

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



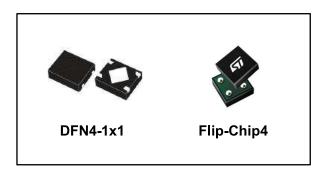
# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China










#### 250 mA ultra low noise LDO

Datasheet - production data



#### **Features**

- Ultra low output noise: 6.5 µV<sub>RMS</sub>
- Operating input voltage range: 1.5 V to 5.5 V
- Output current up to 250 mA
- Very low quiescent current: 12 μA at no-load
- Controlled I<sub>a</sub> in dropout condition
- Very low-dropout voltage: 250 mV at 250 mA
- Very high PSRR: 80 dB@100 Hz, 60 dB@100 kHz
- Output voltage accuracy: 2% across line, load and temperature
- Output voltage versions: from 1 V to 5 V, with 50 mV step
- Logic-controlled electronic shutdown
- Output discharge feature
- Internal soft-start
- Overcurrent and thermal protections
- Temperature range: from -40 °C to +125 °C
- Packages: Flip-Chip4, DFN4-1x1

#### **Applications**

- Smartphones/tablets
- Image sensors
- Instrumentation
- VCO and RF modules

#### **Description**

The LDLN025 is a 250 mA low-dropout voltage regulator, able to work with an input voltage range from 1.5 V to 5.5 V.

The typical dropout voltage at 250 mA load is 120 mV.

The very low quiescent current, which is just  $12 \mu A$  at no-load, extends battery-life of applications requiring very long standby time.

Thanks to its ultra low noise value and high PSRR, the LDLN025 provides a very clean output, suitable for ultra-sensitive loads. It is stable with ceramic capacitors.

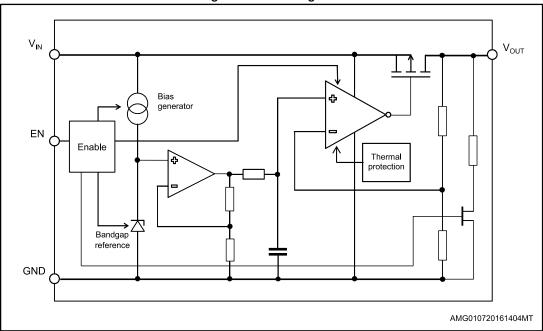
The enable logic control function puts the device into shutdown mode allowing a total current consumption lower than 1 µA.

The device also includes short-circuit and thermal protection.

Typical applications are noise sensitive loads such as ADC, VCO in mobile phones and tablets, wireless LAN devices. The LDLN025 is designed to keep the quiescent current under control and at a low value also during dropout operation, extending the operating time of battery-powered devices.

Several small package options are available.

LDLN025 Contents


### Contents

| 1 | Block d           | diagram                        | 3  |
|---|-------------------|--------------------------------|----|
| 2 | Pin configuration |                                |    |
| 3 | Typical           | application diagram            | 5  |
| 4 |                   | um ratings                     |    |
| 5 | Electric          | cal characteristics            | 7  |
| 6 | Typical           | characteristics                | 9  |
| 7 | Packag            | ge information                 | 14 |
|   | 7.1               | Flip-Chip4 package information | 15 |
|   | 7.2               | Flip-Chip4 packing information | 17 |
|   | 7.3               | DFN4-1x1 package information   | 18 |
|   | 7.4               | DFN4-1x1 packing information   | 19 |
| 8 | Orderin           | ng information                 | 20 |
|   | 8.1               | Marking information            | 20 |
| 9 | Revisio           | on history                     | 21 |

LDLN025 Block diagram

# 1 Block diagram

Figure 1: Block diagram



Pin configuration LDLN025

# 2 Pin configuration

Figure 2: Pin configuration

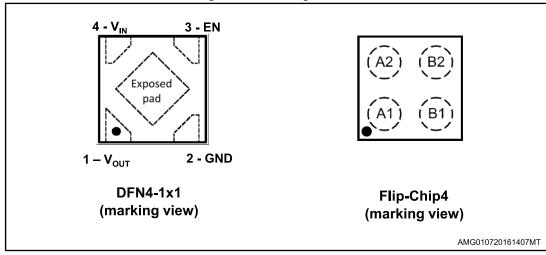
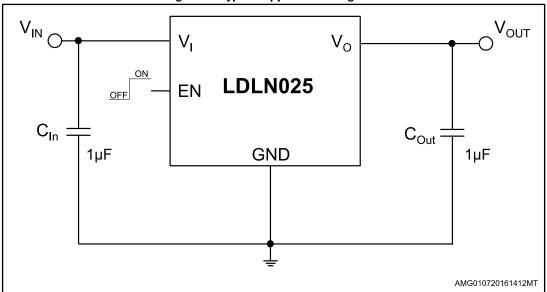




Table 1: Pin description

| Symbol      | DFN4-1x1    | Flip-Chip4 | Description                                                                                       |
|-------------|-------------|------------|---------------------------------------------------------------------------------------------------|
| $V_{IN}$    | 4           | A1         | LDO Supply voltage                                                                                |
| Vout        | 1           | A2         | LDO Output voltage                                                                                |
| GND         | 2           | B2         | Ground                                                                                            |
| EN          | 3           | B1         | Enable input: set $V_{EN}$ = high to turn on the device;<br>$V_{EN}$ = low to turn off the device |
|             |             |            | This pin is internally pulled down via 1 $M\Omega$ resistor                                       |
| NC          | -           | -          | Not internally connected: can be connected to GND                                                 |
| Exposed pad | Exposed pad | -          | Must be connected to GND                                                                          |

# 3 Typical application diagram

Figure 3: Typical application diagram



Maximum ratings LDLN025

## 4 Maximum ratings

Table 2: Absolute maximum ratings

| Symbol             | Parameter                      | Value                        | Unit |  |
|--------------------|--------------------------------|------------------------------|------|--|
| V <sub>IN</sub>    | Input supply voltage           | -0.3 to 7                    | V    |  |
| V <sub>OUT</sub>   | Output voltage                 | -0.3 to V <sub>IN</sub> +0.3 | V    |  |
| louт               | Output current                 | Internally limited           | Α    |  |
| EN                 | Enable pin voltage             | -0.3 to V <sub>IN</sub> +0.3 | V    |  |
| $P_D$              | Power dissipation              | Internally limited           | W    |  |
| ESD                | Charge device model            | ±1000                        | V    |  |
| ESD                | Human body model               | ±2000                        | 7 v  |  |
| T <sub>J-OP</sub>  | Operating junction temperature | -40 to 125                   | °C   |  |
| T <sub>J-MAX</sub> | Maximum junction temperature   | 150                          | °C   |  |
| T <sub>STG</sub>   | Storage temperature            | -55 to 150                   | °C   |  |

Table 3: Thermal data

| Symbol            | Parameter                               | DFN4-1x1 | Flip-Chip4 | Unit |
|-------------------|-----------------------------------------|----------|------------|------|
| R <sub>thja</sub> | Thermal resistance, junction-to-ambient | 220      | 210        | °C/W |

LDLN025 Electrical characteristics

#### 5 Electrical characteristics

 $(T_J=25~^{\circ}C,~V_{IN}=V_{OUT(nom)}+1~V~or~1.5~V,$  whichever is greater;  $V_{EN}=1.2~V;~C_{IN}$  = 1  $\mu F;~C_{OUT}=1~\mu F;~I_{OUT}=1~mA)$ 

**Table 4: Electrical characteristics** 

| Symbol                        | Parameter                           | Test conditions                                                                                                                             | Min. | Тур.  | Max.  | Unit              |  |
|-------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------------------|--|
| Vin                           | Operating input voltage range       |                                                                                                                                             | 1.5  |       | 5.5   | V                 |  |
|                               | Output voltage                      | $V_{OUT} + 1 V^{(1)} < V_{IN} < 5.5 V,$ $1 \text{ mA} < I_{OUT} < 0.25 A,$ $V_{OUT} \ge 1.8 V,$ $-40 \text{ °C} < T_{J} < 125 \text{ °C}$   | -2.0 |       | 2.0   | %                 |  |
| Vоит                          | accuracy                            | $V_{OUT} + 1 \ V^{(1)} < V_{IN} < 5.5 \ V,$ $1 \ mA < I_{OUT} < 0.25 \ A,$ $V_{OUT} < 1.8 \ V,$ $-40 \ ^{\circ}C < T_{J} < 125 \ ^{\circ}C$ | -3.0 |       | +3.0  | 76                |  |
|                               | Static line regulation              | $V_{OUT} + 1 V^{(1)} < V_{IN} < 5.5 V$                                                                                                      |      | 0.02  |       | %/V               |  |
| Δ <b>V</b> ουτ/Δ <b>V</b> ιν  | Static line regulation              | -40 °C < T <sub>J</sub> < 125 °C                                                                                                            |      |       | 0.06  | %/ V              |  |
| 2 V 00 1/2 V IIV              | Line transient <sup>(2)</sup>       | $\Delta V_{IN} = +/- 0.6 \text{ V},$<br>$t_{rise} = t_{fall} = 30  \mu\text{s}$                                                             | -1   |       | +1    | mV                |  |
|                               | Static load regulation              | 1 mA < lout < 0.25 A                                                                                                                        |      | 0.002 |       | 0/ / 1            |  |
| Δ <b>V</b> ουτ/Δ <b>Ι</b> ουτ |                                     | -40 °C < T <sub>J</sub> < 125 °C                                                                                                            |      |       | 0.007 | %/mA              |  |
| 24001/21001                   | Load transient <sup>(2)</sup>       | $\Delta I_{OUT}$ = 1 mA to 250 mA and back, $t_{rise}$ = $t_{fall}$ = 10 $\mu s$                                                            | -40  |       | +40   | mV                |  |
| Δ <b>V</b> ουτ                | Overshoot on startup <sup>(2)</sup> | Percentage of V <sub>OUT(nom)</sub>                                                                                                         |      |       | 5     | %                 |  |
|                               | Dropout voltage <sup>(3)</sup>      | I <sub>OUT</sub> = 0.1 A                                                                                                                    |      | 50    |       |                   |  |
|                               |                                     | I <sub>OUT</sub> = 0.25 A                                                                                                                   |      | 120   |       |                   |  |
| V <sub>DROP</sub>             |                                     | I <sub>OUT</sub> = 0.25 A,<br>-40 °C < T <sub>J</sub> < 125 °C<br>(Flip-Chip4)                                                              |      |       | 200   | mV                |  |
|                               |                                     | I <sub>OUT</sub> = 0.25 A,<br>-40 °C < T <sub>J</sub> < 125 °C<br>(DFN4-1x1)                                                                |      |       | 250   |                   |  |
| eN                            | Output noise voltage (2)            | f = 10 Hz to 100 kHz;<br>lout = 1 mA                                                                                                        |      | 10    |       | 111/              |  |
|                               |                                     | f = 10 Hz to 100 kHz;<br>I <sub>OUT</sub> = 250 mA                                                                                          |      | 6.5   |       | μV <sub>RMS</sub> |  |
|                               |                                     | f = 100 Hz; I <sub>OUT</sub> = 20 mA                                                                                                        |      | 80    |       |                   |  |
| CV/D                          | Supply voltage                      | f = 1 kHz; I <sub>OUT</sub> = 20 mA                                                                                                         |      | 80    |       | dB                |  |
| SVR                           | rejection <sup>(2)</sup>            | f = 10 kHz; I <sub>OUT</sub> = 20 mA                                                                                                        |      | 75    |       |                   |  |
|                               |                                     | f = 100 kHz; I <sub>OUT</sub> = 20 mA                                                                                                       |      | 60    |       |                   |  |

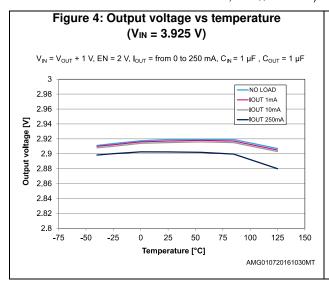
| Symbol           | Parameter                                    | Test conditions                                                                               | Min. | Тур.  | Max. | Unit |
|------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------|------|-------|------|------|
|                  |                                              | Iout = 0 A                                                                                    |      | 12    |      |      |
|                  | Quiescent current <sup>(4)</sup>             | I <sub>OUT</sub> = 0 A;<br>-40 °C < T <sub>J</sub> < 125 °C                                   |      |       | 25   | μΑ   |
| ΙQ               | Quiescent current                            | IOUT = 0.25 A                                                                                 |      | 250   |      |      |
|                  |                                              | I <sub>OUT</sub> = 0.25 A;<br>-40 °C < T <sub>J</sub> < 125 °C                                |      |       | 425  | μΑ   |
|                  | Shutdown current                             | V <sub>EN</sub> = 0 V                                                                         |      | 0.2   | 1    | μΑ   |
| I <sub>SC</sub>  | Short-circuit current                        | V <sub>OUT</sub> = 0 V                                                                        | 250  | 500   |      | mA   |
| R <sub>LOW</sub> | Output discharge resistance                  | V <sub>EN</sub> = 0 V                                                                         |      | 230   |      | Ω    |
| Ven              | V <sub>IL</sub> , enable input<br>logic low  | V <sub>OUT</sub> + 1 V <sup>(1)</sup> < V <sub>IN</sub> < 5.5 V                               |      |       | 0.4  | V    |
|                  | V <sub>IH</sub> , enable input<br>logic high | -40 °C < T <sub>J</sub> < 125 °C                                                              | 1.2  |       |      | V    |
|                  | Enable pin input                             | $V_{IN} = V_{EN} = 5.5 \text{ V}$                                                             |      | 5.5   |      |      |
| I <sub>EN</sub>  | current                                      | V <sub>IN</sub> = 5.5 V; V <sub>EN</sub> = 0 V                                                |      | 0.001 |      | μΑ   |
| ton              | Turn-on time <sup>(2)</sup>                  | From V <sub>EN</sub> > V <sub>IH</sub> to<br>V <sub>OUT</sub> = 95 % of V <sub>OUT(nom)</sub> |      | 80    | 150  | μs   |
| Tshon            | Thermal shutdown <sup>(2)</sup>              | I <sub>OUT</sub> > 1 mA                                                                       |      | 160   |      | °C   |
|                  | Hysteresis                                   |                                                                                               |      | 20    |      |      |

#### Notes:

Table 5: Recommended input and output capacitors

| Symbol | Parameter                | Test conditions | Min. | Тур. | Max. | Unit |
|--------|--------------------------|-----------------|------|------|------|------|
| CIN    | Input capacitance        | Otob ilitor     | 0.7  | 1    |      |      |
| Соит   | Output capacitance       | Stability       | 0.7  | 1    | 10   | μF   |
| ESR    | Output/input capacitance |                 | 5    |      | 500  | mΩ   |

 $<sup>^{(1)}</sup>$  V<sub>IN</sub> = V<sub>OUT</sub> + 1 V or 1.5 V, whichever is greater. Not applicable for 5 V output voltage versions.


<sup>(2)</sup> Guaranteed by design.

 $<sup>^{(3)}</sup>$  Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.

 $<sup>^{\</sup>rm (4)}$  The quiescent current is defined as I<sub>IN</sub>-I<sub>OUT</sub> and does not include the EN pin current.

### 6 Typical characteristics

(The following plots are referred to LDLN025J2925R in the typical application circuit and, unless otherwise noted, at  $T_A = 25$  °C).



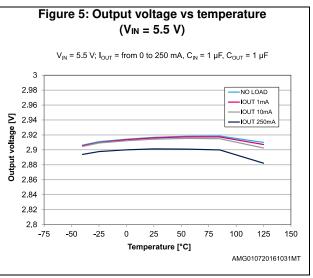
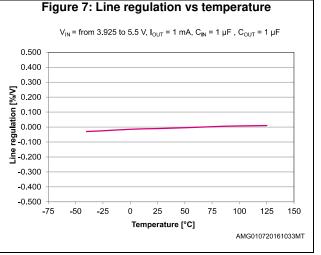




Figure 6: Load regulation vs temperature  $V_{IN}$  =  $V_{OUT}$  + 1 V;  $I_{OUT}$  = from 1 mA to 0.25 A,  $C_{IN}$  = 1  $\mu F$  ,  $C_{OUT}$  = 1  $\mu F$ 0.020 0.015 0.010 0.005 0.000 **2** -0.005 -0.010 -0.015 -0.020 -75 -50 -25 25 50 100 125 Temperature [°C] AMG010720161032MT



2

0

-75

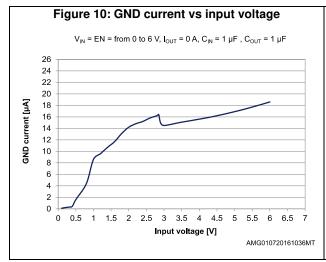
-50

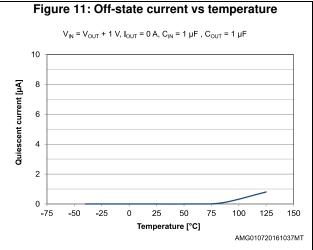
-25

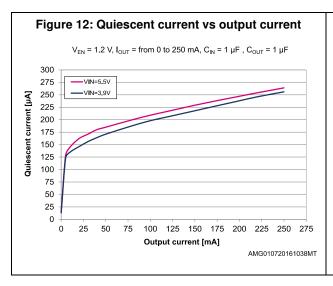
Figure 8: Quiescent current vs temperature (lout = 0 mA)  $V_{IN} = V_{OUT} + 1 \, V, \, V_{EN} = 1.2 \, V, \, I_{OUT} = 0 \, A, \, C_{IN} = 1 \, \mu F, \, C_{OUT} = 1 \, \mu F$ 

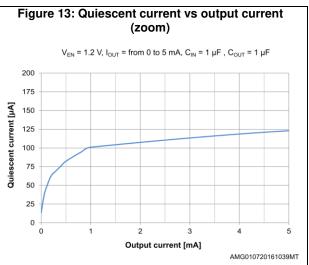
25

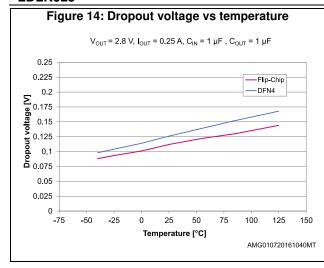
Temperature [°C]


50


125 150


AMG010720161034MT


100


Figure 9: Quiescent current vs temperature  $(I_{OUT} = 250 \text{ mA})$  $V_{IN}$  =  $V_{OUT}$  + 1 V,  $V_{EN}$  = 1.2 V,  $I_{OUT}$  = 250 mA,  $C_{IN}$  = 1  $\mu F$  ,  $C_{OUT}$  = 1  $\mu F$ 400 375 350 Quiescent current [µA] 325 300 275 250 225 200 175 150 125 100 -50 50 125 25 100 Temperature [°C] AMG010720161035MT

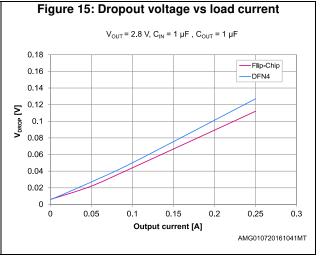
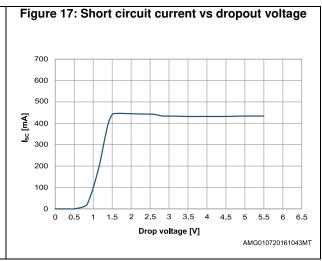
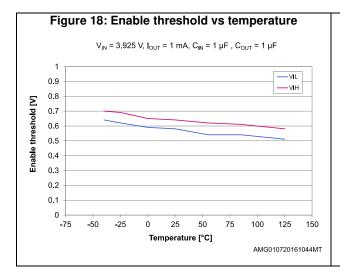
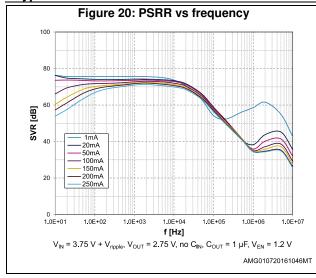


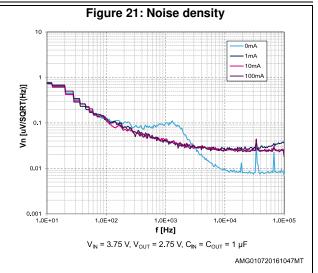


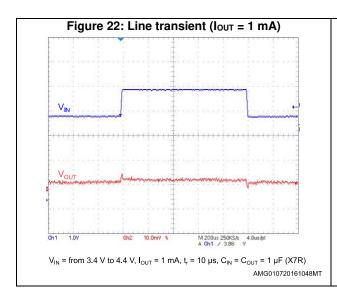


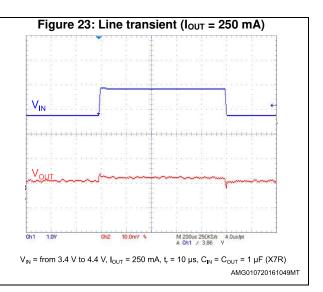


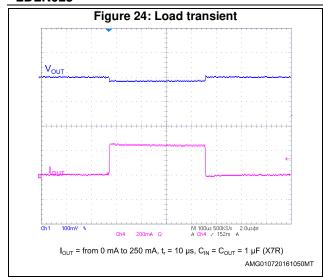


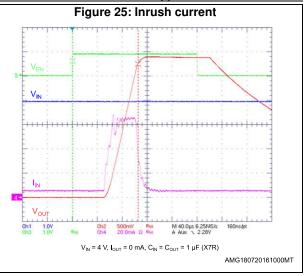





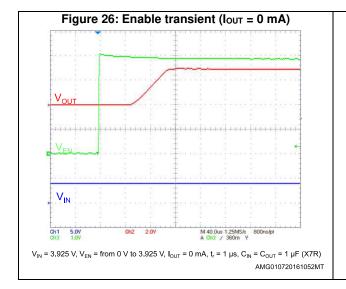


Figure 16: Output voltage vs input voltage  $V_{IN}$  =  $V_{EN}$  = from 0 to 5.5 V,  $V_{OUT}$  = 2.75 V,  $I_{OUT}$  = 250 mA,  $~C_{IN}$  = 1  $\mu F$  ,  $C_{OUT}$  = 1  $\mu F$ 2.5 Output voltage [V] 2 1.5 -85°C 55°C 1 25°C -0°C 0.5 -25°C -40°C 0 0 0.5 1 1.5 2 2.5 3 4 4.5 5.5 6 Input voltage [V] AMG010720161042MT

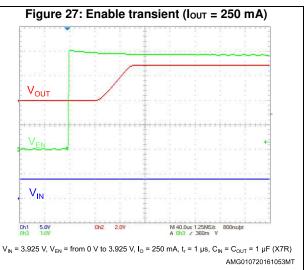













Package information LDLN025

## 7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

LDLN025 Package information

# 7.1 Flip-Chip4 package information

Figure 28: Flip-Chip4 package outline

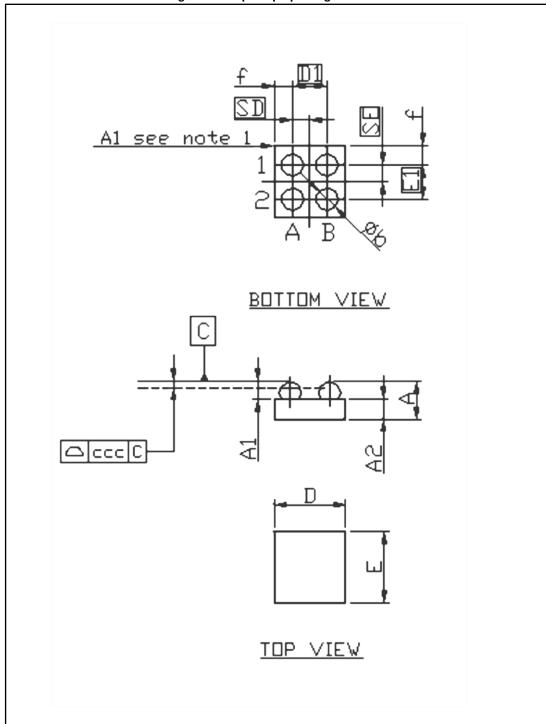
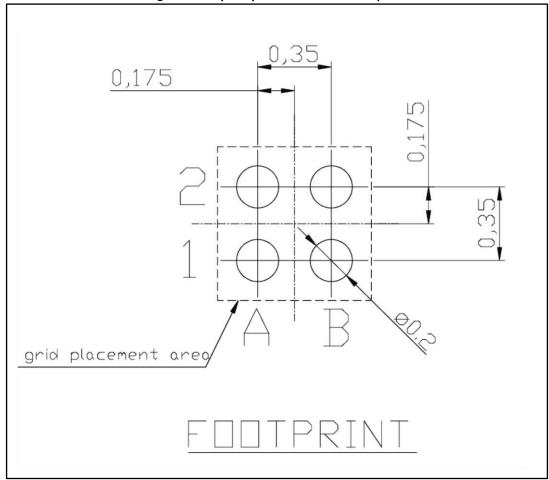
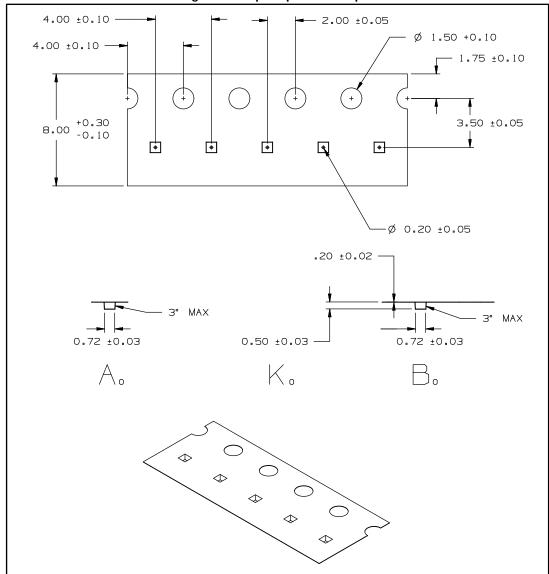




Table 6: Flip-Chip4 mechanical data

| Dim.   |       | mm    |       |
|--------|-------|-------|-------|
| Dilli. | Min.  | Тур.  | Max.  |
| Α      | 0.375 | 0.410 | 0.445 |
| A1     | 0.145 | 0.160 | 0.175 |
| A2     | 0.230 | 0.250 | 0.270 |
| b      | 0.189 | 0.210 | 0.231 |
| D      | 0.598 | 0.628 | 0.658 |
| D1     |       | 0.350 |       |
| E      | 0.598 | 0.628 | 0.658 |
| E1     |       | 0.350 |       |
| SD     |       | 0.175 |       |
| SE     |       | 0.175 |       |
| f      |       | 0.139 |       |
| ccc    |       | 0.075 |       |


Figure 29: Flip-Chip4 recommended footprint



LDLN025 Package information

## 7.2 Flip-Chip4 packing information

Figure 30: Flip-Chip4 carrier tape



Package information LDLN025

## 7.3 DFN4-1x1 package information

Figure 31: DFN4-1x1 package outline

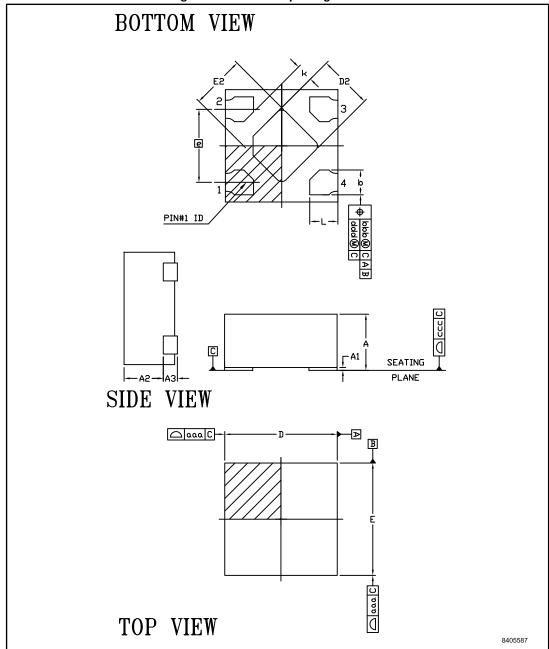
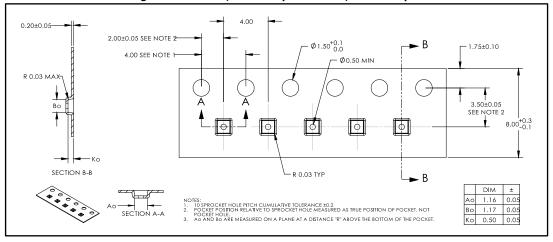




Table 7: DFN4-1x1 package mechanical data

| Dim.   | ·    | mm    |      |
|--------|------|-------|------|
| Dilli. | Min. | Тур.  | Max. |
| Α      | 0.36 |       | 0.40 |
| A1     | 0.00 |       | 0.05 |
| A2     | 0.15 | 0.25  | 0.35 |
| A3     |      | 0.125 |      |
| b      | 0.15 | 0.20  | 0.25 |
| D      | 0.95 | 1.00  | 1.05 |
| D2     | 0.38 | 0.48  | 0.58 |
| е      |      | 0.65  |      |
| Е      | 0.95 | 1.00  | 1.05 |
| E2     | 0.38 | 0.48  | 0.58 |
| L      | 0.15 | 0.25  | 0.35 |
| K      |      | 0.15  |      |
| N      |      | 4     |      |

# 7.4 DFN4-1x1 packing information

Figure 32: DFN4 (1x1x0.38 pitch 4 mm) carrier tape



Ordering information LDLN025

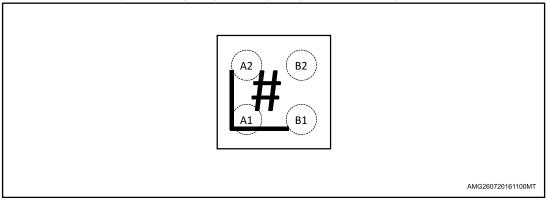

# 8 Ordering information

Table 8: Order code

| Order code    | Package    | Output voltage | Marking | Packing       |
|---------------|------------|----------------|---------|---------------|
| LDLN025PU18R  |            | 1.8 V          | 18      |               |
| LDLN025PU25R  |            | 2.5 V          | 25      |               |
| LDLN025PU275R |            | 2.75 V         | 2Z      |               |
| LDLN025PU28R  |            | 2.8 V          | 28      |               |
| LDLN025PU29R  | DFN4-1x1   | 2.9 V          | 29      |               |
| LDLN025PU30R  |            | 3.0 V          | 30      |               |
| LDLN025PU32R  |            | 3.2 V          | 32      |               |
| LDLN025PU33R  |            | 3.3 V          | 33      |               |
| LDLN025PU50R  |            | 5.0 V          | 50      | Tana and wast |
| LDLN025J12R   |            | 1.2 V          | М       | Tape and reel |
| LDLN025J18R   |            | 1.8 V          | Е       |               |
| LDLN025J25R   |            | 2.5 V          | Н       |               |
| LDLN025J28R   |            | 2.8 V          | I       |               |
| LDLN025J2925R | Flip-Chip4 | 2.925 V        | K       |               |
| LDLN025J30R   |            | 3.0 V          | G       |               |
| LDLN025J32R   |            | 3.2 V          | N       |               |
| LDLN025J33R   |            | 3.3 V          | F       |               |
| LDLN025J50R   |            | 5.0 V          | Р       |               |

### 8.1 Marking information

Figure 33: Flip-Chip marking composition (marking view)





the symbol # indicates the marking digit, as per Table 8: "Order code".

LDLN025 Revision history

# 9 Revision history

Table 9: Document revision history

| Date        | Revision | Changes                                                                  |
|-------------|----------|--------------------------------------------------------------------------|
| 03-Aug-2016 | 1        | First release.                                                           |
| 01-Sep-2016 | 2        | Updated <i>Table 8: "Order code".</i> Minor text changes.                |
| 24-Oct-2016 | 3        | Updated <i>Table 2: "Absolute maximum ratings"</i> . Minor text changes. |
| 17-Nov-2016 | 4        | Updated Section 8: "Ordering information". Minor text changes.           |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

