: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LC Series

Subminiature Precision Snap-acting Switches

Features/Benefits

- Compact design
- Long life and high electrical capacity
- Quick connect, wire lead or PC mounting

Typical Applications

- Wide variety of actuator styles
- Motorized equipment
- Sump pump
- Thermostatic controls

UL61058-1

Specifications

CONTACT RATING: From low level* to 10.1 AMPS @ 250 V AC. ELECTRICAL LIFE: 100,000 cycles INSULATION RESISTANCE: $1,000 \mathrm{M}$ о $\mu \mathrm{min}$. DIELECTRIC STRENGTH: 1,000 Vrms min. @ sea level. OPERATING TEMPERATURE: $-17^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}\left(-25^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$. OPERATING FORCE: From 142 to 170 grams at actuator button.

Forces are less at free end of lever actuators; (see OPERATING FORCE and ACTUATOR option sections).
MOUNTING: 2-56 screws, torque $2.3 \mathrm{in} / \mathrm{lbs}$ max.

* Low Level=conditions where no arcing occurs during switching, i.e., 0.4 VA max. @ 20 V AC or DC max.

NOTE: Specifications and materials listed above are for switches with standard options. For information on specific and custom switches, consult Customer Service center.

Materials

SWITCH HOUSING: Thermoplastic polyester or high temperature thermoplastic (PTS) (UL 94V-0).
ACTUATOR BUTTON: Thermoplastic polyester (UL 94V-0).
SPRING: Copper alloy.
PIVOT: Copper alloy.
MOVABLE CONTACTS: Fine silver for ratings greater than 1 AMP @ 125 V AC. Fine silver with 24 K gold plate for 1 AMP @ 125 V AC or less.
STATIONARY CONTACTS: Fine silver welded on copper alloy for ratings greater than 1 AMP @ 125 V AC. Gold alloy welded on copper alloy for ratings less than 1 AMP @ 125 V AC.
TERMINALS: Copper alloy.
TERMINAL SEAL: Epoxy.

Build-A-Switch

To order, simply select desired option from each category and place in the appropriate box. Available options are shown and described on pages $\mathrm{J}-33$ through J-35. For additional options not shown in catalog, consult Customer Service Center.

LC SUBMINIATURE PRECISION SNAP-ACTING SWITCHES SP MOMENTARY

OPTION CODE	BASIC SWITCH OPERATING FORCES (OZ./GRAMS)
GG	5
	142
GD	3.3
GH	94

NOTE: Operating force varies with actuator option, see ACTUATOR option section.
ELECTRICAL RATING \quad ■

UL 61058-1		CONTACT MATERIAL			
OPTION CODE	ELECTRICAL RATING	MOVABLE CONTACT	stationary CONTACT	RoHS COMPLIANT*	RoHS COMPATIBLE*
X1	1A GP, $250 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 25 \mathrm{E} 3$, 885 1RA, $30 \mathrm{Vdc}, 1 \mathrm{E} 4, \mathrm{~T} 85$	Fine silver with 24 K gold plate	Fine silver with 24 K gold plate on copper base alloy	Yes	Yes
V6	5(2)A RM, $250 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 1 \mathrm{E} 4, \mathrm{~T} 85$ 5A GP, $250 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 1 \mathrm{E} 4$, T85 5RA, $30 \mathrm{Vdc}, 1 \mathrm{E} 4$, T85 $1 / 3 \mathrm{HP}, 125 / 250 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 1 \mathrm{E} 4, \mathrm{~T} 85$	Fine silver	Fine silver welded on copper base alloy	Yes	Yes
V7	10(2)A RM, $250 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 1 \mathrm{E} 4, \mathrm{~T} 85$ 10A GP, $250 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 1 \mathrm{E} 4, \mathrm{~T} 85$ 10RA, 30 Vdc, 1E4, T85 1/3 HP, 125/250 Vac, $50 / 60$ Hz, 1E4, T85	Fine silver	Fine silver welded on copper base alloy	Yes	Yes

UL 1054		CONTACT MATERIAL			
OPTION CODE	ELECTRICAL RATING	MOVABLE CONTACT	STATIONARY CONTACT	RoHS COMPLIANT*	RoHS COMPATIBLE*
F5	$1 \mathrm{~A}, 125 \mathrm{~V} \mathrm{AC}, 30 \mathrm{VDC}$ 100,000 cycles ("U" option)	Fine silver with 24 K gold plate	Fine silver with 24 K gold plate on copper base alloy	Yes	Yes
L9	$5 \mathrm{~A}, 1 / 3 \mathrm{HP} @ 125$ and 250 V AC 100,000 cycles ("U" option)	Fine silver	Fine silver welded on copper base alloy	Yes	Yes
M1	$10.1 \mathrm{~A}, 1 / 3 \mathrm{HP} @ 125$ and 250 V AC 100,000 cycles ("U" option)	Fine silver	Fine silver welded on copper base alloy	Yes	Yes

c ${ }^{9} \mathrm{~N}_{\text {us }} \mathrm{E}^{15}$

* Note: See Technical Data section of this catalog for RoHS compliant and compatible definition and specifications.

Consult Customer Service Center for availability and delivery of nonstandard ratings.
*Low Level $=$ conditions where no arcing occurs during switching, i.e., 0.4 VA max. @ 20 VAC or DC max.
Third Angle Third Angle
Projection
Dimensions are shown: Inches (mm) Specifications and dimensions subject to change

LC Series

Subminiature Precision Snap-acting Switches
ACTUATOR

HIGH FORCE

OPTION CODE	FIG.	DIM. A	DIM. B	DIM. \mathbf{C}
P00	1	0.297 $(7,6)$	$.330 \pm .015$ $(8,38 \pm 0,38)$	-
A10	7	0.28 $(7,1)$	$.570 \pm .070$ $(14,48 \pm 1,78)$.19 dia. $(4,8 \varnothing)$
A25	2	0.61 $(15,5)$	$.570 \pm .175$ $(14,22 \pm 4,45)$.19 dia. $(4,8 \varnothing)$
T10	3	0.29 $(7,4)$	$.340 \pm .070$ $(8,64 \pm 1,78)$	-
T13	5	0.220 $(5,3)$	$.455 \pm .065$ $(11,56 \pm 1,65)$	-
T20	4	0.39 $(9,9)$	$.340 \pm .140$ $(8,64 \pm 3,56)$	-
T23	6	0.32 $(8,1)$	$.455 \pm .125$ $(11,56 \pm 3,18)$	-
A15	7	0.67 $(17,0)$	$.340 \pm .091$ $(8,64 \pm 4,70)$	-
A20	2	0.51 $(13,0)$	$.560 \pm .090$ $(14,22 \pm 2,29)$.19 dia. $(4,80)$
T15	3	$.560 \pm .135$ $(14,51)$.19 dia. $(4,80)$	
$(8,64 \pm 2,54) \pm 2,29)$	-			

FIG. 1
Pin Plunger

FIG. 2
Lever Roller

FIG. 3
Lever
LOW FORCE

FIG. 4
Lever

BASIC FORCE

FIG. 7
Lever Roller

SWITCH CHARACTERISTICS

	MAXIMUM OPERATING FORCE (OZ./GRAMS)			MINIMUM RELEASE FORCE (OZ./GRAMS)			MAXIMUM DIFFERENTIAL TRAVEL	MAXIMUM PRETRAVEL	MINIMUM OVERTRAVEL
CODE	GG	GD	GH	GG	GD	GH	ALL FORCES	ALL FORCES	ALL FORCES
A10	$\begin{gathered} 1.69 \\ 48 \end{gathered}$	$\begin{gathered} 1 \\ 28 \end{gathered}$	$\begin{gathered} 2.0 \\ 57 \end{gathered}$	$\begin{gathered} .21 \\ 6 \end{gathered}$	$\begin{gathered} .11 \\ 3 \end{gathered}$	$\begin{aligned} & .42 \\ & 12 \end{aligned}$	$\begin{gathered} .034 \\ (0,86) \end{gathered}$	$\begin{gathered} .140 \\ (3,56) \end{gathered}$	$\begin{gathered} .029 \\ (0,74) \end{gathered}$
A15	$\begin{aligned} & 1.3 \\ & 37 \end{aligned}$	$\begin{aligned} & .68 \\ & 19 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 44 \end{aligned}$	$\begin{aligned} & .16 \\ & 4.5 \end{aligned}$	$\begin{gathered} .07 \\ 2 \end{gathered}$	$\begin{gathered} .32 \\ 9 \end{gathered}$	$\begin{gathered} .044 \\ (1,12) \end{gathered}$	$\begin{gathered} .180 \\ (4,57) \end{gathered}$	$\begin{gathered} .037 \\ (0,94) \end{gathered}$
A20	$\begin{aligned} & 0.9 \\ & 26 \end{aligned}$	$\begin{aligned} & .52 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 31 \end{aligned}$	$\begin{gathered} .11 \\ 3 \end{gathered}$	$\begin{aligned} & .05 \\ & 15 \end{aligned}$	$\begin{gathered} .21 \\ 6 \end{gathered}$	$\begin{gathered} .067 \\ (1,70) \end{gathered}$	$\begin{gathered} .272 \\ (6,91) \end{gathered}$	$\begin{gathered} .053 \\ (1,53) \end{gathered}$
A25	$\begin{aligned} & .70 \\ & 20 \end{aligned}$	$\begin{aligned} & .42 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline .85 \\ & 24 \end{aligned}$	$\begin{gathered} \hline .07 \\ 2 \end{gathered}$	$\begin{gathered} .04 \\ 1 \end{gathered}$	$\begin{aligned} & .16 \\ & 4.5 \end{aligned}$	$\begin{gathered} .086 \\ (2,18) \end{gathered}$	$\begin{gathered} .351 \\ (8,92) \end{gathered}$	$\begin{gathered} .068 \\ (1,73) \end{gathered}$
P00	$\begin{gathered} 5 \\ 142 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 95 \end{aligned}$	$\begin{gathered} 6 \\ 170 \end{gathered}$	$\begin{gathered} 1 \\ 28 \end{gathered}$	$\begin{aligned} & .05 \\ & 14 \end{aligned}$	$\begin{gathered} 2.0 \\ 57 \end{gathered}$	$\begin{gathered} .004 \\ (0,10) \end{gathered}$	$\begin{gathered} .030 \\ (0,76) \end{gathered}$	$\begin{gathered} .010 \\ (0,25) \end{gathered}$
T10	$\begin{aligned} & 1.7 \\ & 48 \end{aligned}$	$\begin{gathered} 1 \\ 28 \end{gathered}$	$\begin{aligned} & 2.1 \\ & 60 \end{aligned}$	$\begin{gathered} .21 \\ 6 \end{gathered}$	$\begin{gathered} .10 \\ 3 \end{gathered}$	$\begin{aligned} & .39 \\ & 11 \end{aligned}$	$\begin{gathered} .035 \\ (0,90) \end{gathered}$	$\begin{gathered} .140 \\ (3,56) \end{gathered}$	$\begin{gathered} .029 \\ (0,74) \end{gathered}$
T13	$\begin{aligned} & 1.8 \\ & 52 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 34 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 62 \end{aligned}$	$\begin{gathered} .21 \\ 6 \end{gathered}$	$\begin{gathered} .03 \\ 1 \end{gathered}$	$\begin{aligned} & .42 \\ & 12 \end{aligned}$	$\begin{gathered} .032 \\ (0,81) \end{gathered}$	$\begin{gathered} .130 \\ (3,30) \end{gathered}$	$\begin{gathered} .026 \\ (0,66) \end{gathered}$
T20	$\begin{gathered} 0.9 \\ 26 \end{gathered}$	$\begin{aligned} & .52 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 30 \end{aligned}$	$\begin{gathered} .10 \\ 3 \end{gathered}$	$\begin{gathered} .03 \\ 1 \end{gathered}$	$\begin{gathered} .21 \\ 6 \end{gathered}$	$\begin{gathered} .067 \\ (1,70) \end{gathered}$	$\begin{gathered} .276 \\ (7,01) \end{gathered}$	$\begin{gathered} .053 \\ (1,35) \end{gathered}$
T23	$\begin{aligned} & \hline 1.0 \\ & 28 \end{aligned}$	$\begin{aligned} & \hline .52 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 34 \end{aligned}$	$\begin{gathered} .10 \\ 3 \end{gathered}$	$\begin{gathered} .03 \\ 1 \end{gathered}$	$\begin{gathered} .21 \\ 6 \end{gathered}$	$\begin{gathered} .062 \\ (1,57) \end{gathered}$	$\begin{gathered} .252 \\ (6,40) \end{gathered}$	$\begin{gathered} .049 \\ (1,24) \end{gathered}$
T25	$\begin{gathered} \hline 0.7 \\ 19 \\ \hline \end{gathered}$	$\begin{aligned} & \hline .05 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 24 \\ & \hline \end{aligned}$	$\begin{gathered} \hline .07 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline .03 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} .14 \\ 4 \end{gathered}$	$\begin{gathered} .090 \\ (2,29) \\ \hline \end{gathered}$	$\begin{gathered} \hline .372 \\ (9,45) \\ \hline \end{gathered}$	$\begin{gathered} \hline .072 \\ (1,83) \\ \hline \end{gathered}$
T15	$\begin{aligned} & 1.2 \\ & 35 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 39 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 42 \end{aligned}$	$\begin{gathered} 0.14 \\ 4 \end{gathered}$	$\begin{gathered} .21 \\ 6 \end{gathered}$	$\begin{aligned} & .28 \\ & 81 \end{aligned}$	$\begin{gathered} .047 \\ (1,19) \end{gathered}$	$\begin{gathered} .190 \\ (4,83) \end{gathered}$	$\begin{gathered} .040 \\ (1,02) \end{gathered}$

NOTE: For basic switch operating forces, see page J-32

