

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

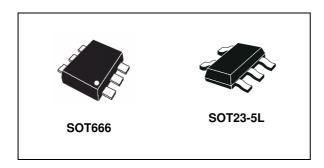
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



150 mA low quiescent current and low noise voltage regulator

Datasheet - production data

Features

- Input voltage from 1.5 to 5.5 V
- Ultra low-dropout voltage (80 mV typ. at 100 mA load)
- Very low quiescent current (18 μA typ. at no load, 38 μA typ. at 150 mA load, 1 μA max. in OFF mode)
- Very low noise without bypass capacitor (29 μV_{RMS} at V_{OUT} = 0.8 V)
- Output voltage tolerance: ± 2.0% @ 25 °C
- 150 mA guaranteed output current
- Wide range of output voltages available on request: 0.8 V to 3.3 V with 100 mV step

- Logic-controlled electronic shutdown
- Compatible with ceramic capacitors C_O = 1 μF
- Internal current and thermal limit
- Available in SOT666 and SOT23-5L packages
- Temperature range: -40 °C to 125 °C

Description

The LD39015 series provides 150 mA maximum current with an input voltage range from 1.5 V to 5.5 V and a typical dropout voltage of 80 mV. It is stable with ceramic capacitors. The ultra low drop voltage, low quiescent current and low noise features make it suitable for low power batterypowered applications. Power supply rejection is 65 dB at low frequencies and starts rolling off at 10 kHz. Enable logic control function puts the LD39015 in shutdown mode allowing a total current consumption lower than 1 µA. The device also includes short-circuit constant current limiting and thermal protection. Typical applications are mobile phones, personal digital assistants (PDAs), cordless phones or similar batterypowered systems.

Table 1. Device summary

Order	Outrot valte ree	
SOT666	SOT23-5L	Output voltages
LD39015XG08R	LD39015M08R	0.8 V
LD39015XG10R	LD39015M10R	1.0 V
LD39015XG12R ⁽¹⁾	LD39015M12R	1.2 V
	LD39015M125R	1.25 V
LD39015XG15R	LD39015M15R	1.5 V
LD39015XG18R ⁽¹⁾	LD39015M18R	1.8 V
LD39015XG25R ⁽¹⁾	LD39015M25R	2.5 V
LD39015XG33R ⁽¹⁾	LD39015M33R	3.3 V

^{1.} Available on request. Other voltages available on request from 0.8 V to 3.3 V in 100 mV step.

Contents LD39015

Contents

1	Diagram3	3
2	Pin configuration	4
3	Typical application 5	5
4	Maximum ratings	õ
5	Electrical characteristics	7
6	Typical performance characteristics	9
7	Package mechanical data	1
8	Packaging mechanical data14	1
9	Revision history	5

LD39015 Diagram

1 Diagram

BandGap
1.22 V

Thermal
Protection

R1

R2

Figure 1. Block diagram

Pin configuration LD39015

2 Pin configuration

NC NC OUT NC 5 4

1 2 3 IN GND IN IN GND EN

SOT666 SOT23-5L

Figure 2. Pin connection (top view)

Table 2. Pin description

Pii	Pin n°		Function	
SOT666	SOT23-5L	Symbol	Function	
1	3	EN	Enable pin logic input: low = shutdown, high = active	
2	2	GND	Common ground	
3	1	IN	LDO input voltage	
4	5	OUT	Output voltage	
5	4	NC	Not connected	
6		NC	Not connected	

LD39015 Typical application

3 Typical application

V_{IN} IN OUT 1 μF Load

V_{EN} EN GND

Figure 3. Typical application circuit

Maximum ratings LD39015

4 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Symbol Parameter Value		Unit
V _{IN}	DC input voltage	-0.3 to 7	V
V _{OUT}	DC output voltage	- 0.3 to V _I + 0.3	V
V _{EN}	Enable input voltage	- 0.3 to V _I + 0.3	V
I _{OUT}	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4. Thermal data

Symbol	Parameter	SOT23-5L	SOT666	Unit
R _{thJA}	Thermal resistance junction-ambient	255	132	°C/W
R _{thJC} Thermal resistance junction-case		81	56	°C/W

5 Electrical characteristics

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 V, C_{IN} = C_{OUT} = 1 $\mu\text{F},~I_{OUT}$ = 1 mA, V_{EN} = $V_{IN},$ unless otherwise specified.

Table 5. Electrical characteristics (1)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage		1.5		5.5	٧
V	Turn-on threshold			1.45	1.48	V
V _{UVLO}	Turn-off threshold		1.30	1.35		mV
		$V_{OUT} > 1.5 \text{ V}, I_{OUT} = 1 \text{ mA}$ $T_{J} = 25 \text{ °C}$	-2.0		2.0	%
V _{OUT}	V _{OUT} accuracy	V _{OUT} > 1.5 V, I _{OUT} = 1 mA -40 °C < T _J < 125 °C	-3.0		3.0	70
		V _{OUT} ≤ 1.5 V, I _{OUT} = 1 mA		±10		
		$V_{OUT} \le 1.5 \text{ V}, I_{OUT} = 1 \text{ mA}$ -40 °C < T _J < 125 °C		±30		mV
ΔV _{OUT}	Static line regulation	V_{OUT} +1 V \leq V _{IN} \leq 5.5 V I_{OUT} = 1 mA		0.01		%/V
ΔV _{OUT}	Transient line regulation (2)	ΔV_{IN} = + 500 mV, I_{OUT} = 1 mA T_R = T_F = 5 μ s		10		mVpp
ΔV _{OUT}	Static load regulation	I _{OUT} = 1 mA to 150 mA		0.002		%/mA
ΔV _{OUT}	Transient load regulation (2)	I_{OUT} = 1 mA to 150 mA T_{R} = T_{F} = 5 μ s		40		mVpp
V _{DROP}	Dropout voltage (3)	I _{OUT} = 100 mA, V _{OUT} > 1.5 V -40 °C < T _J < 125 °C		80	100	mV
e _N	Output noise voltage	1.1 kHz to 100 kHz, I _{OUT} = 10 mA V _{OUT} = 0.8 V		29		μV _{RMS}
SVR	Supply voltage rejection	$V_{IN} = V_{OUTNOM} + 0.5 \text{ V +/-}V_{RIPPLE}$ $V_{RIPPLE} = 0.1 \text{ V, freq.} = 1 \text{ kHz}$ $I_{OUT} = 10 \text{ mA}$		65		- dB
SVII	$V_{OUT} = 1.5 \text{ V}$ $V_{IN} = V_{OUTNOM} + 0.5 \text{ V +/-}V_{RIPPLE}$ $V_{RIPPLE} = 0.1 \text{ V, freq.=10 kHz}$ $I_{OUT} = 10 \text{ mA}$		62		- GD	
		I _{OUT} = 0 mA		18		
		I _{OUT} = 0 mA, -40 °C < T _J < 125 °C			50	
	Quiescent current	I _{OUT} = 0 to 150 mA		38		
IQ		I _{OUT} = 0 to 150 mA -40 °C < T _J < 125 °C			70	μΑ
		V_{IN} input current in OFF mode: $V_{EN} = \text{GND}$		0.001	1	

Electrical characteristics LD39015

Table 5. Electrical characteristics (continued)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SC}	Short-circuit current	R _L = 0		350		mA
V	Enable input logic low	V _{IN} = 1.5 V to 5.5 V -40 °C < T _J < 125 °C			0.4	V
V _{EN} Enable	Enable input logic high	V _{IN} = 1.5 V to 5.5 V -40 °C < T _J < 125 °C	0.9			V
I _{EN}	Enable pin input current	$V_{EN} = V_{IN}$		0.1	100	nA
T _{ON}	Turn-on time (4)			30		μs
т	Thermal shutdown			160		°C
T _{SHDN}	Hysteresis			20		
C _{OUT}	Output capacitor	Capacitance (see typical performance characteristics for stability)	1		22	μF

^{1.} For $V_{OUT(NOM)}$ < 1.2 V, V_{IN} = 1.5 V

^{2.} All transient values are guaranteed by design, not production tested

^{3.} Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply to output voltages below 1.5 V

Turn-on time is the time measured between the enable input just exceeding V_{EN} high value and the output voltage just reaching 95% of its nominal value

6 Typical performance characteristics

Figure 4. Output voltage vs. temperature

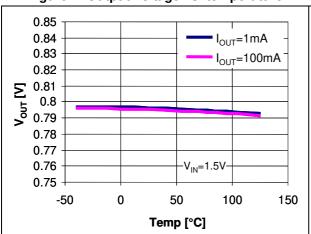


Figure 5. Output voltage vs. input voltage

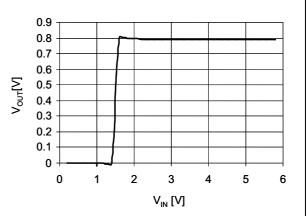


Figure 6. Dropout voltage vs. output current

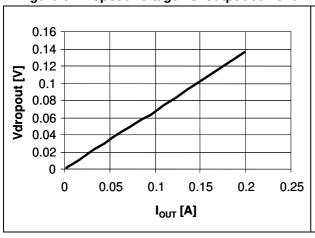


Figure 7. C_{OUT} stability region

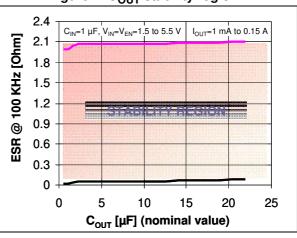


Figure 8. Supply voltage rejection vs. frequency

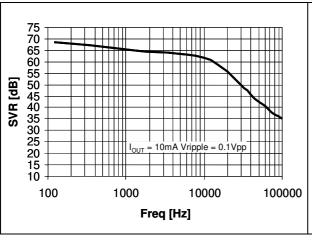
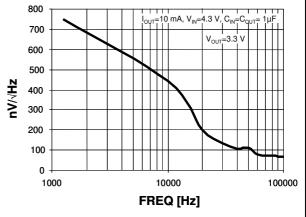
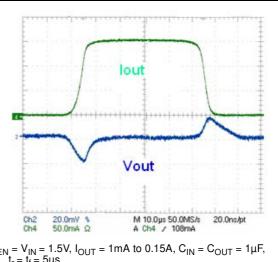



Figure 9. Output noise voltage vs. frequency



577

Figure 10. Quiescent current vs. input voltage

100 80 <u>₹</u>60 <u>-</u> 40 20 $V_{IN}\!\!=\!\!V_{INH},\,C_{IN}\!\!=\!\!C_{OUT}\!\!=\!\!1\mu F,\,I_{OUT}\!\!=\!\!0.15A$ 0 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9 5.4 5.9 $V_{IN}[V]$

Figure 11. Load transient

 $V_{EN}=V_{IN}=1.5V,\,I_{OUT}=1mA$ to 0.15A, $C_{IN}=C_{OUT}=1\mu F,\,t_r=t_f=5\mu s$

Figure 12. Line transient

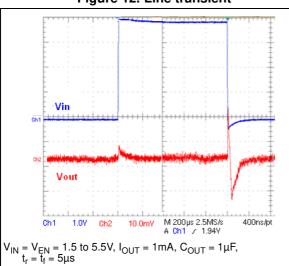
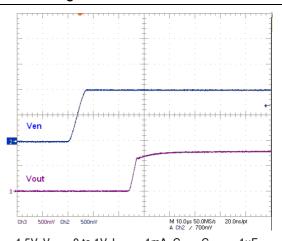



Figure 13. Enable transient

 V_{IN} = 1.5V, V_{EN} = 0 to 1V, I_{OUT} = 1mA, C_{IN} = C_{OUT} = $1\mu F$

DocID14003 Rev 4 10/16

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

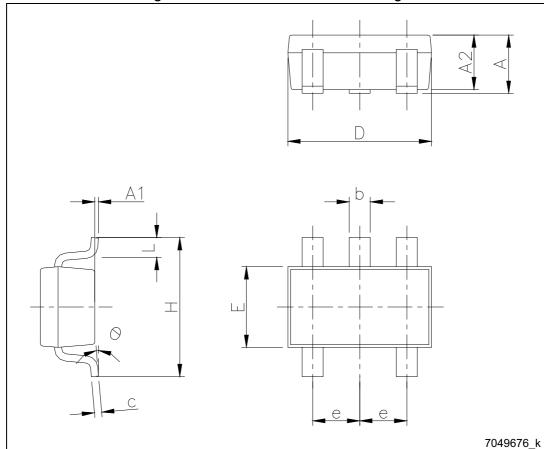
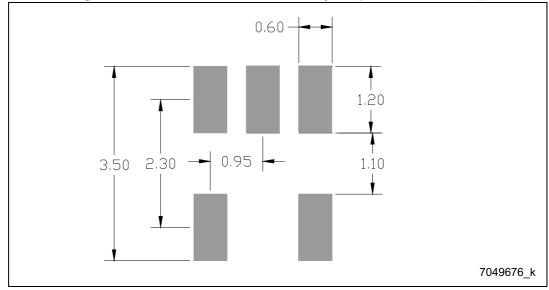



Figure 14. SOT23-5L mechanical drawings

Table 6. SOT23-5L mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	0.90		1.45
A1	0		0.15
A2	0.90		1.30
b	0.30		0.50
С	0.09		0.20
D		2.95	
Е		1.60	
е		0.95	
Н		2.80	
L	0.30		0.60
θ	0		8

Figure 15. SOT23-5L recommended footprint (dimensions in mm)

12/16 DocID14003 Rev 4

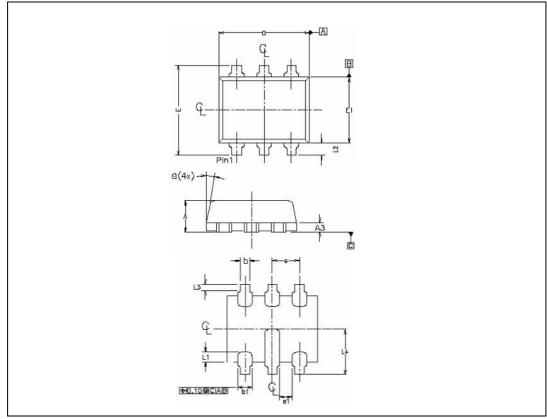


Figure 16. SOT666 mechanical drawings

Table 7. SOT666 mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
Α	0.53	0.57	0.60
A3	0.13	0.17	0.18
D	1.50	1.66	1.70
E	1.50	1.65	1.70
E1	1.10	1.20	1.30
L1	0.11	0.19	0.26
L2	0.10	0.23	0.30
L3	0.05	0.10	
b	0.17		0.25
b1		0.27	0.34
е		0.50	
e1	0.20		
θ	8°	10°	12°

8 Packaging mechanical data

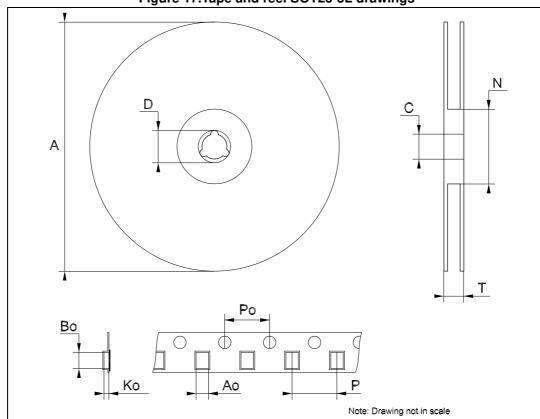


Figure 17.Tape and reel SOT23-5L drawings

Table 8. Tape and reel SOT23-5L mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А			180
С	12.8	13.0	13.2
D	20.2		
N	60		
Т			14.4
Ao	3.13	3.23	3.33
Во	3.07	3.17	3.27
Ко	1.27	1.37	1.47
Po	3.9	4.0	4.1
Р	3.9	4.0	4.1

LD39015 Revision history

9 Revision history

Table 9. Document revision history

Date	Revision	Changes
13-Nov-2007	1	Initial release.
11-Apr-2008	2	Modified: Table 5 on page 7.
12-Feb-2009	3	Modified: Table 1 on page 1.
11-Feb-2014	4	Part number LD39015xx changed to LD39015. Updated the <i>Description</i> in cover page and <i>Section 7: Package mechanical data</i> . Added <i>Section 8: Packaging mechanical data</i> . Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

 ${\bf STMicroelectronics}\ group\ of\ companies$

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 DocID14003 Rev 4

