# mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Ultra low dropout regulators, low noise, 300 mA

Rev. 2 — 5 October 2012

**Product data sheet** 

## 1. Product profile

## 1.1 General description

The LD6836 series is a small-size Low DropOut regulator (LDO) family with a typical voltage drop of 90 mV at 300 mA current rating. Operating input voltages can range from 2.3 V to 5.5 V. The devices are available with fixed output voltages between 1.2 V and 3.6 V.

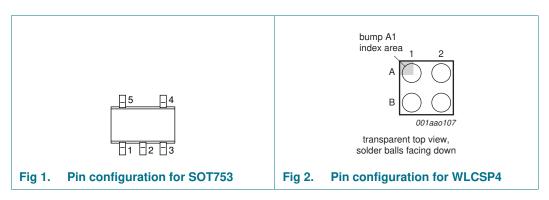
In disabled mode the LD6836x/xxH devices show a high-ohmic state at the output pin while the LD6836x/xxP devices contain a pull-down switching transistor to provide a low-ohmic output state (auto discharge function).

The LD6836CX4 and LD6836CX4/C devices are in a 0.4 mm pitch Wafer-Level Chip-Scale Package (WLCSP) making them ideal for use in portable applications requiring component miniaturization. The LD6836TD devices are in a small SOT753 Surface-Mounted Device (SMD) plastic package. All devices are manufactured in monolithic silicon technology.

## 1.2 Features and benefits

- 300 mA output current rating
- Input voltage range 2.3 V to 5.5 V
- Fixed output voltage between 1.2 V and 3.6 V
- Dropout voltage 90 mV at 300 mA output rating
- Low quiescent current in shutdown mode (typical 0.1 μA)
- 30 μV RMS output noise voltage (typical value) at 10 Hz to 100 kHz
- Turn-on time 150 μs
- 55 dB Power Supply Rejection Ratio (PSRR) at 1 kHz
- Over-temperature protection
- Output current limiter
- LD6836x/xxH: high-ohmic (3-state) output state when disabled
- LD6836x/xxP: low-ohmic output state when disabled (auto discharge function)
- Integrated ElectroStatic Discharge (ESD) protection up to 10 kV Human Body Model (HBM)
- WLCSP with 0.4 mm pitch and package size of 0.76 mm × 0.76 mm × 0.47 mm
- Small SOT753 SMD plastic package (SOT23-5 compatible)
- Pb-free, Restriction of Hazardous Substances (RoHS) compliant and free of halogen and antimony (dark green compliant)




### Ultra low dropout regulators, low noise, 300 mA

## 1.3 Applications

Analog and digital interfaces requiring lower than standard supply voltages in mobile appliances such as smartphones, mobile phone handsets and cordless telephones. Other typical applications are digital still cameras, mobile internet devices, personal navigation devices and portable media players.

#### **Pinning information** 2.

### 2.1 Pinning



## 2.2 Pin description

#### Pin description for SOT753 Table 1.

| Symbol | Pin | Description                      |
|--------|-----|----------------------------------|
| IN     | 1   | regulator input voltage          |
| GND    | 2   | supply ground                    |
| EN     | 3   | device enable input; active HIGH |
| n.c.   | 4   | not connected                    |
| OUT    | 5   | regulator output voltage         |

#### Table 2. Pin description for WLCSP4

| Symbol | Pin | Description                      |
|--------|-----|----------------------------------|
| GND    | A1  | supply ground                    |
| EN     | A2  | device enable input; active HIGH |
| OUT    | B1  | regulator output voltage         |
| IN     | B2  | regulator input voltage          |
|        |     |                                  |

LD6836 SER

Ultra low dropout regulators, low noise, 300 mA

## 3. Ordering information

### Table 3.Ordering information

| Type number | Package |                                                                                  |         |  |  |
|-------------|---------|----------------------------------------------------------------------------------|---------|--|--|
|             | Name    | Description                                                                      | Version |  |  |
| LD6836CX4   | WLCSP4  | wafer-level chip-scale package; 4 bumps $(2 \times 2)$ [1]                       | -       |  |  |
| LD6836CX4/C | WLCSP4  | wafer-level chip-scale package with backside coating; 4 bumps $(2 \times 2)$ [1] | -       |  |  |
| LD6836TD    | -       | plastic surface-mounted package; 5 leads                                         | SOT753  |  |  |

[1] Size 0.76 mm  $\times$  0.76 mm.

## 3.1 Ordering options

Further information on output voltage is available on request; see <u>Section 18 "Contact</u> information".

| Type number   | Nominal output<br>voltage | Type number   | Nominal output<br>voltage |
|---------------|---------------------------|---------------|---------------------------|
| LD6836CX4/12H | 1.2 V                     | LD6836CX4/25H | 2.5 V                     |
| LD6836CX4/13H | 1.3 V                     | LD6836CX4/27H | 2.7 V                     |
| LD6836CX4/14H | 1.4 V                     | LD6836CX4/28H | 2.8 V                     |
| LD6836CX4/16H | 1.6 V                     | LD6836CX4/29H | 2.9 V                     |
| LD6836CX4/18H | 1.8 V                     | LD6836CX4/30H | 3.0 V                     |
| LD6836CX4/20H | 2.0 V                     | LD6836CX4/33H | 3.3 V                     |
| LD6836CX4/22H | 2.2 V                     | LD6836CX4/36H | 3.6 V                     |
| LD6836CX4/23H | 2.3 V                     | -             | -                         |

 Table 4.
 Type number extension of high-ohmic output in WLCSP4

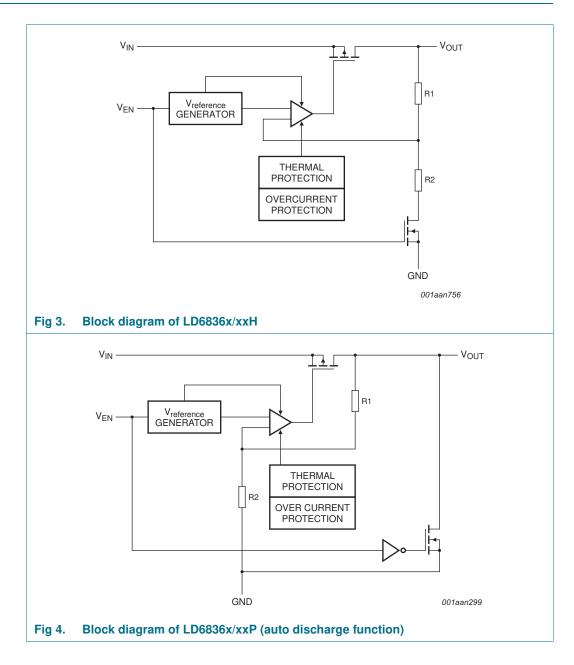
#### Table 5. Type number extension of pull-down output in WLCSP4

| Type number   | Nominal output<br>voltage | Type number   | Nominal output voltage |
|---------------|---------------------------|---------------|------------------------|
| LD6836CX4/12P | 1.2 V                     | LD6836CX4/23P | 2.3 V                  |
| LD6836CX4/13P | 1.3 V                     | LD6836CX4/25P | 2.5 V                  |
| LD6836CX4/14P | 1.4 V                     | LD6836CX4/27P | 2.7 V                  |
| LD6836CX4/16P | 1.6 V                     | LD6836CX4/28P | 2.8 V                  |
| LD6836CX4/18P | 1.8 V                     | LD6836CX4/29P | 2.9 V                  |
| LD6836CX4/20P | 2.0 V                     | LD6836CX4/30P | 3.0 V                  |
| LD6836CX4/21P | 2.1 V                     | LD6836CX4/33P | 3.3 V                  |
| LD6836CX4/22P | 2.2 V                     | LD6836CX4/36P | 3.6 V                  |

 Table 6.
 Type number extension of pull-down output in WLCSP4 with backside coating

| Type number    | Nominal output<br>voltage | Type number    | Nominal output<br>voltage |
|----------------|---------------------------|----------------|---------------------------|
| LD6836CX4/C12P | 1.2 V                     | LD6836CX4/C23P | 2.3 V                     |
| LD6836CX4/C13P | 1.3 V                     | LD6836CX4/C25P | 2.5 V                     |
| LD6836CX4/C14P | 1.4 V                     | LD6836CX4/C27P | 2.7 V                     |
| LD6836CX4/C16P | 1.6 V                     | LD6836CX4/C28P | 2.8 V                     |
| LD6836CX4/C18P | 1.8 V                     | LD6836CX4/C29P | 2.9 V                     |
| LD6836CX4/C20P | 2.0 V                     | LD6836CX4/C30P | 3.0 V                     |
| LD6836CX4/C21P | 2.1 V                     | LD6836CX4/C33P | 3.3 V                     |
| LD6836CX4/C22P | 2.2 V                     | LD6836CX4/C36P | 3.6 V                     |

#### Table 7. Type number extension of high-ohmic output in SOT753


| Type number  | Nominal output<br>voltage | Type number  | Nominal output<br>voltage |
|--------------|---------------------------|--------------|---------------------------|
| LD6836TD/12H | 1.2 V                     | LD6836TD/23H | 2.3 V                     |
| LD6836TD/13H | 1.3 V                     | LD6836TD/27H | 2.7 V                     |
| LD6836TD/14H | 1.4 V                     | LD6836TD/28H | 2.8 V                     |
| LD6836TD/16H | 1.6 V                     | LD6836TD/29H | 2.9 V                     |
| LD6836TD/18H | 1.8 V                     | LD6836TD/30H | 3.0 V                     |
| LD6836TD/20H | 2.0 V                     | LD6836TD/33H | 3.3 V                     |
| LD6836TD/22H | 2.2 V                     | LD6836TD/36H | 3.6 V                     |

#### Table 8. Type number extension of pull-down output in SOT753

| Type number  | Nominal output<br>voltage | Type number  | Nominal output<br>voltage |
|--------------|---------------------------|--------------|---------------------------|
| LD6836TD/12P | 1.2 V                     | LD6836TD/23P | 2.3 V                     |
| LD6836TD/13P | 1.3 V                     | LD6836TD/25P | 2.5 V                     |
| LD6836TD/14P | 1.4 V                     | LD6836TD/27P | 2.7 V                     |
| LD6836TD/16P | 1.6 V                     | LD6836TD/28P | 2.8 V                     |
| LD6836TD/18P | 1.8 V                     | LD6836TD/29P | 2.9 V                     |
| LD6836TD/20P | 2.0 V                     | LD6836TD/30P | 3.0 V                     |
| LD6836TD/21P | 2.1 V                     | LD6836TD/33P | 3.3 V                     |
| LD6836TD/22P | 2.2 V                     | LD6836TD/36P | 3.6 V                     |

Ultra low dropout regulators, low noise, 300 mA

## 4. Block diagram



Ultra low dropout regulators, low noise, 300 mA

## 5. Limiting values

#### Table 9. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter                       | Conditions               | Min          | Max  | Unit |
|------------------|---------------------------------|--------------------------|--------------|------|------|
| V <sub>IN</sub>  | voltage on pin IN               | 4 ms transient           | -0.5         | +6.0 | V    |
| P <sub>tot</sub> | total power dissipation         | LD6836CX4, LD6836CX4/C   | <u>[1]</u> - | 770  | mW   |
|                  |                                 | LD6836TD                 | <u>[1]</u> - | 800  | mW   |
| T <sub>stg</sub> | storage temperature             |                          | -55          | +150 | °C   |
| Tj               | junction temperature            |                          | -40          | +125 | °C   |
| T <sub>amb</sub> | ambient temperature             |                          | -40          | +85  | °C   |
| V <sub>ESD</sub> | electrostatic discharge voltage | human body model level 6 | [2] _        | ±10  | kV   |
|                  |                                 | machine model class 3    | <u>[3]</u> _ | ±400 | V    |
|                  |                                 |                          |              |      |      |

[1] The (absolute) maximum power dissipation depends on the junction temperature T<sub>j</sub>. Higher power dissipation is allowed with lower ambient temperatures. The conditions to determine the specified values are T<sub>amb</sub> = 25 °C and the use of a two layer Printed-Circuit Board (PCB).

[2] According to IEC 61340-3-1.

[3] According to JESD22-A115C.

## 6. Recommended operating conditions

#### Table 10.Operating conditions

Voltages are referenced to GND (ground = 0 V).

| 0                   |                           | ,          |          |     |                 |      |
|---------------------|---------------------------|------------|----------|-----|-----------------|------|
| Symbol              | Parameter                 | Conditions | Min      | Тур | Max             | Unit |
| T <sub>amb</sub>    | ambient temperature       |            | -40      | -   | +85             | °C   |
| Tj                  | junction temperature      |            | -        | -   | +125            | °C   |
| Pin IN              |                           |            |          |     |                 |      |
| V <sub>IN</sub>     | voltage on pin IN         |            | 2.3      | -   | 5.5             | V    |
| Pin EN              |                           |            |          |     |                 |      |
| $V_{\text{EN}}$     | voltage on pin EN         |            | 0        | -   | V <sub>IN</sub> | V    |
| Pin OUT             |                           |            |          |     |                 |      |
| C <sub>L(ext)</sub> | external load capacitance |            | [1] 0.7  | 1.0 | -               | μF   |
| C <sub>L(ext)</sub> | external load capacitance |            | <u> </u> | 1.0 |                 | -    |

[1] See Section 10.1 "Capacitor values".

Ultra low dropout regulators, low noise, 300 mA

## 7. Thermal characteristics

| Symbol               | Parameter                                   | Conditions             | Тур               | Unit |
|----------------------|---------------------------------------------|------------------------|-------------------|------|
| R <sub>th(j-a)</sub> | thermal resistance from junction to ambient | LD6836CX4, LD6836CX4/C | <u>[1][2]</u> 130 | K/W  |
|                      |                                             | LD6836TD               | <u>[1][2]</u> 125 | K/W  |

[1] The overall R<sub>th(j-a)</sub> can vary depending on the board layout. To minimize the effective R<sub>th(j-a)</sub>, all pins must have a solid connection to larger Cu layer areas for example to the power and ground layer. In multi-layer PCB applications, the second layer is used to create a large heat spreader area directly below the LDO. If this layer is either ground or power, it is connected with several vias to the top layer connecting to the device ground or supply. Avoid the use of solder-stop varnish under the chip.

[2] Use the measurement data given for a rough estimation of the R<sub>th(j-a)</sub> in your application. The actual R<sub>th(j-a)</sub> value can vary in applications using different layer stacks and layouts.

## 8. Characteristics

#### Table 12. Electrical characteristics

At recommended input voltages and  $T_{amb} = -40 \ ^{\circ}C$  to +85  $^{\circ}C$ ; voltages are referenced to GND (ground = 0 V); unless otherwise specified.

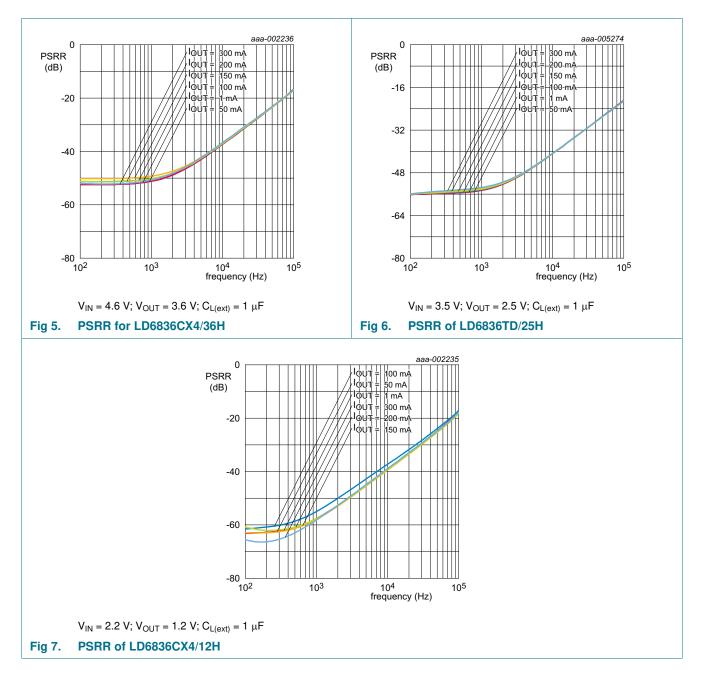
| Symbol                                | Parameter                                               | Conditions                                                        | Min             | Тур    | Max  | Unit |
|---------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|-----------------|--------|------|------|
| Output voltag                         | e                                                       |                                                                   |                 |        |      |      |
| V <sub>do</sub>                       | dropout voltage                                         | $I_{OUT}$ = 300 mA; $V_{IN}$ < $V_{O(nom)}$                       | <u>[1]</u>      |        |      |      |
|                                       |                                                         | LD6836CX4, LD6836CX4/C                                            | -               | 90     | 160  | mV   |
|                                       |                                                         | LD6836TD                                                          | -               | 100    | 200  | mV   |
| $\Delta V_O$                          | output voltage variation                                | $V_{OUT}$ < 1.8 V; $I_{OUT}$ = 1 mA                               |                 |        |      |      |
|                                       |                                                         | $T_{amb} = +25 \ ^{\circ}C$                                       | -3              | ±0.5   | +3   | %    |
|                                       |                                                         | $-30 \text{ °C} \leq T_{amb} \leq +85 \text{ °C}$                 | -4              | -      | +4   | %    |
|                                       |                                                         | $V_{OUT} \geq 1.8 \ V; \ I_{OUT} = 1 \ mA$                        |                 |        |      |      |
|                                       |                                                         | $T_{amb} = +25 \ ^{\circ}C$                                       | -2              | ±0.5   | +2   | %    |
|                                       |                                                         | $-30 \text{ °C} \leq T_{amb} \leq +85 \text{ °C}$                 | -3              | -      | +3   | %    |
| Line regulation                       | n error                                                 |                                                                   |                 |        |      |      |
| $\Delta V_{O}/(V_{O} x \Delta V_{I})$ | relative output voltage<br>variation with input voltage | $V_{\text{IN}}$ = (V_{O(nom)} + 0.2 V) to 5.5 V                   | <u>[1]</u> –0.1 | -      | +0.1 | %/V  |
| Load regulatio                        | n error                                                 |                                                                   |                 |        |      |      |
| $\Delta V_{O}/(V_{O}x\Delta I_{O})$   | relative output voltage variation with output current   | 1 mA $\leq$ I <sub>OUT</sub> $\leq$ 300 mA                        | -               | 0.0025 | 0.01 | %/mA |
| Output curren                         | nt                                                      |                                                                   |                 |        |      |      |
| I <sub>OUT</sub>                      | current on pin OUT                                      |                                                                   | -               | -      | 300  | mA   |
| I <sub>OM</sub>                       | peak output current                                     | $V_{IN} = (V_{O(nom)} + 0.2 \text{ V}) \text{ to } 5.5 \text{ V}$ | <u>[1]</u>      |        |      |      |
|                                       |                                                         | V <sub>O(nom)</sub> > 1.8V;                                       | 350             | -      | -    | mA   |
|                                       |                                                         | $V_{OUT} = 0.95 \times V_{O(nom)}$                                |                 |        |      |      |
|                                       |                                                         | V <sub>O(nom)</sub> < 1.8 V;                                      | 350             | -      | -    | mA   |
|                                       |                                                         | $V_{OUT} = 0.9 \times V_{O(nom)}$                                 |                 |        |      |      |
| I <sub>sc</sub>                       | short-circuit current                                   | pin OUT                                                           | -               | 600    | -    | mA   |

### Ultra low dropout regulators, low noise, 300 mA

#### Table 12. Electrical characteristics ...continued

At recommended input voltages and  $T_{amb} = -40$  °C to +85 °C; voltages are referenced to GND (ground = 0 V); unless otherwise specified.

| Symbol                      | Parameter                          | Conditions                                                                                                                    | Min          | Тур | Max | Unit       |
|-----------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|------------|
| Regulator q                 | uiescent current                   |                                                                                                                               |              |     |     |            |
| lq                          | quiescent current                  | V <sub>EN</sub> = 1.4 V; I <sub>OUT</sub> = 0 mA                                                                              | -            | 70  | 100 | μA         |
|                             |                                    | $V_{EN}$ = 1.4 V; 1 mA $\leq I_{OUT} \leq$ 300 mA                                                                             | -            | 155 | 250 | μ <b>A</b> |
|                             |                                    | $V_{EN} \le 0.4 V$                                                                                                            | -            | 0.1 | 1   | μA         |
| <b>Ripple rejec</b>         | tion and output noise              |                                                                                                                               |              |     |     |            |
| PSRR                        | power supply rejection ratio       | $\label{eq:VIN} \begin{array}{l} V_{IN} = V_{O(nom)} + 1.0 \ V; \ I_{OUT} = 30 \ mA; \\ f_{ripple} = 1 \ kHz \end{array}$     | <u>[1]</u> _ | -55 | -   | dB         |
| $V_{n(o)(RMS)}$             | RMS output noise voltage           | $f_{ripple}$ = 10 Hz to 100 kHz;<br>$C_{L(ext)}$ = 1 $\mu$ F                                                                  | -            | 30  | -   | μV         |
| Enable inpu                 | t and timing                       |                                                                                                                               |              |     |     |            |
| V <sub>IL</sub>             | LOW-level input voltage            | pin EN                                                                                                                        | 0            | -   | 0.4 | V          |
| V <sub>IH</sub>             | HIGH-level input voltage           | pin EN                                                                                                                        | 1.1          | -   | 5.5 | V          |
| t <sub>startup(reg)</sub>   | regulator start-up time            |                                                                                                                               | <u>[1]</u> - | 150 | -   | μS         |
| LD6836x/xx                  | P; auto discharge function         |                                                                                                                               |              |     |     |            |
| $t_{\text{sd}(\text{reg})}$ | regulator shutdown time            | $\label{eq:VIN} \begin{array}{l} V_{IN} = 5.5 \ V; \ V_{OUT} = 0.05 \times V_{O(nom)}; \\ C_{L(ext)} = 1 \ \mu F \end{array}$ | -            | 300 | -   | μS         |
| R <sub>pd</sub>             | pull-down resistance               |                                                                                                                               | -            | 100 | -   | Ω          |
| Over-tempe                  | rature protection                  |                                                                                                                               |              |     |     |            |
| T <sub>sd</sub>             | shutdown temperature               |                                                                                                                               | -            | 160 | -   | °C         |
| T <sub>sd(hys)</sub>        | shutdown temperature<br>hysteresis |                                                                                                                               | -            | 20  | -   | °K         |

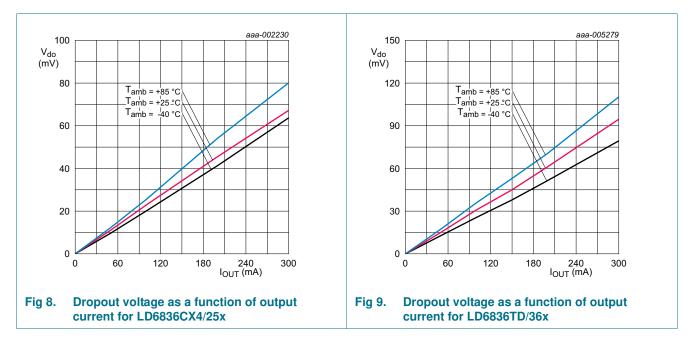

[1]  $V_{O(nom)}$  = nominal output voltage (device specific).

## 9. Dynamic behavior

## 9.1 Power Supply Rejection Ratio (PSRR)

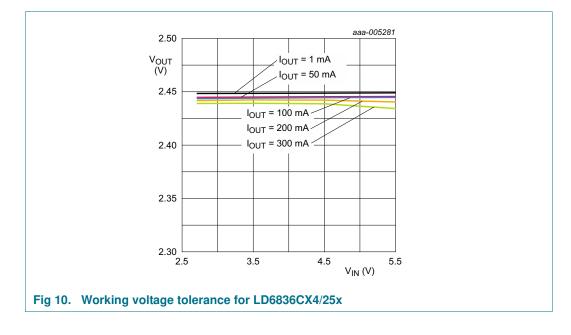
PSRR stands for the capability of the regulator to suppress unwanted signals on the input voltage like noise or ripples.

 $PSRR[dB] = 20log \frac{V_{out(ripple)}}{V_{in(ripple)}}$  for all frequencies




9 of 28

### 9.2 Dropout

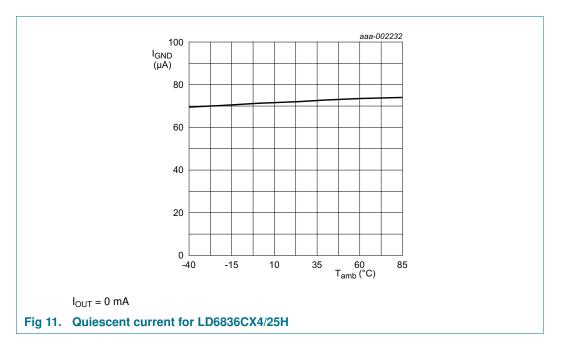

The dropout voltage is defined as the smallest input to output voltage difference at a specified load current when the regulator operates within its linear region. This means that the input voltage is below the nominal output voltage value and the pass transistor works as a plain resistor.

A small dropout voltage guarantees lower power consumption and efficiency maximization.



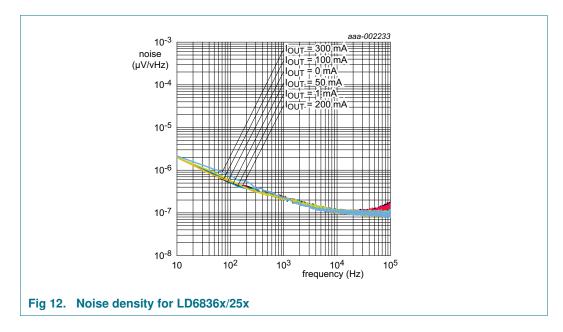
### 9.3 Accuracy

The LD6836 series guarantees high accuracy of the nominal output voltage.




LD6836 SER

Ultra low dropout regulators, low noise, 300 mA

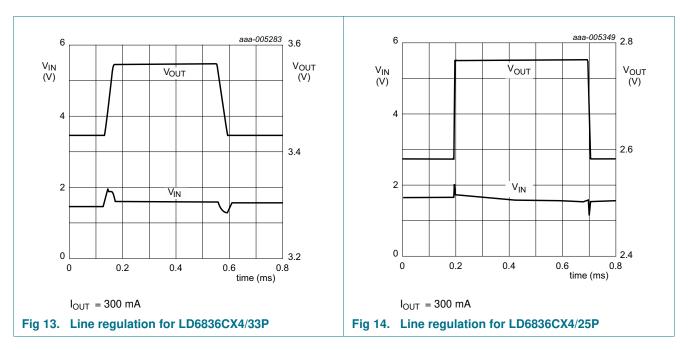

### 9.4 Quiescent current

Quiescent (or ground) current is the difference between input and output current of the regulator.



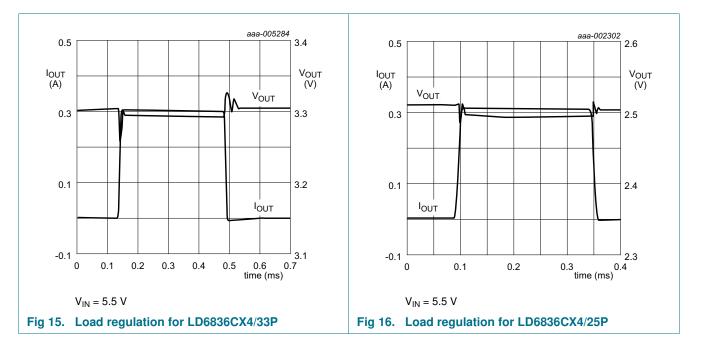
### 9.5 Noise

Output noise voltage of an LDO circuit is given as noise density or RMS output noise voltage over a defined frequency spectrum (10 Hz to 100 kHz). Permanent conditions are a constant output current and a ripple-free input voltage. The output noise voltage is generated by the LDO regulator.




11 of 28

Ultra low dropout regulators, low noise, 300 mA

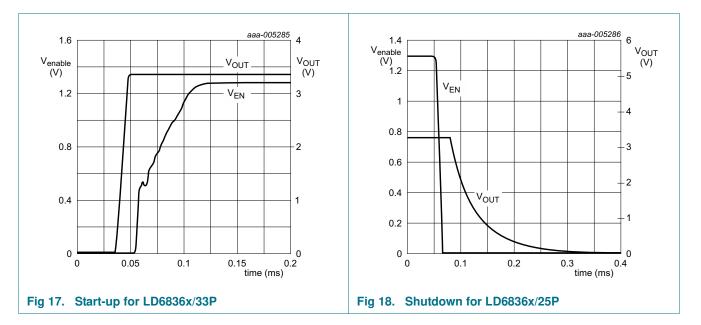

## 9.6 Line Regulation

Line regulation is the capability of the circuit to maintain the nominal output voltage while varying the input voltage.



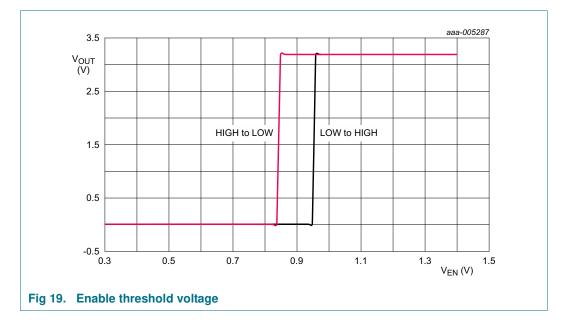
## 9.7 Load Regulation

Load regulation is the capability of the circuit to maintain the nominal output voltage while varying the output current.




LD6836\_SER Product data sheet

#### Ultra low dropout regulators, low noise, 300 mA


## 9.8 Start-up and shutdown

Start-up time defines the time needed for the LDO to achieve 95 % of its typical output voltage level after activation via the enable pin. Shutdown time defines the time needed for the LDO to pull-down the output voltage to 10 % of its nominal output voltage after deactivation via the enable pin.

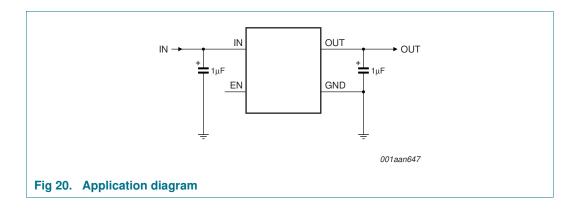


## 9.9 Enable threshold voltage

An active HIGH signal enables the LDO when the signal exceeds the minimum input HIGH voltage threshold. The LDO is in Off state as long the signal is below the maximum LOW threshold. The input voltage threshold is independent from the LDO input voltage.



## **10. Application information**


### **10.1 Capacitor values**

The LD6836 series require external capacitors at the output to guarantee a stable regulator behavior. Do not under-run the specified minimum Equivalent Series Resistance (ESR). The absolute value of the total capacitance attached to the output pin OUT influences the shutdown time ( $t_{sd(reg)}$ ) of the LD6836 series. Also an input capacitor is recommended to keep the input voltage stable.

| Table 13.         External load capacitor | Table 13. | External | load | capacitor |
|-------------------------------------------|-----------|----------|------|-----------|
|-------------------------------------------|-----------|----------|------|-----------|

| Symbol              | Parameter                    | Conditions | Min            | Тур | Мах | Unit |
|---------------------|------------------------------|------------|----------------|-----|-----|------|
| C <sub>i(ext)</sub> | external input capacitance   |            | <u>[1]</u> 0.7 | 1.0 |     | μF   |
| C <sub>L(ext)</sub> | external load capacitance    |            | <u>[1]</u> 0.7 | 1.0 | -   | μF   |
| ESR                 | equivalent series resistance |            | 5              | -   | 500 | mΩ   |

[1] The minimum value of capacitance for stability and correct operation is 0.7 μF. The specified capacitor tolerance is ±30 % or better over the temperature and operating conditions range. The recommended capacitor type is X7R to meet the full device temperature specification of -40 °C to +125 °C.

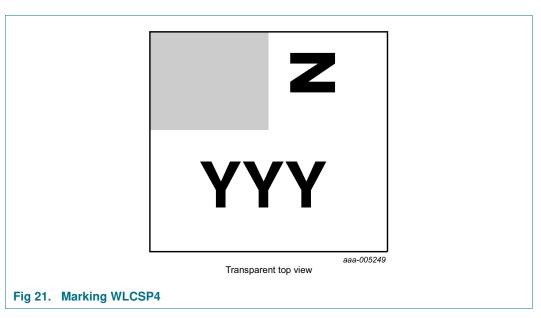


14 of 28

Ultra low dropout regulators, low noise, 300 mA

## 11. Test information

### **11.1 Quality information**


This product has been qualified in accordance with *NX1-00023 NXP Semiconductors Quality and Reliability Specification* and is suitable for use in consumer applications.

## 12. Marking

### 12.1 WLCSP4

WLCSP dies are laser marked with the following information (see <u>Table 14</u> to <u>16</u> and <u>Figure 21</u>):

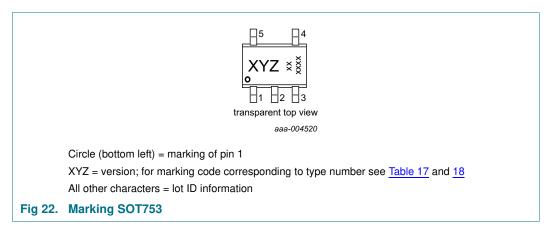
- 1. Shaded area: marking of pin A1
- The character N gives the version code and describes the output mode of the LDO. If the code is legible, the LDO has an integrated pull down transistor ("P" version). If the character N is rotated counterclockwise by 90°, the LDO is a "H" version.
- 3. "YYY" symbolizes a placeholder for some characters of the lot ID



#### Table 14. Marking code of high-ohmic output

| Type number   | Nominal output voltage | Marking code |
|---------------|------------------------|--------------|
| LD6836CX4/12H | 1.2 V                  | A            |
| LD6836CX4/27H | 2.7 V                  | Р            |

LD6836 SER


#### Table 15. Marking of pull-down output

| Type number   | Nominal<br>output voltage | Marking<br>code | Type number   | Nominal<br>output voltage | Marking<br>code |
|---------------|---------------------------|-----------------|---------------|---------------------------|-----------------|
| LD6836CX4/12P | 1.2 V                     | Α               | LD6836CX4/23P | 2.3 V                     | L               |
| LD6836CX4/13P | 1.3 V                     | В               | LD6836CX4/25P | 2.5 V                     | Ν               |
| LD6836CX4/14P | 1.4 V                     | С               | LD6836CX4/27P | 2.7 V                     | Р               |
| LD6836CX4/16P | 1.6 V                     | E               | LD6836CX4/28P | 2.8 V                     | Q               |
| LD6836CX4/18P | 1.8 V                     | G               | LD6836CX4/29P | 2.9 V                     | R               |
| LD6836CX4/20P | 2.0 V                     | I               | LD6836CX4/30P | 3.0 V                     | S               |
| LD6836CX4/21P | 2.1 V                     | J               | LD6836CX4/33P | 3.3 V                     | V               |
| LD6836CX4/22P | 2.2 V                     | K               | LD6836CX4/36P | 3.6 V                     | Υ               |

#### Table 16. Marking code of pull-down output with backside coating

| Type number    | Nominal<br>output voltage | Marking<br>code | Type number    | Nominal<br>output voltage | Marking<br>code |
|----------------|---------------------------|-----------------|----------------|---------------------------|-----------------|
| LD6836CX4/C12P | 1.2 V                     | А               | LD6836CX4/C23P | 2.3 V                     | L               |
| LD6836CX4/C13P | 1.3 V                     | В               | LD6836CX4/C25P | 2.5 V                     | Ν               |
| LD6836CX4/C14P | 1.4 V                     | С               | LD6836CX4/C27P | 2.7 V                     | Р               |
| LD6836CX4/C16P | 1.6 V                     | E               | LD6836CX4/C28P | 2.8 V                     | Q               |
| LD6836CX4/C18P | 1.8 V                     | G               | LD6836CX4/C29P | 2.9 V                     | R               |
| LD6836CX4/C20P | 2.0 V                     | I               | LD6836CX4/C30P | 3.0 V                     | S               |
| LD6836CX4/C21P | 2.1 V                     | J               | LD6836CX4/C33P | 3.3 V                     | V               |
| LD6836CX4/C22P | 2.2 V                     | K               | LD6836CX4/C36P | 3.6 V                     | Y               |

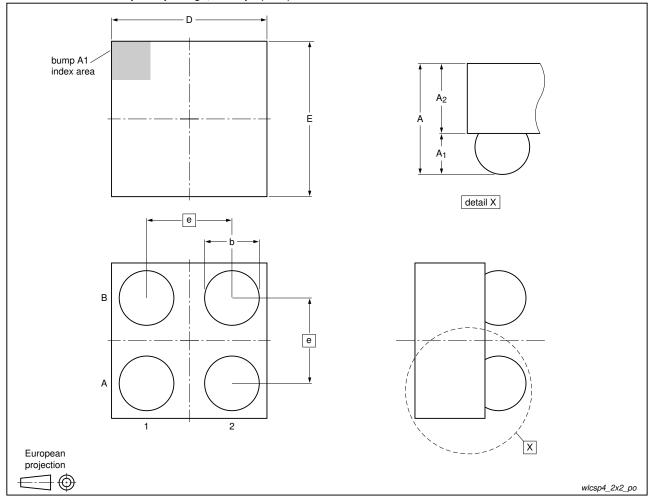
## 12.2 SOT753



| iable in man | ang code of mgn           | onno outpu      | -            |                           |                 |
|--------------|---------------------------|-----------------|--------------|---------------------------|-----------------|
| Type number  | Nominal<br>output voltage | Marking<br>code | Type number  | Nominal<br>output voltage | Marking<br>code |
| LD6836TD/12H | 1.2 V                     | 9AH             | LD6836TD/23H | 2.3 V                     | 9LH             |
| LD6836TD/13H | 1.3 V                     | 9BH             | LD6836TD/27H | 2.7 V                     | 9PH             |
| LD6836TD/14H | 1.4 V                     | 9CH             | LD6836TD/28H | 2.8 V                     | 9QH             |
| LD6836TD/16H | 1.6 V                     | 9EH             | LD6836TD/29H | 2.9 V                     | 9RH             |
| LD6836TD/18H | 1.8 V                     | 9GH             | LD6836TD/30H | 3.0 V                     | 9SH             |
| LD6836TD/20H | 2.0 V                     | 9JH             | LD6836TD/33H | 3.3 V                     | 9VH             |
| LD6836TD/22H | 2.2 V                     | 9KH             | LD6836TD/36H | 3.6 V                     | 9YH             |
|              |                           |                 |              |                           |                 |

#### Table 17. Marking code of high-ohmic output

### Table 18. Marking of pull-down output


| Type number  | Nominal<br>output voltage | Marking<br>code | Type number  | Nominal<br>output voltage | Marking<br>code |
|--------------|---------------------------|-----------------|--------------|---------------------------|-----------------|
| LD6836TD/12P | 1.2 V                     | 9AP             | LD6836TD/23P | 2.3 V                     | 9LP             |
| LD6836TD/13P | 1.3 V                     | 9BP             | LD6836TD/25P | 2.5 V                     | 9NP             |
| LD6836TD/14P | 1.4 V                     | 9CP             | LD6836TD/27P | 2.7 V                     | 9PP             |
| LD6836TD/16P | 1.6 V                     | 9EP             | LD6836TD/28P | 2.8 V                     | 9QP             |
| LD6836TD/18P | 1.8 V                     | 9GP             | LD6836TD/29P | 2.9 V                     | 9RP             |
| LD6836TD/20P | 2.0 V                     | 9JP             | LD6836TD/30P | 3.0 V                     | 9SP             |
| LD6836TD/21P | 2.1 V                     | 9ZP             | LD6836TD/33P | 3.3 V                     | 9VP             |
| LD6836TD/22P | 2.2 V                     | 9KP             | LD6836TD/36P | 3.6 V                     | 9YP             |

## **NXP Semiconductors**

## LD6836 series

Ultra low dropout regulators, low noise, 300 mA

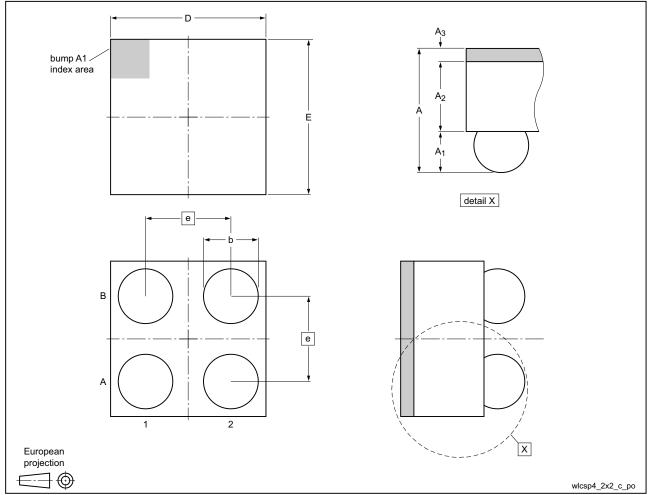
## 13. Package outline



#### WLCSP4: wafer level chip-size package; 4 bumps (2 x 2)



### Table 19.Dimensions for Figure 23


| Symbol         | Min  | Тур  | Max  | Unit |  |
|----------------|------|------|------|------|--|
| А              | 0.44 | 0.47 | 0.50 | mm   |  |
| A <sub>1</sub> | 0.18 | 0.20 | 0.22 | mm   |  |
| A <sub>2</sub> | 0.26 | 0.27 | 0.28 | mm   |  |
| b              | 0.21 | 0.26 | 0.31 | mm   |  |
| D              | 0.71 | 0.76 | 0.81 | mm   |  |
| E              | 0.71 | 0.76 | 0.81 | mm   |  |
| е              | -    | 0.4  | -    | mm   |  |

LD6836\_SER Product data sheet

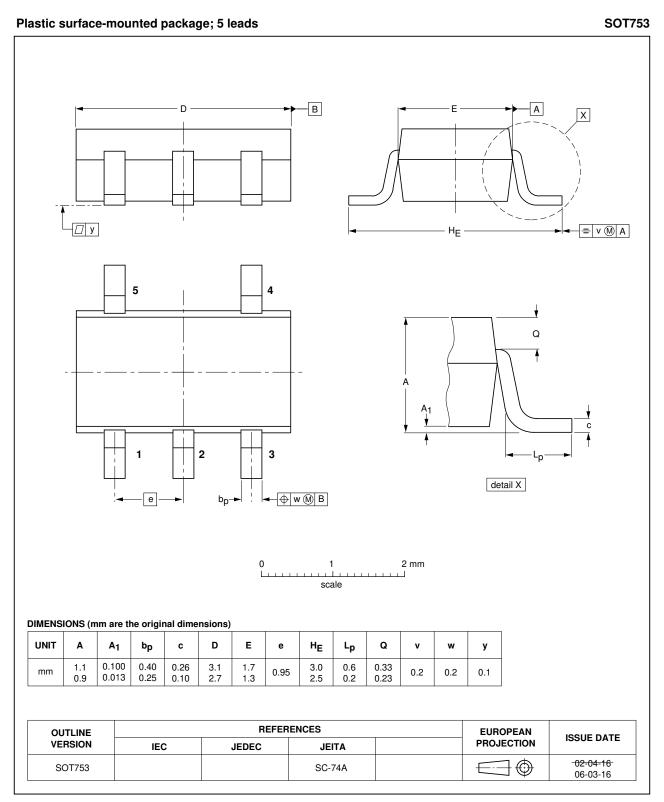
## **NXP Semiconductors**

## LD6836 series

Ultra low dropout regulators, low noise, 300 mA



WLCSP4: wafer level chip-size package with backside coating; 4 bumps (2 x 2)


## Fig 24. Package outline LD6836CX4/C (WLCSP4 with backside coating)

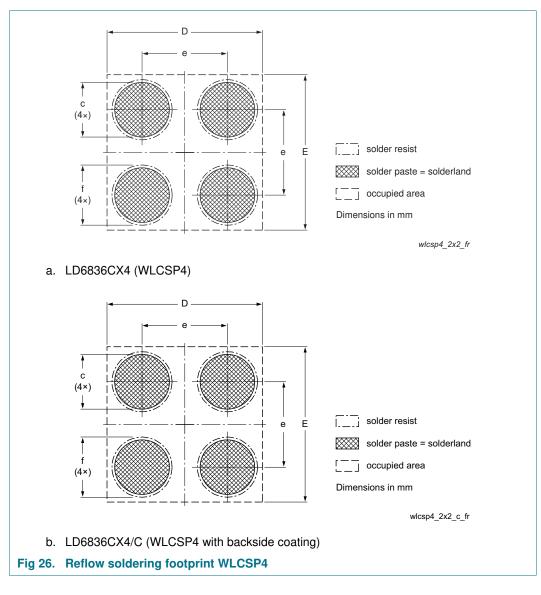
#### Table 20. Dimensions for Figure 24

| Symbol         | Min  | Тур  | Мах  | Unit |  |
|----------------|------|------|------|------|--|
| А              | 0.47 | 0.51 | 0.55 | mm   |  |
| A <sub>1</sub> | 0.18 | 0.20 | 0.22 | mm   |  |
| A <sub>2</sub> | 0.26 | 0.27 | 0.28 | mm   |  |
| A <sub>3</sub> | 0.03 | 0.04 | 0.05 | mm   |  |
| b              | 0.21 | 0.26 | 0.31 | mm   |  |
| D              | 0.71 | 0.76 | 0.81 | mm   |  |
| E              | 0.71 | 0.76 | 0.81 | mm   |  |
| е              | -    | 0.4  | -    | mm   |  |
|                |      |      |      |      |  |

LD6836\_SER Product data sheet

Ultra low dropout regulators, low noise, 300 mA



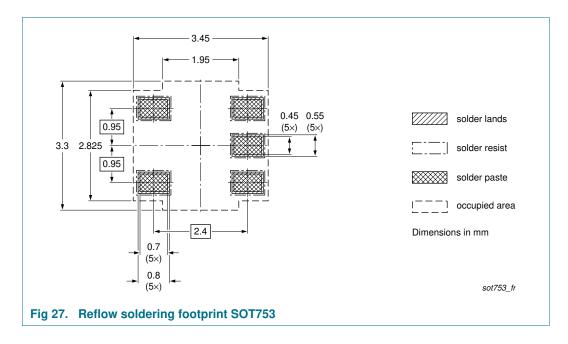

## Fig 25. Package outline LD6836 series (SOT753)

All information provided in this document is subject to legal disclaimers.

LD6836\_SER

Ultra low dropout regulators, low noise, 300 mA

## 14. Soldering




### Table 21.Dimensions for Figure 26

| Symbol | Min  | Тур   | Max  | Unit |
|--------|------|-------|------|------|
| С      | -    | 0.25  | -    | mm   |
| D      | 0.71 | 0.76  | 0.81 | mm   |
| E      | 0.71 | 0.76  | 0.81 | mm   |
| е      | -    | 0.4   | -    | mm   |
| f      | -    | 0.325 | -    | mm   |

LD6836\_SER Product data sheet

Ultra low dropout regulators, low noise, 300 mA



## 15. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

## 15.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

## 15.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

LD6836 SER

#### Ultra low dropout regulators, low noise, 300 mA

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- · Inspection and repair
- · Lead-free soldering versus SnPb soldering

### 15.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

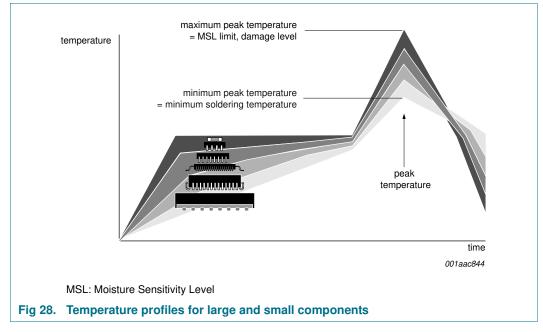
## 15.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 28</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with <u>Table 22</u> and <u>23</u>

#### Table 22. SnPb eutectic process (from J-STD-020C)

| Package thickness (mm) | Package reflow temperature (°C) |       |  |
|------------------------|---------------------------------|-------|--|
|                        | Volume (mm <sup>3</sup> )       |       |  |
|                        | < 350                           | ≥ 350 |  |
| < 2.5                  | 235                             | 220   |  |
| ≥ 2.5                  | 220                             | 220   |  |


LD6836 SER

| Package thickness (mm) | Package reflow temperature (°C)<br>Volume (mm <sup>3</sup> ) |             |        |  |
|------------------------|--------------------------------------------------------------|-------------|--------|--|
|                        |                                                              |             |        |  |
|                        | < 350                                                        | 350 to 2000 | > 2000 |  |
| < 1.6                  | 260                                                          | 260         | 260    |  |
| 1.6 to 2.5             | 260                                                          | 250         | 245    |  |
| > 2.5                  | 250                                                          | 245         | 245    |  |

#### Table 23. Lead-free process (from J-STD-020C)

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 28.



For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

Ultra low dropout regulators, low noise, 300 mA

## 16. Revision history

| Table 24. Revision h                               | istory       |                    |               |                |
|----------------------------------------------------|--------------|--------------------|---------------|----------------|
| Document ID                                        | Release date | Data sheet status  | Change notice | Supersedes     |
| LD6836_SER v.2                                     | 20121005     | Product data sheet | -             | LD6836_SER v.1 |
| Modifications:  • Section 9.2 "Dropout": corrected |              |                    |               |                |
| LD6836_SER v.1                                     | 20121004     | Product data sheet | -             | -              |