

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

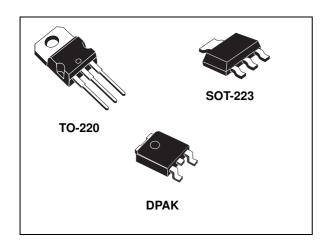
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Low drop fixed and adjustable positive voltage regulators

Datasheet - production data

Features

- · Low dropout voltage:
 - 1.15 V typ. @ $I_{OUT} = 1$ A, 25 °C
- · Very low quiescent current:
 - 5 mA typ. @ 25 °C
- Output current up to 1 A
- Fixed output voltage of:
 - 1.2 V, 1.8 V, 3.3 V
- Adjustable version availability (V_{REF} = 1.25 V)
- · Internal current and thermal limit
- Only 10 μF for stability

- Available in ± 2% (at 25 °C) and 4% in full temperature range
- High supply voltage rejection:
 - 80 dB typ. (at 25 °C)
- Temperature range: 0 °C to 125 °C

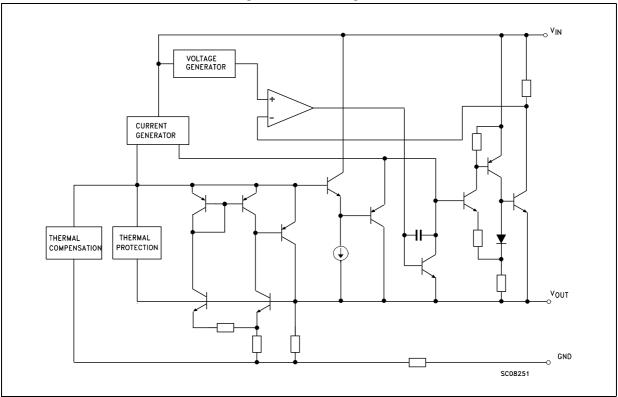
Description

The LD1117A is a low drop voltage regulator able to provide up to 1 A of output current, available also in adjustable versions ($V_{REF} = 1.25 \text{ V}$). In fixed versions, the following output voltages are offered: 1.2 V, 1.8 V, and 3.3 V. The device is supplied in: SOT-223, DPAK and TO-220. Surface mounted packages optimize the thermal characteristics while offering a relevant space saving advantage. High efficiency is assured by an NPN pass transistor. Only a very common 10 μF minimum capacitor is needed for stability. Chip trimming allows the regulator to reach a very tight output voltage tolerance, within \pm 2% at 25 °C.

Table 1. Device summary

	Output voltage					
SOT-223	SOT-223 DPAK TO-220					
LD1117AS12TR	LD1117ADT12TR		1.2 V			
LD1117AS18TR	LD1117ADT18TR		1.8 V			
LD1117AS33TR	LD1117ADT33TR	LD1117AV33	3.3 V			
LD1117ASTR	LD1117ADT-TR		Adjustable from 1.25 V			

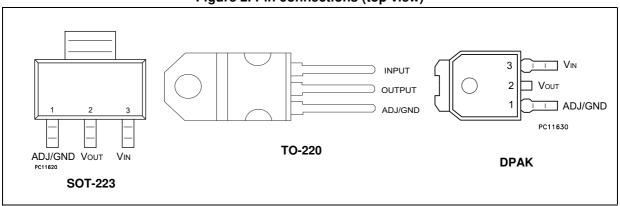
Contents LD1117A


Contents

1	Diagram	3
2	Pin configuration	4
3	Maximum ratings	5
4	Schematic application	6
5	Electrical characteristics	7
6	Typical application	0
7	LD1117A adjustable: application note	2
8	Package mechanical data	3
9	Packaging mechanical data	9
10	Revision history	3

LD1117A Diagram

1 Diagram


Figure 1. Block diagram

Pin configuration LD1117A

2 Pin configuration

Figure 2. Pin connections (top view)

Note: The TAB is connected to the V_{OUT} .

LD1117A Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage	15	V
P _D	Power dissipation	12	W
T _{STG}	Storage temperature range	-40 to +150	°C
T _{OP}	Operating junction temperature range	0 to +125	°C

Note:

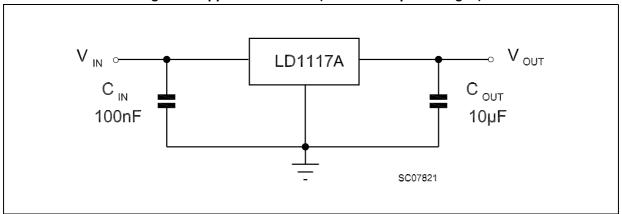

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Beyond the above suggested max. power dissipation, a short-circuit may permanently damage the device.

Table 3. Thermal data

Symbol	Parameter	SOT-223	DPAK	TO-220	Unit
R _{thJC}	Thermal resistance junction-case	15	8	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	110	100	50	°C/W

4 Schematic application

Figure 3. Application circuit (for fixed output voltages)

LD1117A

5 Electrical characteristics

Refer to the test circuits, T_J = 0 to 125 °C, C_O = 10 μ F, C_I = 10 μ F, R = 120 Ω between OUT-GND, unless otherwise specified.

Symbol Parameter Test conditions Min. Max. Unit Тур. $V_I = 5.3 \text{ V}, I_O = 10 \text{ mA}, T_J = 25 \text{ }^{\circ}\text{C}$ 1.176 1.2 1.224 ٧ V_{O} Output voltage $I_O = 0$ to 1 A, $V_I = 2.75$ to 10 V Output voltage 1.152 1.2 1.248 V_{O} $V_I = 2.75$ to 8 V, $I_O = 0$ mA mV ΔV_{O} Line regulation 1 6 Load regulation $V_I = 2.75 \text{ V}, I_O = 0 \text{ to } 1 \text{ A}$ 1 10 m۷ ΔV_{O} % ΔV_{O} Temperature stability 0.5 1000 hrs, $T_J = 125$ °C ΔV_{O} 0.3 % Long term stability V_{I} 10 V Operating input voltage $I_0 = 100 \text{ mA}$ $V_I \le 8 \text{ V}, I_O = 0 \text{ mA}$ 5 10 Quiescent current mΑ I_d $V_{I} - V_{O} = 5 \text{ V}, T_{J} = 25 \text{ }^{\circ}\text{C}$ I_{O} Output current 1000 1200 mΑ B = 10 Hz to 10 kHz, T_J = 25 °C 100 eΝ Output noise voltage μV $I_O = 40 \text{ mA}, f = 120 \text{ Hz}$ **SVR** 80 dΒ Supply voltage rejection 60 $V_I - V_O = 3 V$, $V_{ripple} = 1 V_{PP}$ $I_0 = 100 \text{ mA}$ 1.10 1 V_D Dropout voltage $I_0 = 500 \text{ mA}$ 1.05 1.15 ٧ $I_0 = 1 A$ 1.15 1.30 Thermal regulation $T_a = 25$ °C, 30 ms pulse 0.08 0.2 %/W $\Delta V_{O(pwr)}$

Table 4. Electrical characteristics of LD1117A#12

Refer to the test circuits, T_J = 0 to 125 °C, C_O = 10 μ F, C_I = 10 μ F, unless otherwise specified.

Test conditions Symbol Parameter Min. Typ. Max. Unit V_{O} Output voltage $V_I = 3.8 \text{ V}, I_O = 10 \text{ mA}, T_J = 25 \text{ }^{\circ}\text{C}$ 1.764 1.8 1.836 $I_{O} = 0 \text{ to } 1 \text{ A}, V_{I} = 3.3 \text{ to } 8 \text{ V}$ 1.728 1.872 V Output voltage V_{O} Line regulation $V_{I} = 3.3 \text{ to 8 V}, I_{O} = 0 \text{ mA}$ 1 6 mV ΔV_{O} $V_I = 3.3 \text{ V}, I_O = 0 \text{ to } 1 \text{ A}$ 1 Load regulation 10 mV ΔV_{O} 0.5 % Temperature stability ΔV_{O} Long term stability 0.3 ΔV_{O} 1000 hrs, $T_J = 125 \, ^{\circ}\text{C}$ % V $I_0 = 100 \text{ mA}$ 10 V_{I} Operating input voltage I_d Quiescent current $V_1 \le 8 \text{ V}, I_0 = 0 \text{ mA}$ 5 10 mΑ

Table 5. Electrical characteristics of LD1117A#18

 I_{O}

Output current

 $V_{I} - V_{O} = 5 \text{ V}, T_{J} = 25 \text{ }^{\circ}\text{C}$

mΑ

1000

Electrical characteristics LD1117A

Table 5. Electrical characteristics of LD1117A#18 (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
eN	Output noise voltage	B = 10 Hz to 10 kHz, T_J = 25 °C		100		μV
SVR	Supply voltage rejection	$I_O = 40 \text{ mA}, f = 120 \text{ Hz}$ $V_I - V_O = 3 \text{ V}, V_{ripple} = 1 \text{ V}_{PP}$	60	80		dB
		I _O = 100 mA		1	1.10	
V_D	Dropout voltage	I _O = 500 mA		1.05	1.15	V
		I _O = 1 A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal regulation	T _a = 25 °C, 30 ms pulse		0.08	0.2	%/W

Refer to the test circuits, T_J = 0 to 125 °C, C_O = 10 μF , C_I = 10 μF , unless otherwise specified.

Table 6. Electrical characteristics of LD1117A#33

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$V_I = 5.3 \text{ V}, I_O = 10 \text{ mA}, T_J = 25 \text{ °C}$	3.234	3.3	3.366	V
Vo	Output voltage	$I_O = 0$ to 1 A, $V_I = 4.75$ to 10 V	3.168		3.432	V
ΔV_{O}	Line regulation	V _I = 4.75 to 8 V, I _O = 0 mA		1	6	mV
ΔV _O	Load regulation	V _I = 4.75 V, I _O = 0 to 1 A		1	10	mV
ΔV_{O}	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
VI	Operating input voltage	I _O = 100 mA			10	V
I _d	Quiescent current	$V_I \le 10 \text{ V}, I_O = 0 \text{ mA}$		5	10	mA
Io	Output current	V _I - V _O = 5 V, T _J = 25 °C	1000	1200		mA
eN	Output noise voltage	B =10 Hz to 10 kHz, $T_J = 25$ °C		100		μV
SVR	Supply voltage rejection	I _O = 40 mA, f = 120 Hz V _I - V _O = 3 V, V _{ripple} = 1 V _{PP}	60	75		dB
		I _O = 100 mA		1	1.10	
V_D	Dropout voltage	I _O = 500 mA		1.05	1.15	V
		I _O = 1 A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal regulation	T _a = 25 °C, 30 ms pulse		0.08	0.2	%/W

Refer to the test circuits, T_J = 0 to 125 °C, C_O = 10 μF , C_I = 10 μF , unless otherwise specified.

Table 7. Electrical characteristics of LD1117A (adjustable)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{REF}	Reference voltage	$V_I = 5.3 \text{ V}, I_O = 10 \text{ mA}, T_J = 25 \text{ °C}$	1.225	1.25	1.275	V
V _{REF}	Reference voltage	$I_O = 10 \text{ mA to } 1 \text{ A}, V_I = 2.75 \text{ to } 10 \text{ V}$	1.2		1.3	V
ΔV_{O}	Line regulation	$V_1 = 2.75 \text{ to } 8 \text{ V}, I_0 = 0 \text{ mA}$		1	6	mV

8/24 DocID7194 Rev 26

Table 7. Electrical characteristics of LD1117A (adjustable) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ΔV_{O}	Load regulation	$V_1 = 2.75 \text{ V}, I_0 = 0 \text{ to } 1 \text{ A}$		1	10	mV
ΔV_{O}	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _I	Operating input voltage	I _O = 100 mA			10	V
I _{adj}	Adjustment pin current	V _{in} ≤ 10 V		60	120	μΑ
Δl_{adj}	Adjustment pin current change	$V_{in} - V_{O} = 1.4 \text{ to } 10 \text{ V}, I_{O} = 10 \text{ mA to } 1 \text{ A}$		1	5	μΑ
I _{O(min)}	Minimum load current	V _{in} = 10 V		2	5	mA
I _O	Output current	V _I - V _O = 5 V, T _J = 25 °C	1000	1200		mA
eN	Output noise voltage	B =10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I _O = 40 mA, f = 120 Hz V _I - V _O = 3 V, V _{ripple} = 1 V _{PP}	60	80		dB
		I _O = 100 mA		1	1.10	
V_D	Dropout voltage	I _O = 500 mA		1.05	1.15	٧
		I _O = 1 A		1.15	1.30	
$\Delta V_{O(pwr)}$	Thermal regulation	T _a = 25 °C, 30 ms pulse		0.08	0.2	%/W

Typical application LD1117A

6 Typical application

Figure 4. Negative supply

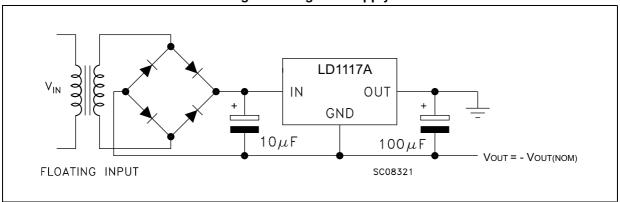


Figure 5. Circuit for increasing output voltage

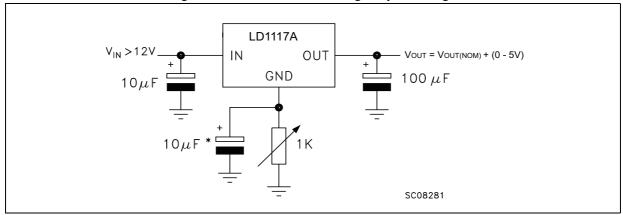
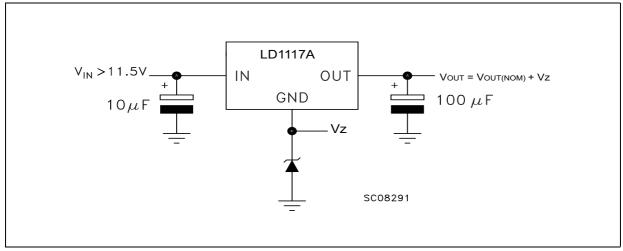



Figure 6. Voltage regulator with reference

57/

LD1117A Typical application

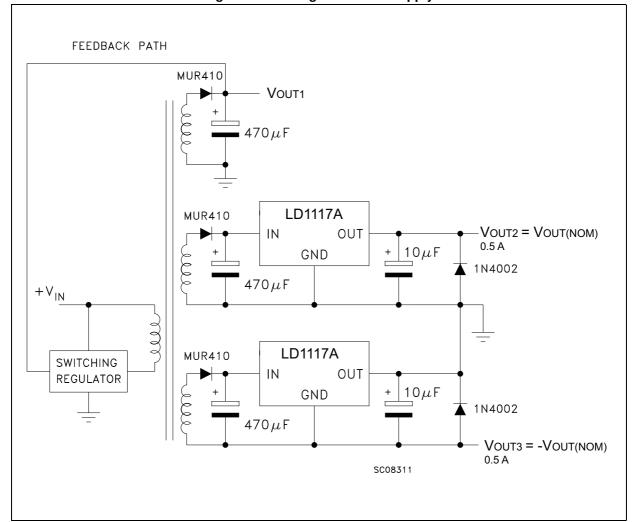


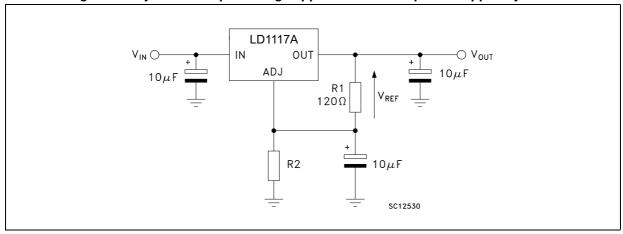
Figure 7. Post-regulated dual supply

7 LD1117A adjustable: application note

The LD1117A adjustable has a thermal stabilized 1.25 \pm 0.012 V reference voltage between the OUT and ADJ pins. I_{ADJ} is 60 μ A typ. (120 μ A max.) and ΔI_{ADJ} is 1 μ A typ. (5 μ A max.).

 R_1 is normally fixed to 120 Ω . From *Figure 6* the following is obtained:

$$V_{OUT} = V_{REF} + R_2 (I_{ADJ} + I_{R1}) = V_{REF} + R_2 (I_{ADJ} + V_{REF} / R_1) = V_{REF} (1 + R_2 / R_1) + R_2 x I_{ADJ}$$


In normal applications the R_2 value is in the range of a few $k\Omega$, so the R_2 x I_{ADJ} product can not be considered in the V_{OUT} calculation; the above expression then becomes:

$$V_{OUT} = V_{REF} (1 + R_2 / R_1).$$

In order to have a better load regulation it is important to realize a good Kelvin connection of R_1 and R_2 resistors. In particular, the R_1 connection must be realized very close to the OUT and ADJ pins, while the R_2 ground connection must be placed as near as possible to the negative load pin. Ripple rejection can be improved by introducing a 10 μ F electrolytic capacitor placed in parallel to the R_2 resistor (see *Figure 8*).

Figure 8. Adjustable output voltage application

Figure 9. Adjustable output voltage application with improved ripple rejection

4

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 8. TO-220 SG (single gauge) mechanical data

D:		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

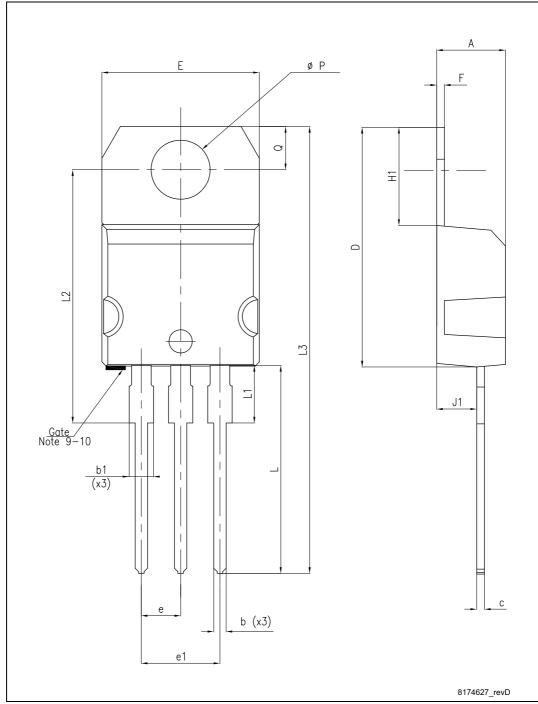


Figure 10. TO-220 SG (single gauge) drawing

Table 9. SOT-223 mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
А			1.80		
A1	0.02		0.1		
В	0.60	0.70	0.85		
B1	2.90	3.00	3.15		
С	0.24	0.26	0.35		
D	6.30	6.50	6.70		
е		2.30			
e1		4.60			
E	3.30	3.50	3.70		
Н	6.70	7.00	7.30		
V			10°		

Figure 11. SOT-223 mechanical data drawing

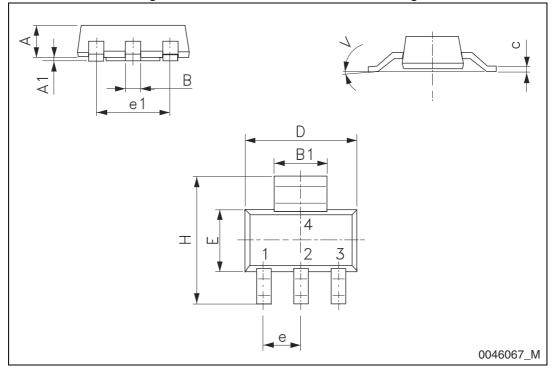


Table 10. DPAK (TO-252) mechanical data

Dime		mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
Е	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

E -THERMAL PAD c2 *L2* D1 Н <u>b(</u>2x) R C SEATING PLANE (L1) *V2* GAUGE PLANE 0,25 0068772_K

Figure 12. DPAK (TO-252) drawing

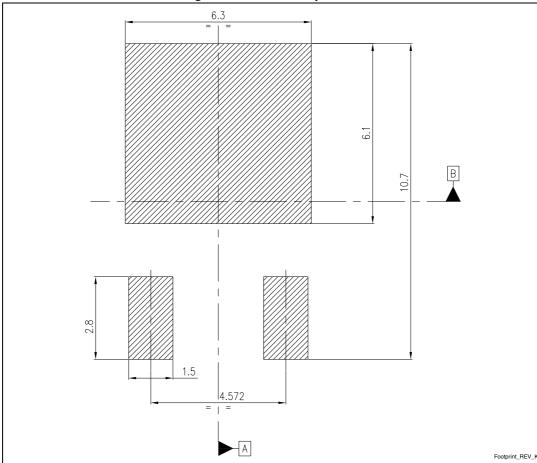


Figure 13. DPAK footprint (a)

a. All dimensions are in millimeters

Packaging mechanical data 9

Table 11. SOT-223 tape and reel mechanical data

		Таре	Reel			
Dim.		mm		Dim.	mm	
	Min.	Тур.	Max.		Min.	Max.
A0	6.75	6.85	6.95	Α		180
В0	7.30	7.40	7.50	N	60	
K0	1.80	1.90	2.00	W1		12.4
F	5.40	5.50	5.60	W2		18.4
E	1.65	1.75	1.85	W3	11.9	15.4
W	11.7	12	12.3			
P2	1.90	2	2.10	Base qua	antity pcs	1000
P0	3.90	4	4.10	Bulk quantity pcs 1		1000
P1	7.90	8	8.10			
Т	0.25	0.30	0.35			
Df	1.50	1.55	1.60			
D1f	1.50	1.60	1.70			

TOP COVER TAPE Po* Ε Κο P1 Αo V *Cumulative tolerance of 10 sprocket holes is ±0.20 mm

Figure 14. Tape for SOT-223 (dimensions are in mm)

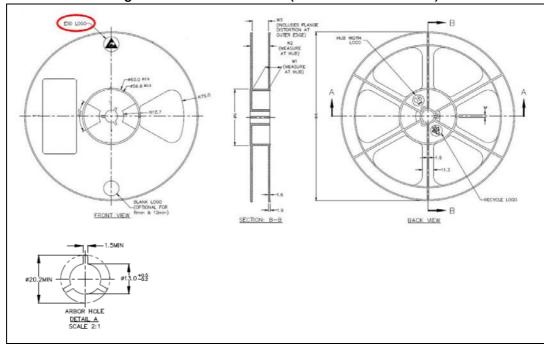
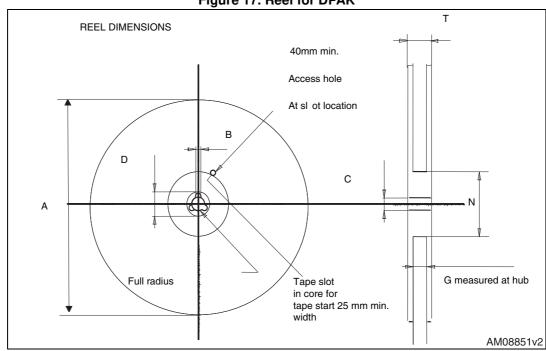


Figure 15. Reel for SOT-223 (dimensions are in mm)


Table 12. DPAK tape and reel mechanical data

Таре				Reel			
Dim.	n	nm	Dim.	mm			
	Min.	Max.		Min.	Max.		
A0	6.8	7	Α		330		
В0	10.4	10.6	В	1.5			
B1		12.1	С	12.8	13.2		
D	1.5	1.6	D	20.2			
D1	1.5		G	16.4	18.4		
Е	1.65	1.85	N	50			
F	7.4	7.6	Т		22.4		
K0	2.55	2.75					
P0	3.9	4.1		Base qty.	2500		
P1	7.9	8.1		Bulk qty.	2500		
P2	1.9	2.1					
R	40						
Т	0.25	0.35					
W	15.7	16.3					

Figure 16. Tape for DPAK

LD1117A Revision history

10 Revision history

Table 13. Document revision history

Date Revision		Changes		
29-Sep-2004	11	Add new part number.		
12-Oct-2004	12	Mistake V _O max Table 4.		
21-Apr-2005 13		Add new package - D²PAK/A.		
05-Jul-2005	14	The DPAK mechanical data updated.		
10-Feb-2006	15	Add new package - D²PAK/A (B type).		
20-Dec-2006	16	Change value V _{IN} on <i>Table 2</i> .		
19-Jan-2007	D2PAK/A mechanical data updated and add footprint data.			
28-May-2007	18	Add I _{ADJ} and ΔI _{ADJ} values on <i>Table 7</i> .		
07-Jun-2007	07 19 Add I _{O(min)} value on <i>Table 7</i> .			
15-Apr-2008	20 Modified: Table 10.			
28-Jul-2009	21	Modified: Table 10.		
05-Jul-2010 22		Added: Table 8 on page 15, Figure 14 on page 18, Figure 15 on page 20, Figure 16 and Figure 17 on page 21.		
16-Nov-2010	23	Modified: <i>Table 1 on page 1</i> , R _{thJC} value for TO-220 <i>Table 3 on page 5</i> .		
16-Dec-2011 24		Modified: V _O parameter output voltage ==> Reference voltage <i>Table 7 on page 8</i> .		
19-Oct-2012	2012 25 Added: R _{thJA} value for DPAK and SOT-223 <i>Table 3 on page 5</i> .			
24-Jul-2013	26	Part numbers LD1117AXX12, LD1117AXX18, LD1117AXX33, LD1117AXX changed to LD1117A. Modified Chapter 6: Typical application. Changed Vo symbol in to V _{REF} in Table 7: Electrical characteristics of LD1117A (adjustable). Updated Chapter 8: Package mechanical data. Added Chapter 9: Packaging mechanical data. Minor text changes.		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

24/24 DocID7194 Rev 26