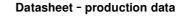
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

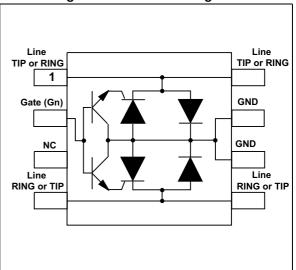
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LCP1521S

Programmable transient voltage suppressor for SLIC protection



These devices have been especially designed to protect new high voltage, as well as classical SLICs, against transient overvoltages.

Positive overvoltages are clamped by 2 diodes. Negative surges are suppressed by 2 thyristors, their breakdown voltage being referenced to $-\rm V_{BAT}$ through the gate.

These components present a very low gate triggering current (I_{GT}) in order to reduce the current consumption on printed circuit board during the firing phase.

Figure 1. Functional diagram

SO-8

Features

- Programmable transient suppressor
- Wide negative firing voltage range: V_{Gn} = -175 V max.
- Low dynamic switching voltages: V_{FP} and V_{DGL}
- Low gate triggering current: I_{GT} = 5 mA max.
- Peak pulse current: I_{PP} = 40 A (5/310 µs)
- Holding current: I_H = 150 mA min.

Benefits

- Trisil[™] is not subject to ageing and provides a fail safe mode in short circuit for a better level of protection.
- Trisils are used to ensure equipment meets various standards such as UL60950, IEC 60950 / CSA C22.2, UL1459, TIA-968-A (formerly FCC part 68)
- Trisils have UL94 V0 approved resin (Trisils are UL497B approved [file: E136224]).

TM: Trisil is a trademark of STMicroelectronics

DocID16804 Rev 6

www.st.com

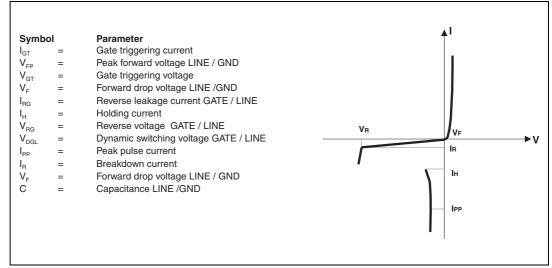
This is information on a product in full production.

1 Characteristics

Table 1. Standards compliance					
Standard	Peak surge voltage (V)	Voltage waveform	Required peak current (A)	Current waveform	Minimum serial resistor to meet standard (Ω)
GR-1089 Core First level	2500 1000	2/10 μs 10/1000 μs	500 100	2/10 μs 10/1000 μs	12 24
GR-1089 Core Second level	5000	2/10 µs	500	2/10 µs	24
GR-1089 Core Intra-building	1500	2/10 µs	100	2/10 µs	0
ITU-T-K20/K21	6000 1500	10/700 μs	150 37.5	5/310 µs	110 0
ITU-T-K20 (IEC 61000-4-2)	8000 15000	1/60 ns		t discharge discharge	0 0
IEC 61000-4-5	4000 4000	10/700 μs 1.2/50 μs	100 100	5/310 μs 8/20 μs	60 0
TIA-968-A, lightning surge type A	1500 800	10/160 μs 10/560 μs	200 100	10/160 μs 10/560 μs	22.5 15
TIA-968-A, lightning surge type B	1000	9/720 µs	25	5/320 µs	0

Table 1. Standards compliance

Table	2.	Thermal	resistances
-------	----	---------	-------------


Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient	120	°C/W

Symbol	Parameter		Value	Unit
		10/1000 µs	30	
		8/20 µs	100	
		10/560 µs	35	
IPP	Peak pulse current ⁽¹⁾	5/310 µs	40	А
		10/160 µs	50	
		1/20 µs	100	
		2/10 µs	150	
	Non repetitive ourse peak on state oursent	t = 20 ms	18	
I _{TSM}	Non repetitive surge peak on-state current (50 Hz sinusoidal) ⁽¹⁾	t = 200 ms	10	А
		t = 1 s	7	
V _{Gn}	Negative battery voltage range	-40 °C < T _{amb} < +85 °C	-175	V
T _{stg}	Storage temperature range		-55 to +150	З°
Тj	Operating junction temperature range		-55 to +150	C
ΤL	Maximum lead temperature for soldering d	uring 10 s.	260	°C

Table 3.	Absolute	ratings	(T _{amb} =	: 25 °	°C)
----------	----------	---------	---------------------	---------------	-----

1. The rated current values may be applied either to the RING to GND or to the Tip to GND terminal pairs. Additionally, both terminal pairs may have their rated current values applied simultaneously (in this case the GND terminal current will be twice the rated current value of an individual terminal pair).

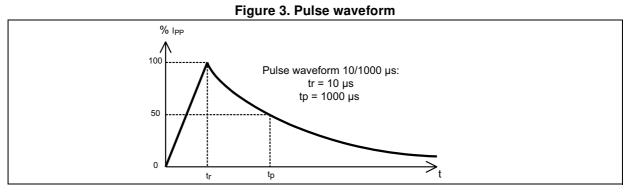


Table 4. Parameters (T_{amb} = 25 °C unless otherwise specified)

Symbol	Test conditions						Тур	Max	Unit
I _{GT}	V _{LINE} = -48 V	V _{LINE} = -48 V						5	mA
I _H	V _{Gn} = -48 V					150			mA
V _{GT} ⁽¹⁾	at I _{GT}							2.5	V
I _{RG}	V _{RG} = -175 V V _{RG} = -175 V							5 50	μA
V _{DGL} ⁽¹⁾	V _{Gn} = -48 V ⁽¹⁾	10/700 μs 1.2/50 μs 2/10 μs	1.5 kV 1.5 kV 2.5 kV	$R_{S} = 10 \Omega$ $R_{S} = 10 \Omega$ $R_{S} = 62 \Omega$	I _{PP} = 30 A I _{PP} = 30 A I _{PP} = 38 A			7 10 25	V
V _F	I _F = 5 A			·	t = 500 µs			3	V
V _{FP}	10/700 μs 1.5 kV 1.2/50 μs 1.5 kV 2/10 μs 2.5 kV		R _S = 10 Ω R _S = 10 Ω R _S = 62 Ω			5 9 30	V		
۱ _R	$ \begin{array}{ll} V_{Gn / LINE} = -1 V & V_{LINE} = -175 V & T_{j} = 25 ^{\circ}\text{C} \\ V_{Gn / LINE} = -1 V & V_{LINE} = -175 V & T_{j} = 85 ^{\circ}\text{C} \end{array} $					5 50	μA		
С		V _{LINE} = -50 V, V _{RMS} = 1 V, F = 1 MHz V _{LINE} = -2 V, V _{RMS} = 1 V, F = 1 MHz					15 35		рF

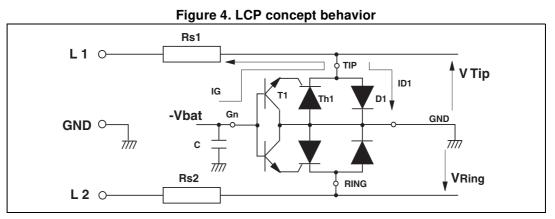

1. The oscillations with a time duration lower than 50 ns are not taken into account.

Table 5. Recommended gate capacitance

Symbol	Component	Min.	Тур.	Max.	Unit
C _G	Gate decoupling capacitance	100	220		nF

2 Technical information

Figure 4 shows the classical protection circuit using the LCP crowbar concept. This topology has been developed to protect the new high voltage SLICs. It allows to program the negative firing threshold while the positive clamping value is fixed at GND.

When a negative surge occurs on one wire (L1 for example) a current IG flows through the base of the transistor T1 and then injects a current in the gate of the thyristor Th1. Th1 fires and all the surge current flows through the ground. After the surge when the current flowing through Th1 becomes less negative than the holding current IH, then Th1 switches off.

When a positive surge occurs on one wire (L1 for example) the diode D1 conducts and the surge current flows through the ground.

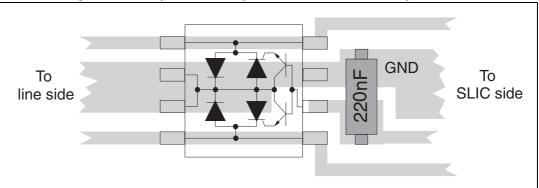


Figure 5. Example of PCB layout based on LCP1521S protection

Figure 5 shows the classical PCB layout used to optimize line protection.

The capacitor C is used to speed up the crowbar structure firing during the fast surge edges.

This allows minimization of the dynamic breakover voltage at the SLIC Tip and Ring inputs during fast strikes. Note that this capacitor is generally present around the SLIC - Vbat pin.

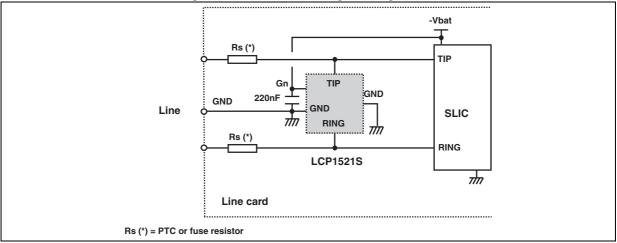
So to be efficient it has to be as close as possible from the LCP Gate pin and from the reference ground track (or plan) (see *Figure 5*). The optimized value for C is 220 nF.

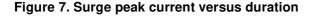
The series resistors Rs1 and Rs2 designed in *Figure 4* represent the fuse resistors or the PTC which are mandatory to withstand the power contact or the power induction tests imposed by the various country standards. Taking into account this fact the actual lightning surge current flowing through the LCP is equal to:

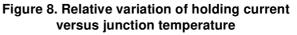
V _{surge} = peak surge voltage imposed by the standard.

 R_a = series resistor of the surge generator

R_s = series resistor of the line card (e.g. PTC)


e.g. For a line card with 30 Ω of series resistors which has to be qualified under GR1089 core 1000V 10/1000 µs surge, the actual current through the LCP is equal to:


I _{surge} = 1000 / (10 + 30) = 25 A


The LCP is particularly optimized for the new telecom applications such as the fiber in the loop, the WLL, the remote central office. In this case, the operating voltages are smaller than in the classical system. This makes the high voltage SLICs particularly suitable.

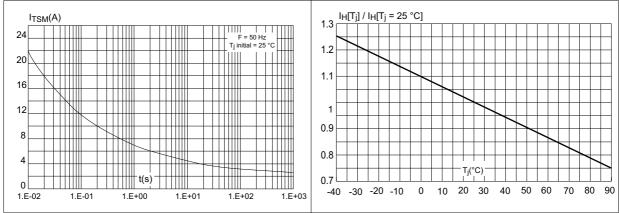
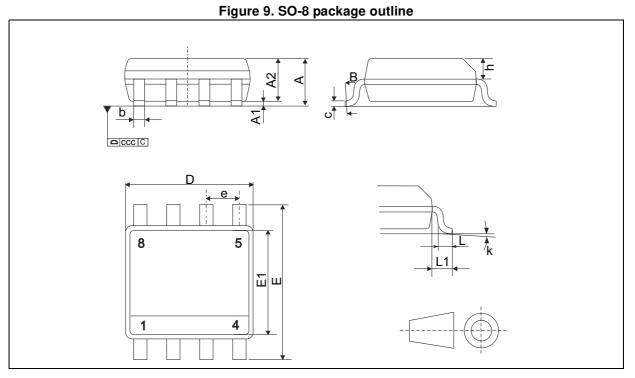

The schematics of *Figure 6* give the most frequent topology used for these applications.

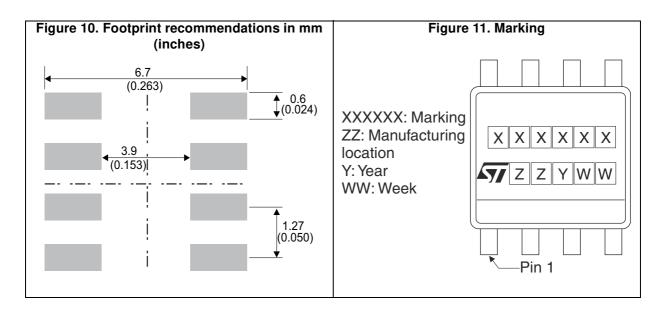
Figure 6. Protection of high voltage SLIC

DocID16804 Rev 6


3 Package information

• Epoxy meets UL94, V0

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.



3.1 SO-8 package information

Table 6. SO-8 package mechanical data

		Dimensions								
Ref.		Millimeters		Inches						
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А			1.75			0.069				
A1	0.1		0.25	0.004		0.010				
A2	1.25			0.049						
b	0.28		0.48	0.011		0.019				
С	0.17		0.23	0.007		0.009				
D	4.80	4.90	5.00	0.189	0.193	0.197				
Е	5.80	6.00	6.20	0.228	0.236	0.244				
E1	3.80	3.90	4.00	0.150	0.154	0.157				
е		1.27			0.050					
h	0.25		0.50	0.010		0.020				
L	0.40		1.27	0.016		0.050				
L1		1.04			0.041					
k°	0		8	0		8				
CCC			0.10			0.004				

4 Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
LCP1521SRL	CP152S	SO-8	0.08 g	2500	Tape and reel

5 Revision history

Table 8. Document revision history

Date	Revision	ision Changes	
20-Nov-2009	1	First issue.	
23-Feb-2012	2	Standardized nomenclature for Gn.	
15-Nov-2013	3	Updated <i>Figure 9</i> .	
10-Apr-2015	4	Updated <i>Figure 1</i> , <i>Figure 10</i> and package view. Added <i>Figure 11</i> . Updated <i>Table 3</i> and <i>Table 7</i> .	
02-Jul-2015	5	Updated package information.	
08-Jul-2015	6	Updated <i>Figure 9</i> .	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID16804 Rev 6