ok ok ok ok ok 3k 3k ok ok ok ok ok ok ok ok ok ok ok sk k ok ok ok

****************/
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <SerialFlash.h>

// GUItool: begin automatically generated code

AudioInputI2S audioInput; //xy=458,218
AudioAnalyzeFFT1024 LeftFFT; //xy=672,138
AudioAnalyzeFFT1024 RightFFT; //xy=683,295
AudioOutputI2s audioOutput; //xy=686,219
AudioConnection patchCordl(audioInput, @, LeftFFT,
0);

AudioConnection patchCord2(audioInput, @, audioOutpu
t, 9);

AudioConnection patchCord3(audioInput, 1, audioOutpu
t, 1);

AudioConnection patchCord4(audioInput, 1, RightFFT,
9);

AudioControlSGTL5000 audioShield; //xy=467,310

// GUItool: end automatically generated code

const int myInput = AUDIO_INPUT_LINEIN;
//const int myInput = AUDIO_INPUT_MIC;

Page 21 of 33

#include <TeensyView.h> // Include the TeensyView library

II117777171117717111711777171111117
// TeensyView Object Declaration //
II1177777771177171117171777171111177
//Standard

//#define PIN_RESET 15

//#define PIN_DC 5

//#define PIN_CS 10

//#define PIN_SCK 13

//#define PIN_MOSI 11

//Alternate (Audio)
#define PIN_RESET 2
#define PIN_DC 21
#define PIN_CS 20
#define PIN_SCK 14
#define PIN_MOSI 7

TeensyView oled(PIN_RESET, PIN_DC, PIN_CS, PIN_SCK, PIN_MOSI);

void setup()
{
// Set up audio stuff:
// Audio connections require memory to work. For more
// detailed information, see the MemoryAndCpuUsage example
AudioMemory(20);

// Enable the audio shield and set the output volume.
audioShield.enable();
audioShield.inputSelect(myInput);
audioShield.volume(@.5); //Pass-through volume

// Configure the window algorithm to use
LeftFFT.windowFunction(AudioWindowHanning1024);
RightFFT.windowFunction(AudioWindowHanning1024);

//Initialize the OLED

oled.begin();

// clear(ALL) will clear out the OLED's graphic memory.

// clear(PAGE) will clear the Arduino's display buffer.

oled.clear(ALL); // Clear the display's memory (gets rid o
f artifacts)

// To actually draw anything on the display, you must call t
he

// display() function.

oled.display();

// Give the splash screen some time to shine

delay(2000);

unsigned long last_time = millis();
uint8_t overlayCounter = 0;

float lastLoopTime = 0;

uintl6_t lastCPU = 0;

uintl6_t lastMem = 0;

float leftBands[40] = {

@, 0,0, 0,0,000,0,0,
0,0, 0,0,0,0, 0 00,0,
@, 0, 0, 0, 9, 0, 8, 0, 0, 0,
0,0, 0,0,0,0,0, 00,20

}s

Page 22 of 33

float RightBands[40] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, O,
0, 9, 9, 0, 0, 90, 0, 0, 0, O,
0, 90, 9, 0, 0, 90, 0, 0, 9, O,
0, 0, 0,0,0,0,0,0,0,0

s

void loop()

{

float loopTime;
int i;

//calc loopTime
unsigned long this_time = millis();
if (this_time > last_time)
{
loopTime = (this_time - last_time);

}

last_time = this_time;

//Update data every 20 frames for readability
overlayCounter++;
if (overlayCounter > 20)
{
lastLoopTime = loopTime;
lastCPU = AudioProcessorUsageMax();
AudioProcessorUsageMaxReset();
lastMem = AudioMemoryUsageMax();
AudioMemoryUsageMaxReset();

overlayCounter = 0;

//Draw a frame
oled.clear(PAGE);

//Draw left bands
for (i = @; 1 < 40; i++)
{
if (leftBands[i] > ©.5) leftBands[i] = 0.25;

oled.line(62 - i, 31, 62 - i, 31 - (leftBands[i] * 127));

}

//Draw Right bands
for (i = 0; i < 40; i++)

{

if (RightBands[i] > ©.5) RightBands[i] = 0.25;
oled.line(65 + i, 31, 65 + i, 31 - (RightBands[i] * 127));

}

//0Overlay info

// loop time
oled.setCursor(0, 0);
oled.print("Loop=");
oled.print((uint8_t)lastLoopTime);
oled.print("ms");

// Teensy Audio info
oled.setCursor(83, 0);
oled.print("cpu=");
oled.print(lastCPU);
oled.setCursor(91, 8);
oled.print("mem=");
oled.print(lastMem);

// L/R letters
oled.setCursor(15, 24);

Page 23 of 33

oled.print("L");
oled.setCursor(108, 24);
oled.print("R");

if (LeftFFT.available()) {
// each time new FFT data is available
for (1 =0; i < 40; i++) {
leftBands[i] = LeftFFT.read(i);
}

¥
if (RightFFT.available()) {

// each time new FFT data is available
for (1 =0; i < 40; i++) {
RightBands[i] = RightFFT.read(i);
}
¥

oled.display();

The important lesson from this sketch is that the constructor is passed the
alternate set of pins, and can be used concurrently with the Audio board.

Use the same command from the ScreenDemo and paint the screen with
whatever you need to display!

Example: Prop Shield-Compatible
Connection
This example shows off using the TeensyView with the Prop Shield. This is

a demonstration and test of all features on the Prop Shield and won’t work
on the LC prop shield, which doesn’t have motion sensors.

The example:

Creates a test file on the Flash (you may lose existing data) that
contains RGB data

Initializes the IMUs

Initializes the Audio platform

Displays heading, pitch and roll on the screen

Generates a sine wave of pitch and filter based on physical
orientation — kind of like a Theremin!

Continuously reads flash data from the test file and applies it to the
APA102 LED

Wire the LED and speaker to the Prop Shield using the connection table:

Prop Shield Function

G APA102 Ground (Pin 3)
C APA102 Clock In (Pin 2)
D APA102 Data In (Pin 1)
5 APA102 VCC (Pin 4)

- Headphone ring

+ Headphone tip

Prop Shield Connections

Page 24 of 33

Page 25 of 33

The TeensyView atop a Teensy Prop stack. Notice the attached LED and
speaker.

Hardware Requirements

* Teensy 3.1t0 3.6
» TeensyView set to the following:
o RST set to default
o DC set to alternate
o CS set to alternate
o CLK set to default
o mosi set to default
* Prop Shield with:
o (optional) 1 AP102 attached to LED port — 1m APA102 Strip or
5m APA102 Strip shown
> (optional) Speaker attached to speaker port — Audio Jack and
Audio Jack Breakout shown

Choose the example TeensyViewProp from the menu, compile and run.
After the splash screen, the sketch will start, and the display will switch to
orientation information. (Note: With so many included libraries, this can take
awhile to compile!)

Alternately, copy the code from here:

	Contact us

