imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Le9662 **Dual Subscriber Line Interface Circuit** miSLIC[™] Series

Product Brief

Features

- Economical, fifth-generation line interface solution for VoIP processors and SoCs
- **Dual Channel Architecture**
- Single port 4-wire interface control (ZSI)
 - Compatible with numerous VoIP processors and SoC solutions
 - Less expensive isolation than multi-port control
 - Simplifies board routing
- VoicePath SDK and VP-API-II Software available to implement FXS functions
- VeriVoice Professional Test Suite Software
 - Comprehensive subscriber loop testing, including Telcordia GR-909-CORE / TIA-1063 diagnostic testing
 - Industry leading advanced test software
- VeriVoice Manufacturing Test Package (VVMT)
 - Facilitates factory testing and calibration of assembled boards
- Low cost, Energy Efficient Shared Switching **Regulator Architectures**
 - Dual Output power supplies
 - Integrated battery switches
 - Up to 70 V_{RMS} open circuit ringing with 5 REN load
- Low cost, 2-Layer PCB Reference Designs
- **Complete Wideband BORSCHT functionality**
- Worldwide Programmability
- Per channel Narrowband or Wideband operation

Applications

- **DSL Residential Gateways and Integrated** Access Devices (IADs)
- **Cable Embedded Multimedia Terminal** Adapters (eMTAs)
- PON Single Family Units (SFU)
- Fiber-to-the-premise (FTTX) solutions

Document ID# 147	600 Version 2		October 2013				
Ordering Information							
Device OPN			Packing				
Le9662WQCT Le9662WQC	SLIC, BBABS/FBABS SLIC, BBABS/FBABS	56-pin QFN 56-pin QFN	Tape&Reel Tray				

These Green packages meet RoHS Directive 2002/95/EC of the European Council to minimize the environmental impact of electrical equipment.

Description

The miSLIC[™] Line Circuits together with a VoIP processor or SoC, provides an economical turn-key solution for derived voice applications. The miSLIC devices are controlled by a VoIP processor or SoC through a simple, single serial interface.

The dual channel Le9662 miSLIC device uses energy efficient shared power supply topologies for reduced BOM cost. The Le9662 can be configured for patent-pending shared Buck-Boost Automatic Battery Switching (BBABS) or for shared Flyback ABS (FBABS) operation. Ringing and system power management are supported to limit the peak power requirements of each telephone line FXS port. The dual channel Le9662 features wideband clarity and complete BORSCHT functionality.

Manufacturing self test and subscriber line diagnostics are available features. All AC, DC, and power parameters are programmable making the Le9662 device suitable for any short loop application requiring SLIC functionality.

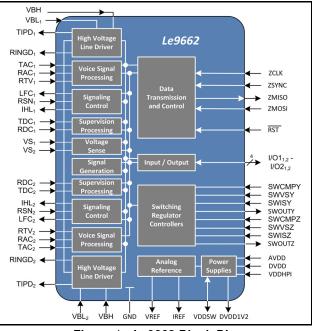


Figure 1 - Le9662 Block Diagram

Selected Electrical Specifications

Description	Symbol	Test Conditions	Min	Тур	Мах	Unit
Ambient Temperature, under Bias	T _A		-40		+85	°C
Digital and Analog Supply Voltages	DVDD, AVDD		3.135	3.3	3.465	V _{DC}
Operating Limits: BBABS operation VBH VB FBABS operation VBH (both lines active VBL), VBL < -50 V VBH (all other states VBL (in active states	+ - - /)	Off-Hook Off-Hook	$\begin{array}{c} -(\text{VSW} + (2 * \text{VBL}) - 2\text{V}) \\ -40 \ \text{V}_{\text{DC}} \ \text{to} \ -25 \ \text{V}_{\text{DC}} \\ \end{array}$ -150 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			V _{DC}
Line Current: BBABS operation FBABS operation			18 18	25 25	30 45	mA
Ringing Voltage: BBABS operatio FBABS operatio		5REN		50	60 70	V _{RMS}
Two-Wire Return Loss	RL	200 to 3400 Hz		30		dB
Longitudinal Balance		1 kHz		58		dB
Device Power Dissipation, Continuous	P _{D(max)}	T _A = 85°C		2		W
Junction to Ambient Thermal Resistance	θ_{JA}			27		°C/W

Device Power Consumption (Typical)	Symbol	Test Conditions	BBABS	FBABS	Power	Unit
Shutdown	PD	Switchers off	5	5	Per Channel Both Channels	mW
Disconnect			25	25		
Low Power Idle Mode		On-Hook	47	52		
Idle		On-Hook	99	116		
Active		Off-Hook, 300 Ω, ILA = 25 mA	520	658		
1 line Active, 1 line Ringing		50 V _{RMS} , 5REN	1523	1506		

Device Pinout

Package Drawings RINGD2 RINGD1 RSVD RSVD VBH RSVD RSVD RSVD VBL1 RSVD TIPD2 RSVD TIPD1 VBL2 A 8.00 .40±0.1 B ⊕ 0.10 (C A B 56 55 54 53 52 51 50 49 48 47 46 45 44 43 RSN1 RSN2 42 ⊕0.10 M C A B AVDD 2 41 🔲 AVDD PIN 1 AREA U U U U U U RTV1 3 40 🔲 RTV2 VREF 4 39 🔲 IREF IHL1 5 38 🔲 IHL2 40±0. TAC1 6 37 🔲 TAC2 DETAIL RAC1 36 🔲 RAC2 7 Exposed Ground Pad TDC1 2X 0.15 C 35 🔲 TDC2 8 RDC1 34 🔲 RDC2 9 2X 0.15 C REF LEC1 33 🔲 LFC2 10 1.2 32 🔲 SWVSY 11 SWVSZ SWCMPY 12 31 🔲 SWCMPZ ł SWISY 13 30 🔲 SWISZ CO.08C 0.02+0.03 I/O21 / VS1 14 29 🔲 I/O22 / VS2 0.90±0.10-15 16 17 18 19 20 21 22 23 24 25 26 27 28 VOI, VDDSW DVDD SWOUTZ SSYNC ZSYNC ZSYNC ZOIS ZCIK VDDHP12 VDDHP12 RSVD RSVD

Related Collateral

- Le9662 Shared Battery Dual miSLIC[™] Line Circuit Preliminary Data Sheet, Document ID# 146852
- Le9672 Tracking Battery Dual miSLIC™ Line Circuit Preliminary Data Sheet, Document ID# 146853 .