# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

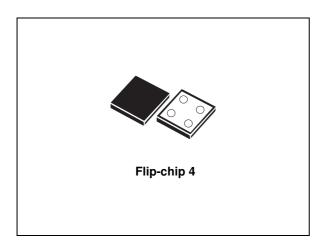
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China






# LD39030SJ

# 300 mA low quiescent current soft-start, low noise voltage regulator

Datasheet - production data



### Features

- Input voltage from 1.5 to 5.5 V
- Ultra low dropout voltage (200 mV typ. at 300 mA load)
- Very low quiescent current (20 μA typ. at no load, 40 μA typ. at 300 mA load, 1 μA max. in off mode)
- Very low noise (30 μV<sub>RMS</sub> from 1 kHz to 100 kHz at V<sub>OUT</sub> = 1.8 V)
- Output voltage tolerance: ± 2.0 % @ 25 °C
- 300 mA guaranteed output current
- Wide range of output voltages available on request: 0.8 V to 4.5 V with 100 mV step
- Logic-controlled electronic shutdown
- Compatible with ceramic capacitor  $C_{OUT} = 1 \mu F$
- Internal current and thermal limit
- Flip-chip 4 bumps 0.8 x 0.8 mm pitch 0.4 mm
- Internal soft-start (typ. 100 μs)
- Temperature range: 40 °C to 125 °C

### Applications

- Mobile phones
- Personal digital assistants (PDAs)
- Cordless phones and similar battery-powered systems
- Digital still cameras.

### Description

The LD39030SJ is a low noise voltage regulator that provides 300 mA maximum current from an input voltage in the 1.5 V to 5.5 V range, with a typical dropout voltage of 200 mV. It is stabilized with a ceramic capacitor on the output. The ultra low drop voltage, low quiescent current, and low noise features make it suitable for low power battery-powered applications. Power supply rejection is typically 62 dB at low frequencies and starts to roll off at 10 kHz. An enable logic control function puts the LD39030SJ in shutdown mode allowing a total current consumption lower than 1  $\mu$ A. The device also includes a short-circuit constant current limiting and thermal protection.

| Order codes   | Output voltages |
|---------------|-----------------|
| LD39030SJ10R  | 1 V             |
| LD39030SJ12R  | 1.2 V           |
| LD39030SJ126R | 1.26 V          |
| LD39030SJ28R  | 2.8 V           |
| LD39030SJ285R | 2.85 V          |
| LD39030SJ33R  | 3.3 V           |

Table 1. Device summary

This is information on a product in full production.

## Contents

| 1  | Block diagram                       |
|----|-------------------------------------|
| 2  | Pin configuration                   |
| 3  | Typical application                 |
| 4  | Maximum ratings 6                   |
| 5  | Electrical characteristics7         |
| 6  | Soft-start function                 |
| 7  | Typical performance characteristics |
| 8  | Package mechanical data 13          |
| 9  | Packaging mechanical data 15        |
| 10 | Revision history                    |



# 1 Block diagram

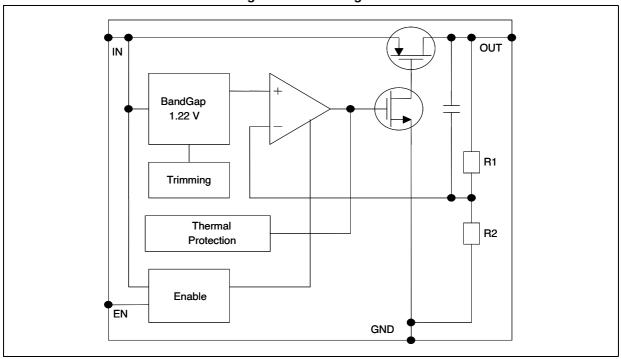
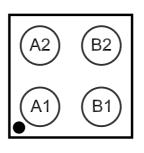




Figure 1. Block diagram



# 2 Pin configuration

#### Figure 2. Pin connection (top view)



| Table 2. | Pin | description |
|----------|-----|-------------|
|          |     |             |

| Pin n° | Symbol | Function                                              |
|--------|--------|-------------------------------------------------------|
| A2     | EN     | Enable pin logic input: low = shutdown, high = active |
| A1     | GND    | Common ground                                         |
| B2     | IN     | Input voltage of the LDO                              |
| B1     | OUT    | Output voltage                                        |



# 3 Typical application

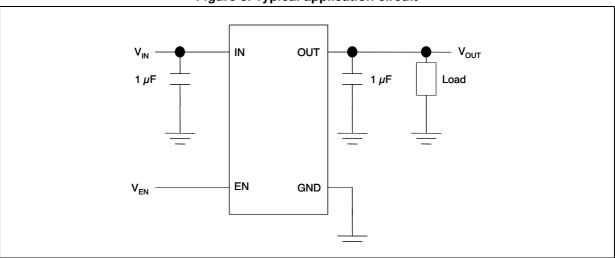



Figure 3. Typical application circuit



### 4 Maximum ratings

| Symbol           | Parameter                            | Value                          | Unit |
|------------------|--------------------------------------|--------------------------------|------|
| V <sub>IN</sub>  | DC input voltage                     | - 0.3 to 6                     | V    |
| V <sub>OUT</sub> | DC output voltage                    | - 0.3 to V <sub>IN</sub> + 0.3 | V    |
| V <sub>EN</sub>  | Enable input voltage                 | - 0.3 to V <sub>IN</sub> + 0.3 | V    |
| I <sub>OUT</sub> | Output current                       | Internally limited             | mA   |
| PD               | Power dissipation                    | Internally limited             | mW   |
| T <sub>STG</sub> | Storage temperature range            | - 65 to 150                    | °C   |
| T <sub>OP</sub>  | Operating junction temperature range | - 40 to 125                    | °C   |

#### Table 3. Absolute maximum ratings

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

#### Table 4. Thermal data

| Symbol            | Parameter                           | Value | Unit |
|-------------------|-------------------------------------|-------|------|
| R <sub>thJA</sub> | Thermal resistance junction-ambient | 180   | °C/W |



# 5 Electrical characteristics

 $T_J$  = 25 °C,  $V_{IN}$  =  $V_{OUT(NOM)}$  + 1 V,  $C_{IN}$  =  $C_{OUT}$  = 1  $\mu$ F,  $I_{OUT}$  = 1 mA,  $V_{EN}$  =  $V_{IN}$ , unless otherwise specified.

| Symbol            | Parameter                                | Test conditions                                                                                                                         | Min. | Тур.  | Max. | Unit                    |
|-------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------|-------|------|-------------------------|
| V <sub>IN</sub>   | Operating input voltage                  |                                                                                                                                         | 1.5  |       | 5.5  | V                       |
| M                 | Turn-on threshold                        |                                                                                                                                         |      | 1.45  | 1.48 | V                       |
| V <sub>UVLO</sub> | Turn-off threshold                       |                                                                                                                                         | 1.30 | 1.35  |      | mV                      |
|                   |                                          | V <sub>OUT</sub> >1.5 V, I <sub>OUT</sub> =1 mA, T <sub>J</sub> =25 °C                                                                  | -2.0 |       | 2.0  | %                       |
| M                 |                                          | V <sub>OUT</sub> >1.5 V, I <sub>OUT</sub> =1 mA,<br>-40 °C <t<sub>J&lt;125 °C</t<sub>                                                   | -3.0 |       | 3.0  | %                       |
| V <sub>OUT</sub>  | V <sub>OUT</sub> accuracy                | $V_{OUT} \le 1.5 \text{ V}, \text{ I}_{OUT}=1 \text{ mA}$                                                                               |      | ±10   |      | mV                      |
|                   |                                          | V <sub>OUT</sub> ≤ 1.5 V, I <sub>OUT</sub> =1 mA,<br>-40 °C <t<sub>J&lt;125 °C</t<sub>                                                  |      | ±30   |      | mV                      |
| $\Delta V_{OUT}$  | Static line regulation                   | $V_{OUT}$ +1 V $\leq$ V <sub>IN</sub> $\leq$ 5.5 V, I <sub>OUT</sub> =1 mA                                                              |      | 0.01  |      | %/V                     |
| ∆V <sub>OUT</sub> | Transient line regulation <sup>(2)</sup> | $\Delta V_{IN}$ =+500 mV, I <sub>OUT</sub> =1 mA,<br>T <sub>R</sub> =T <sub>F</sub> =5 $\mu$ s                                          |      | 10    |      | mVpp                    |
| $\Delta V_{OUT}$  | Static load regulation                   | I <sub>OUT</sub> =1 mA to 300 mA                                                                                                        |      | 0.002 |      | %/mA                    |
| ΔV <sub>OUT</sub> | Transient load regulation <sup>(2)</sup> | $I_{OUT}$ =1 mA to 300 mA, $T_{R}$ = $T_{F}$ =5 $\mu$ s                                                                                 |      | 40    |      | mVpp                    |
| V <sub>DROP</sub> | Dropout voltage <sup>(3)</sup>           | I <sub>OUT</sub> =300 mA, V <sub>OUT</sub> >1.5 V<br>-40 °C <t<sub>J&lt;125 °C</t<sub>                                                  |      | 200   | 300  | mV                      |
| e <sub>N</sub>    | Output noise voltage                     | 10 Hz to 100 kHz, I <sub>OUT</sub> =10 mA                                                                                               |      | 30    |      | μV <sub>RMS</sub><br>/V |
| SVR               | Supply voltage                           | V <sub>IN</sub> =V <sub>OUTNOM</sub> +1 V+/-V <sub>RIPPLE</sub><br>V <sub>RIPPLE</sub> =0.1 V Freq.=1 kHz<br>I <sub>OUT</sub> =10 mA    |      | 62    |      | dP                      |
| 374               | rejection V <sub>OUT</sub> = 1.2 V       | V <sub>IN</sub> =V <sub>OUTNOM</sub> +0.5 V+/-V <sub>RIPPLE</sub><br>V <sub>RIPPLE</sub> =0.1 V Freq.=10 kHz<br>I <sub>OUT</sub> =10 mA |      | 62    |      | - dB                    |
|                   |                                          | I <sub>OUT</sub> =0 mA                                                                                                                  |      | 20    |      |                         |
|                   |                                          | I <sub>OUT</sub> =0 mA, -40 °C <t<sub>J&lt;125 °C</t<sub>                                                                               |      |       | 50   | μA                      |
| I <sub>Q</sub>    | Quiescent current                        | I <sub>OUT</sub> =0 to 300 mA                                                                                                           |      | 40    |      |                         |
| 2                 |                                          | I <sub>OUT</sub> =0 to 300 mA, -40 °C <t<sub>J&lt;125 °C</t<sub>                                                                        |      |       | 85   |                         |
|                   |                                          | V <sub>IN</sub> input current in OFF MODE:<br>V <sub>EN</sub> =GND                                                                      |      | 0.001 | 1    |                         |
| I <sub>SC</sub>   | Short-circuit current                    | R <sub>L</sub> =0                                                                                                                       | 400  |       |      | mA                      |

| Table 5. El | lectrical | characteristics | (1) |
|-------------|-----------|-----------------|-----|
|-------------|-----------|-----------------|-----|

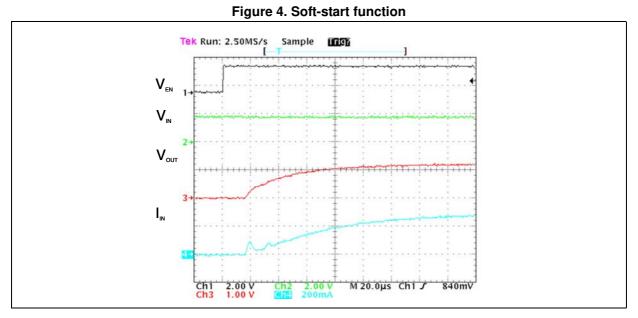


| Symbol            | Parameter                   | Test conditions                                                                                                        | Min. | Тур. | Max. | Unit |
|-------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| V                 | Enable input logic low      | $V_{\text{IN}}\text{=}1.5$ V to 5.5 V, -40 °C <t_j<125 td="" °c<=""><td></td><td></td><td>0.4</td><td>V</td></t_j<125> |      |      | 0.4  | V    |
| V <sub>EN</sub>   | Enable input logic high     | V <sub>IN</sub> =1.5 V to 5.5 V, -40 °C <t<sub>J&lt;125 °C</t<sub>                                                     | 0.9  |      |      | v    |
| I <sub>EN</sub>   | Enable pin input current    | V <sub>SHDN</sub> =V <sub>IN</sub>                                                                                     |      | 0.1  | 100  | nA   |
| T <sub>ON</sub>   | Turn-on time <sup>(4)</sup> |                                                                                                                        |      | 100  |      | μs   |
| т                 | Thermal shutdown            |                                                                                                                        |      | 160  |      | о°С  |
| T <sub>SHDN</sub> | Hysteresis                  |                                                                                                                        |      | 20   |      | C    |
| C <sub>OUT</sub>  | Output capacitor            | Capacitance (see Section 7: Typical performance characteristics)                                                       | 1    |      | 22   | μF   |

Table 5. Electrical characteristics (continued) <sup>(1)</sup>

1. For  $V_{OUT(NOM)}$  < 1.2 V,  $V_{IN}$  = 1.5 V.

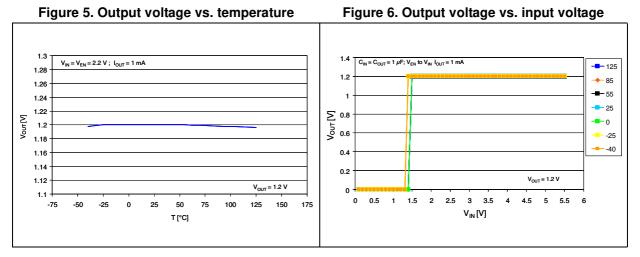
2. All transient values are guaranteed by design, not production tested.


3. Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 1.5 V.

4. Turn-on time is time measured between the enable input just exceeding  $V_{EN}$  high value and the output voltage just reaching 95 % of its nominal value.

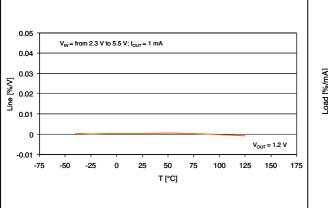


### 6 Soft-start function

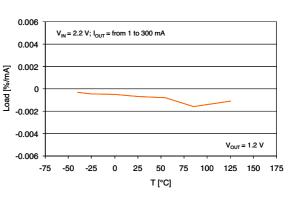

The LD39030S has an internal soft-start circuit. By increasing the startup time up to 100  $\mu$ s, without the need of any external soft-start capacitor, this feature is able to reduce the regulator inrush current to 1/3 of the original value.

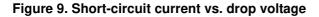


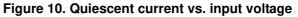
 $V_{\text{IN}}$  = 1.8 V,  $V_{\text{EN}}$  = 1.8 V,  $C_{\text{IN}}$  = 1  $\mu\text{F},$   $C_{\text{OUT}}$  = 1  $\mu\text{F}.$ 




### 7 Typical performance characteristics





 $C_{IN} = C_{OUT} = 1 \ \mu$ F,  $V_{EN}$  to  $V_{IN}$ .



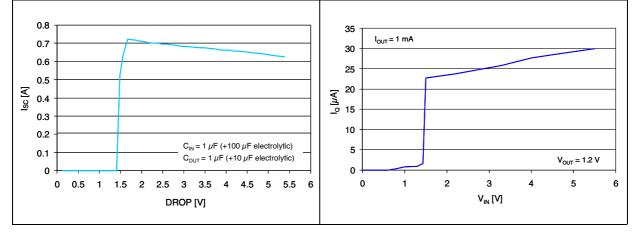
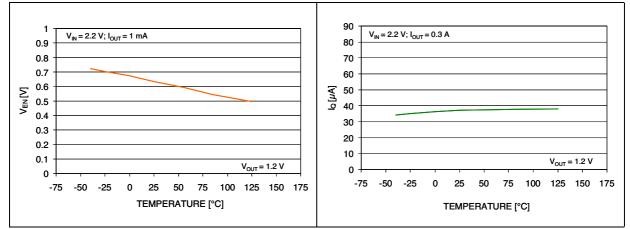


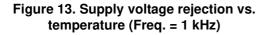


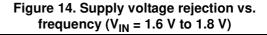






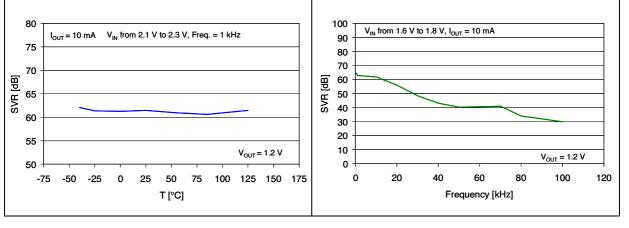
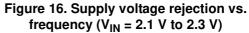
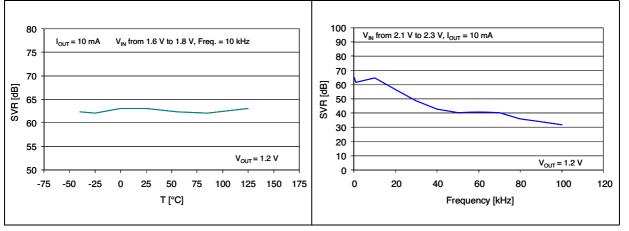


Figure 11. Enable threshold vs. temperature

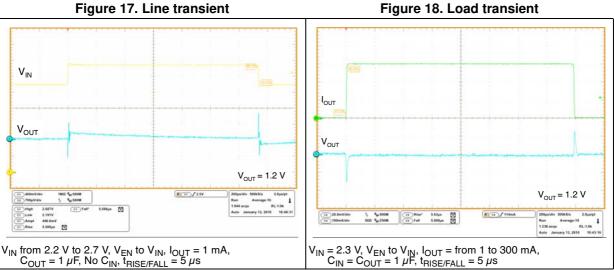
Figure 12. Quiescent current vs. temperature

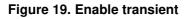




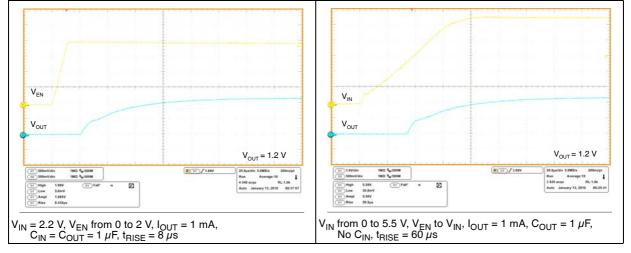




# Figure 15. Supply voltage rejection vs. temperature (Freq. = 10 kHz)

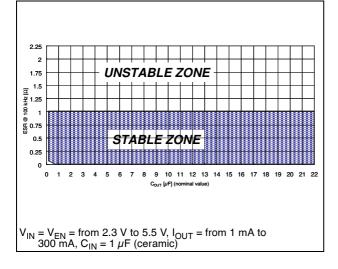






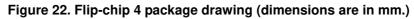


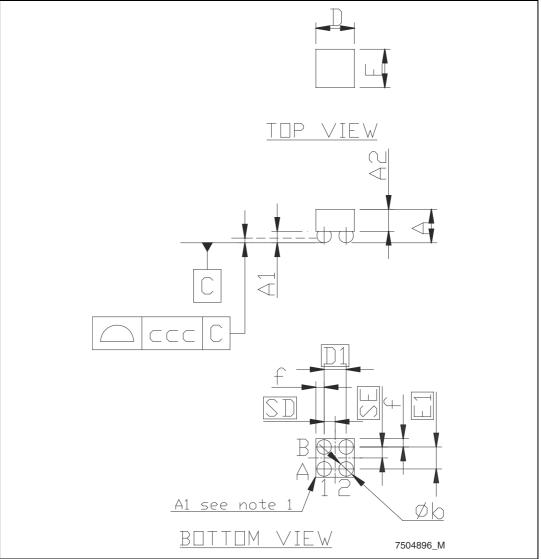

#### Figure 17. Line transient







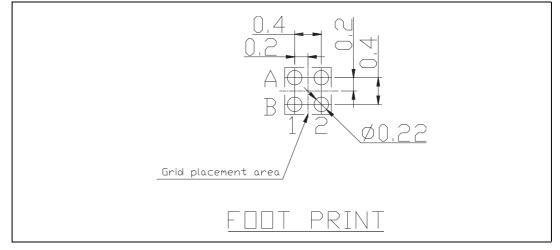


#### Figure 21. ESR required for stability with ceramic capacitors



### 8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: *www.st.com*. ECOPACK is an ST registered trademark.








| Dim.  |       | mm.   |       |  |  |
|-------|-------|-------|-------|--|--|
| Dini. | Min.  | Тур.  | Max.  |  |  |
| А     | 0.52  | 0.56  | 0.60  |  |  |
| A1    | 0.17  | 0.20  | 0.23  |  |  |
| A2    | 0.35  | 0.36  | 0.37  |  |  |
| b     | 0.23  | 0.25  | 0.29  |  |  |
| D     | 0.758 | 0.788 | 0.818 |  |  |
| D1    |       | 0.4   |       |  |  |
| E     | 0.758 | 0.788 | 0.818 |  |  |
| E1    |       | 0.4   |       |  |  |
| SD    | 0.18  | 0.2   | 0.22  |  |  |
| SE    | 0.18  | 0.2   | 0.22  |  |  |
| f     |       | 0.199 |       |  |  |
| ccc   |       | 0.075 |       |  |  |

Table 6. Flip-chip 4 package mechanical data

#### Figure 23. Footprint data





# 9 Packaging mechanical data

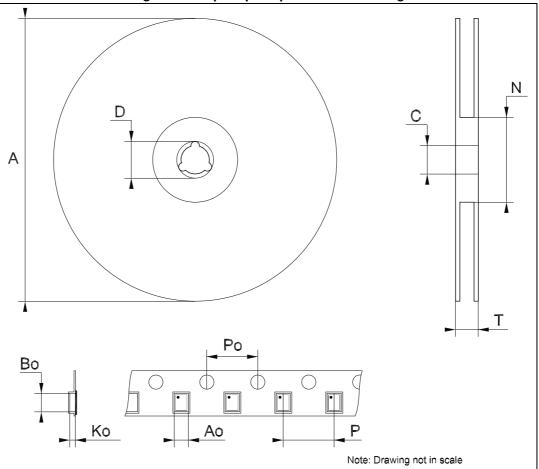



Figure 24. Flip-chip 4 tape and reel drawing



| Dim.  |      | mm   |      |  |  |
|-------|------|------|------|--|--|
| Dini. | Min. | Тур. | Max. |  |  |
| А     |      |      | 178  |  |  |
| С     | 12.8 |      | 13.2 |  |  |
| D     | 20.2 |      |      |  |  |
| Ν     | 59   | 60   | 61   |  |  |
| т     |      |      | 8.4  |  |  |
| Ao    | 0.82 | 0.87 | 0.92 |  |  |
| Во    | 0.82 | 0.87 | 0.92 |  |  |
| Ко    | 0.64 | 0.69 | 0.74 |  |  |
| Ро    | 3.9  | 4.0  | 4.1  |  |  |
| Р     | 3.9  | 4.0  | 4.1  |  |  |

| Table 7. | Flip-chip 4 | tape and | reel | mechanical | data |
|----------|-------------|----------|------|------------|------|
|          |             | iupe una | 1001 | meenamour  | autu |



# 10 Revision history

| Date        | Revision | Changes                                                                                                                                                                                              |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-Oct-2010 | 1        | First release.                                                                                                                                                                                       |
| 10-Jul-2012 | 2        | Added new order code LD39030SJ33R <i>Table 1 on page 1</i> .<br>Updated Flip-chip 4 mechanical data <i>Table 6 on page 14</i> and <i>Figure 22 on page 13</i> .                                      |
| 25-Oct-2012 | 3        | Added new order code LD39030SJ126R <i>Table 1 on page 1</i> .<br>Document status promoted from preliminary data to production data.                                                                  |
| 08-Feb-2013 | 4        | Added Table 7: Options available on request on page 15.                                                                                                                                              |
| 06-Feb-2014 | 5        | Part number LD39030SJxx changed to LD39030SJ.<br>Updated <i>Table 1: Device summary, Section 8: Package mechanical data</i> and <i>Section 9: Packaging mechanical data</i> .<br>Minor text changes. |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

